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Abstract

Background

Intratumoral heterogeneity (ITH) is a hallmark of clear cell renal cell carcinoma (ccRCC) that
reflects the trajectory of evolution and influences clinical prognosis. Here we seek to elucidate
how ITH and tumor evolution during immune checkpoint inhibitor (ICI) treatment can lead to

therapy resistance.

Methods

Here, we spatiotemporally profiled the genomic and immunophenotypic characteristics of 29

ccRCC patients, including pre- and post-therapy samples from 17 ICI treated patients.

Deep multi-regional whole exome and transcriptome sequencing were performed on 29 patients
at different time points before and after ICI therapy. T cell repertoire was also monitored from
tissue and peripheral blood collected from a subset of patients to study T cell clonal expansion

during ICI therapy.

Results

Angiogenesis, lymphocytic infiltration, and myeloid infiltration varied significantly across regions
of the same patient, potentially confounding their utility as biomarkers of ICI response. Elevated
ITH associated with a constellation of both genomic features (HLA LOH, CDKN2A/B loss) and
microenvironmental features, including elevated myeloid expression, reduced peripheral T cell
receptor (TCR) diversity, and putative neoantigen depletion. Hypothesizing that ITH may itself

play a role in shaping ICI response, we derived a transcriptomic signature associated with
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neoantigen depletion that strongly associated with response to ICl and targeted therapy treatment

in several independent clinical trial cohorts.

Conclusions

These results argue that genetic and immune heterogeneity jointly co-evolve and influence

response to ICl in ccRCC.

Trial registration

We completed a single-arm pilot study at Memorial Sloan Kettering Cancer Center (MSKCC;
ClinicalTrials.gov identifier NCT02595918) to examine the safety and feasibility of neoadjuvant

nivolumab in patients with localized RCC.

Background

Clear cell renal cell carcinoma (ccRCC) is the most common histological subtype of kidney
cancer and demonstrates a high response rate to immune checkpoint inhibitors such as
nivolumab, pembrolizumab and ipilimumab [1-3]. However, only a subset of ccRCC patients
respond to ICI, and biomarkers for ICI response in other disease settings such as tumor mutation
burden, neoantigen load and mismatch repair deficiency do not associate with ICI response in
ccRCC [4-7]. Recently, several studies have identified transcriptomic microenvironmental
features including angiogenic gene expression, T-cell infiltration, and myeloid activation that
correlate with response or resistance to ICl and combination therapies in ccRCC [7-13]. This
suggests that the ccRCC microenvironment, in addition to genomic factors, influences ICI

response.
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In parallel, recent work has demonstrated the prevalence of ITH in untreated ccRCC [14].
This study has largely focused on heterogeneity in the presence of key driver mutations and copy
number alterations and have demonstrated that ccRCC tumors follow one of a small number of
evolutionary trajectories, each of which are associated with distinct patterns of genomic ITH and
clinical prognosis. However, the potential for non-genomic heterogeneity in the tumor
microenvironment, including but not limited to variability in the amount and identity of immune
cells in spatially distinct regions of the same tumor is overlooked. Recently, we and others
described substantial heterogeneity in the tumor-microenvironment (TME) in several small
cohorts of ccRCC tumors both in the treatment-naive and treatment-exposed settings, raising the
possibility that heterogeneity in the TME may itself shape the evolution of the tumor and its

likelihood to respond to therapy [15, 16].

In this study, we hypothesized ccRCC tumors with elevated ITH constitute a genomically
and immunologically distinct class of tumors, with distinguishing clonal/subclonal genomic
alterations, immunologic profiles, and therapeutic response trajectories. To test this hypothesis,
we utilize whole exome sequencing (WES), whole transcriptome sequencing (WTS), TCRseq,
and histopathologic multi-regional data across a cohort of untreated and ICl exposed patients
from a phase 2 clinical trial to reveal the molecular determinants of therapy response in ccRCC
(Fig. 1 and Table S1). Our integrated analysis demonstrated that ITH is highly correlated among
genomic, transcriptomic, and TME characteristics. ITH-high tumors are enriched for features
including SETD2 and PBRM1 mutations, HLA loss of heterozygosity (HLA LOH), and CDKN2A/B
loss. Immunologically, ITH-high tumors display a depletion of putative neoantigens, elevated
myeloid activation, and reduced T cell diversity, that are in aggregate associated with escape

from the anti-tumor immune response. Premised on these observations, we developed a
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96 transcriptional signature forimmune escape which correlates with distinct histopathologic patterns
97 andis associated with ICI resistance across several diverse clinical trial cohorts.

98
99  Materials and Methods
100 Sample acquisition

101 After acquiring informed consent and institutional review board approval from Memorial
102 Sloan Kettering Cancer Center (MSK), partial or radical nephrectomies were performed at MSK
103 (New York) and stored at the MSK Translational Kidney Research Program (TKRCP). Samples
104  were flash frozen and stored at -80 degrees Celsius prior to molecular characterization. Clinical
105  metadata was recorded for all tumor samples. All patients represent clear cell histology and were
106  treated via ICI alone or in combination with tyrosine kinase inhibitor (TKI). All treatments were
107  administered prior to surgery in a neo-adjuvant setting and biopsies were collected. Detailed

108  clinical data and treatment regimen for each patient is included in Table S2.
109
110 Untreated cohort

111 Using and institutional database we identified six patients with advanced or metastatic
112 ccRCC that underwent nephrectomy with multiregional data available MR01,02,03,05,06, SC03.

113 Clinical and pathologic data is available in Table S2.
114
115 Neoadjuvant multiregional cohort

116 This open-label, single-arm, pilot study was done at Memorial Sloan Kettering Cancer
117  Center and funded through the National Institute of Health’s Cancer Therapy Evaluation Program

118  (CTEP). Patients received nivolumab (dose initially 3 mg/kg, then protocol amended to 240 mg
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119 flat dose) every 2 weeks for 4 treatments. Surgery was planned 7-14 days after the last dose.
120  Prior to starting therapy, all patients had a kidney biopsy to confirm ccRCC, and tumor staging
121 with renal protocol MRI and CT of the chest. After 4 doses and prior to surgery, patients also had
122 a renal protocol MRI. Changes in primary tumor size were assessed according to Response
123 Evaluation Criteria in Solid Tumors (RECIST) version 1.1. Resection of the primary tumor and
124 lymph nodes was done according to standard institutional procedures. From May 27, 2016, to
125  September 9, 2019, 21 patients were screened and 18 were enrolled into the study of which 17
126  had available genomic data. Baseline patient characteristics are in Supplementary Table S2. All
127  patients had localized disease at time of enrollment and biopsy-proven clear cell RCC.
128  Perioperative and pathological details are included in Supplementary Table S2. Median time to
129  nephrectomy after the last dose of nivolumab was 10.5 days (range, 9-13 days).

130

131  Metastatic multiregional Cohort

132 Using an institutional database, we identified 6 additional patients who had received ICI
133 prior to nephrectomy (Supplementary Table S2). All patients had metastatic disease at time of

134 ICI; two received anti-VEGF therapies before ICI.

135

136  Multi-regional sampling

137 For the prospective neoadjuvant trial and the “MR” samples single region biopsies were
138  obtained preoperatively. Following nephrectomy, tumor were bivalved and 5 regions were chosen:
139  One region from the tumor center and 4 from each quadrant (upper medial, upper later, lower
140  medial, lower lateral). Grossly necrotic or hemorrhagic regions were avoided. For the remaining
141  samples (those treated with definitive immunotherapy “SC”) regions were taken from distinct

142 regions of tumors separated by 1-2 cm avoiding grossly necrotic or hemorrhagic regions).
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143
144  Whole exome sequencing

145 Libraries for whole exome sequencing were generated with TruSight Oncology DNA
146  Library Prep Kit with 40ng input DNA per sample. TruSight Oncology index PCR products were
147  directly used for enrichment and target exome enrichment was performed using the IDT xGen
148  Universal Blockers and IDT xGen Exome Research panel. A single-plex hybridization was done
149  overnight at 65°C. Accuclear dsDNA Ultra High Sensitivity assay (Biotium) was used for library
150  quantification of the post-enriched libraries. Post enrichment libraries were normalized using
151 bead-based normalization and pooled. Samples were sequenced with 101 bp paired-end reads
152 on lllumina NovaSeq™ 6000 S4 flow cell using the XP workflow for individual lane loading (12-
153 plex per lane). On average, each sample vyielded 500 milion reads and

154 MEDIAN_TARGET_COVERAGE depth of 360X.

155

156  Whole transcriptome sequencing

157 Libraries for whole transcriptome RNA-seq were generated with lllumina TruSeq Stranded
158  Total RNA. 100 ng RNA was used as input for Ribo-Zero rRNA Removal Kit, with lllumina TruSeq
159  RNA UD Indexes (96 indexes) for sample indexing. Qubit dsDNA High Sensitivity assay (Thermo
160  Fisher Scientific) was used for library quantification. Sequencing was done on lllumina
161  NovaSeq™ 6000 S2 (36-plex) or S4 (72-plex) flow cell with 76 bp paired-end sequencing to

162 produce ~200 million paired reads per library.

163

164  T-cell repertoire sequencing
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165 Libraries for T-cell repertoire sequencing were generated with AmpliSeq for lllumina
166  Library PLUS paired with AmpliSeq cDNA Synthesis for lllumina with 100 ng RNA input per cDNA
167  synthesis reaction. The TCR beta-SR Panel was used for generating amplicons, and AmpliSeq
168  CD Indexes Set A for lllumina were used for sample barcodes. Qubit dsDNA High Sensitivity
169  assay (Thermo Fisher Scientific) was used for library quantification. Sequencing was done on the
170  NextSeq 550 (41-plex) with 151 bp paired-end sequencing to produce ~5 million paired reads per

171  library.

172
173 WTS pipeline

174 WTS raw read sequences were aligned against human genome assembly hg19 by STAR
175  2-pass alignment [17]. QC metrics, for example general sequencing statistics, gene feature and
176  body coverage, were then calculated based on the alignment result through RSeQC. WTS gene
177  level count values were computed by using the R package GenomicAlignments [18] over aligned
178  reads with UCSC KnownGene [19] in hg19 as the base gene model. The union counting mode
179  was used and only mapped paired reads after alignment quality filtering were considered. Finally,
180  gene level FPKM (Fragments Per Kilobase Million) and raw read count values were computed by

181 the R package DESeq2 [20].
182
183 ESTIMATE

184 The ESTIMATEScore, which is the estimate of the presence of stromal and immune cells
185 in tumor tissue, is calculated through the ESTIMATE R package [21] based on a given gene

186  expression profile in FPKM.

187
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188  Immune deconvolution analysis

189 Two distinct popular computational methods, ssGSEA [22] and CIBERSORT [23], were
190  chosen for immune deconvolution analysis. Signature gene lists ofimmune cell types for ssGSEA
191  were obtained from Bindea et al. [24] and Senbabaoglu et al. [3]. ssGSEA takes the sample FPKM
192  WTS expression values as the input and computes an enrichment score for the given gene list of
193  immune cell type relative to all other genes in the transcriptome. On the other hand, CIBERSORT
194  also takes FPKM WTS expression values as the input but uses a signature gene expression
195  matrix of interest immune cell types instead to compute the infiltration level of each immune cell
196 type. The LM22 immune cell signature which was validated and published along with
197 CIBERSORT is used. We also used FRICTION [25] to deconvolute WTS into absolute CD8 and

198 CD4 T cells as well as CD19 B cells.
199
200 HERV quantification

201 We used WTS to quantify HERVs as described before [25]. Briefly, all WTS reads were
202  aligned (using STAR aligner with optimized multi mapping options) to a custom genome built were
203  human reference (hg19) and HERV specific reference are combined. Then reads aligned to non-
204  HERV genes are removed and the rest are annotated. 3 samples contained super high median

205 HERVs (Grubbs test P<0.05) and removed for better visualization.
206
207  WES analysis pipeline

208 Raw sequencing data were aligned to the hg19 genome build using the Burrows-Wheeler
209  Aligner (BWA) version 0.7.17 [26]. Further indel realignment, base-quality score recalibration and
210  duplicate-read removal were performed using the Genome Analysis Toolkit (GATK) version 3.8

211  [27] following raw reads alignments guidelines [28]. VarScan 2 [29], Strelka v2.9.10 [30], Platypus
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212 0.8.1[31], Mutect2 — part of GATK 4.1.4.1 [28], Somatic Sniper version 1.0.5.0 (SNVs only), and
213 [32] were used for small variant calling and combination of 2 out 5 callers are reported as per
214 Cancer Genome Atlas Research Network recommendations [33]. Variants were filtered using the

215  following criteria:

216 1. Tecov > 10 & Taf >=0.04 & Ncov > 7 & Naf <= 0.01 & Tac > 4 are set to Pass

217 2. Common SNPs are eliminated by comparison to snp142.vcf

218 3. Rare variants found in dbSNP are kept if Naf =0

219 4. Variants with Tcov < 20 or Tac < 4 are marked as low_confidence

220 5. Only variants called by more than 1 caller are reported.

221 6. Common variables gnomAD v 2.1.1 are excluded.

222 Variants were annotated using Ensembl Variant Effect Predictor (VEP) [34]. Additional

223 optimization and filtering are applied for INDELS. INDELS in blacklisted regions
224 (https://www.encodeproject.org/annotations/ENCSR636HFF/) and low mappability regions (such
225  asrepeat maskers) are excluded as per [35]. Combination of filtered SNV and INDELS are used
226 by maftools R package is used to generate oncoplots and summary plots, as per author’s

227 recommendations

228 https://www.bioconductor.org/packages/release/bioc/vignettes/maftools/inst/doc/maftools.html

229 All nonsynonymous point mutations identified as above were translated into strings of 17
230  amino acids with the mutant amino acid situated centrally using a bioinformatics tool called
231  NAseek. A sliding window method is used to identify the 8-11 amino acid substrings within the
232 mutant 17-mer that had a predicted MHC Class | binding affinity of < 2 %Rank to one (or more)

233 of the patient-specific HLA alleles. Binding affinity for the mutant and corresponding wild type

10
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234 nonamer is analyzed using NetMHCpan4.0 software. Only neoantigens with a TPM>1 are

235  considered to be expressed.

236 Allele-specific copy number analysis is done by the FACETS v.6.1 [36]. Allele specific HLA

237  loss is determined using LOHHLA as described before [37].
238
239 RNA and TCR ITH scores

240 Gene- and patient-wise intra-patient heterogeneity scores were calculated using multi-
241  region data. Data was first median-centered to remove any gene-level bias. For each gene, the
242  difference between each pair of samples from the same tumor were calculated. The median
243  difference between the paired-differences was then taken, yielding a gene-specific, patient-
244 specific measure of heterogeneity. This was repeated for all genes, across all tumors, generating
245  a matrix of gene by patient values. Gene intratumor heterogeneity values are summarized as the
246  median value per gene across all tumors in the cohort. Patient intratumor heterogeneity values
247  are summarized as the median value per tumor across all genes. Patient intratumor heterogeneity
248  values represent the expected value of the absolute log2-fold change for a randomly chosen gene

249  within a given tumor.

250 TCR ITH score is defined as 1 — percentage of shared clonotypes across multiple regions
251  of tumor based on WTS. T cell clones are estimated using MiXCR application on lllumina

252  BaseSpace (http://basespace.illumina.com/apps/). Furthermore, all ITH scores are classified as

253 high versus low using the median as threshold.
254

255 Distinction between dedicated TCRseq and TCR clones inferred from RNAseq using

256  MiXCR

11
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257 All TCR associated data analysis in this study (including tissue or PBMC) are based on
258  ultra-deep T cell repertoire sequencing (targeted TCRseq) to mitigate undersampling of T cell
259  clones except TCR ITH analysis in Fig. 3b where ITH associated with multiregional sequencing
260  is derived from MiXCR T cell estimates from RNAseq data due to the lack of multiregional TCRseq

261  for all patients.
262
263  ccRCC evolutionary subtypes and intra-tumor DNA Heterogeneity Score

264 DNA ITH score is calculated as the ratio of subclonal to clonal driver genomic alterations
265  including SNVs, INDELs, and SCNA [14]. A genomic alteration is defined to be subclonal if it is
266  present in less than half of the regions collected in each patient. Patients who enough DNA
267  Dbiopsies are collected are classified into 1 of the 7 ccRCC evolutionary subtypes as described
268  before [14]. We used neighbor joining tree construction in ape package in R [38] for reconstruction
269  of tumor clones. TCGA ITH score was obtained from a previous study as measured by the number
270  of clones estimated per sample using PhyloWGS [39]. Briefly, PhyloWGS is a method to infer
271  tumor evolution evolutionary using the relationships between tumor subpopulations based on

272  variant allele frequencies while considering copy number alterations.
273
274  HLA and TCR diversity

275 Shannon entropy is calculated to define TCR diversity [40]. We used MiXCR application

276  on lllumina BaseSpace (http://basespace.illumina.com/apps/) for alignment and T cell clonotype

277  identification. Immunarch (https://immunarch.com/) [41] was used for downstream analysis

278 including visualization and data analysis. Morisita index [42] was used to measure clonotype

279  overlap. HLA diversity index is measured as adopted from [43] as described in [25].

280

12
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281 Neoantigen Depletion

282 The fraction of neoantigens depleted is defined for each sample where pretreatment data
283  was available. We first calculated the neoantigen depletion as the number of neoantigens that
284  were undetectable after therapy but were detected pretreatment. The fraction of neoantigens
285 depleted was then defined as the ratio of the total number of depleted neoantigens over total
286  pretreatment neoantigens. To distinguish neoantigen depletion due to contraction (immune
287  elimination) from evasion, we exclude any neoantigens that were depleted without the presence
288  of HLA LOH (defects in antigen presentation machinery), or reduced expression i.e., log2(FC)< -
289 1 where FC is the fold change defined as the ratio of post treatment TPM over pretreatment TPM
290  after correction for tumor purity. Conversely, a neoantigen is annotated as deleted due to immune
291  elimination if log2(FC)>=0 and no HLA LOH was detected. Likewise, HERV editing is defined as
292  the median change in the expression of immunogenic HERVs compared to pre-treatment
293  expression. Immunogenic HERVs refers to HERV loci whose expression strongly correlates with

294  TIL abundance, FDR<0.05.
295
296  Weighted Gene Co-expression Network Analysis (WGCNA) and gene signature extraction

297 We performed WGCNA [44] on all samples where the fraction of neoantigens depleted
298  was available similar to previously described [10]. Briefly, genes with low expression values and
299 invariant genes, that is, genes that were expressed in <5% of samples or had s.d.<1 for
300 expression (log2 TPM) were filtered together with non-coding genes. The soft power of 6 was
301 chosen based on goodness of fit to a scale-free network. We first annotate modules as JAVELIN
302  or angiogenesis according to the Spearman correlation between the module eigengene and
303 JAVELIN or angiogenesis ssGSEA scores (highest correlation is classified as JAVELIN or
304 angiogenesis module). Likewise, among all modules, the module with the highest Spearman

305  correlation with the fraction of neoantigens depleted was annotated as immune escape module

13
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306 (85 genes). This 85 genes gene signature was strongly associated with PFS of Avelumab plus
307  Axitinib in JAVELIN Renal 101 (HR=1.45, P=0.02, Extended Data Fig. 11a). To further refine this
308 gene signature, we first sorted genes based on their pairwise spearman correlation (Extended
309 Data Fig. 11b) and then selected genes with the highest spearman correlation such that no genes
310  have a spearman correlation <0.6 (Extended Data Fig. 11c). This reduced the number of genes
311 to total of 12 highly correlated genes known as immune escape signature (TIMP1, PXDN,
312 COL15A1, OLFML2B, COL5A2, DLX5, SOX11, KLHDC8A, UNC5A, ADAMTS 14, MMP11, FN1).
313  Several genes (ADAMTS14, MMP11, FN1, COL5A1, COL5A2 and TIMP1) in this signature has
314  previously been described as TGF-B-associated extracellular matrix genes that are linked to

315 immune evasion and immunotherapy failure [45].
316
317  Statistical Analysis

318 All statistical tests were performed in R. To calculate correlations, cor.test with
319 Spearman’s method was used. Tests comparing distributions were performed using wilcox.test.
320  All statistical analyses were two-sided and p-values were Benjamini-Hochberg corrected.

321

322

323 Results

324  The landscape of microenvironmental ITH in ccRCC

325 To study ITH in ccRCC, we completed ultra-deep (median coverage of 360X) multi-
326  regional whole-exome sequencing and whole-transcriptome sequencing across 142 tumor
327  regions from 29 patients, including 6 untreated and 23 post ICI (see Methods and Table S2).
328  Tumor biopsies were extracted from different regions of the same primary tumor unless specified

329 (Fig. 1a, and b, Table S2). While intra-tumoral genetic heterogeneity in ccRCC is well-
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330 described[46], comparatively little is known about the extent of microenvironmental heterogeneity
331 and its relationship to other molecular features of the tumor. To measure the extent of intra-
332 tumoral microenvironmental heterogeneity, we leveraged multi-regional WTS of up to 5 regions
333  from 29 patients. Using single sample gene set enrichment analysis (ssGSEA) of established
334  gene signatures, we quantified the expression of several TME gene expression signatures
335 recently proposed as biomarkers of response to ICls and anti-angiogenic agents [47] (myeloid
336  signature [8], JAVELIN signature [10], and angiogenesis signature, see Methods and
337  Supplementary S3). We confirmed that these RNA signatures accurately quantified the
338 abundance of key immune populations using matched immunofluorescence data, including
339  statistically significant associations between CD31/angiogenesis (p=0.0003), CD8/JAVELIN T

340  cell signature (p = 0.02), and CD68/Myeloid infiltration (p=0.0013) (Fig. S1).

341 Microenvironmental signatures demonstrated extensive heterogeneity across tumor
342 regions from the same patient (Fig. 2a). While a small number of patients showed relatively
343 uniform immune infiltration (e.g., NIVO02, Fig. 2a), the significantly more common phenomenon
344  was for patients to exhibit regions both above and below the median score for a
345  microenvironmental feature of interest (e.g., angiogenesis in MRO03, JAVELIN/Teffector
346  signatures in NIVO22). Using the myeloid signature (which has previously been associated with
347  poor response to ICl) as an example, we observed most patients cannot be uniquely classified to
348  myeloid enriched or depleted across all tumor regions (Fig. 2c). Given that several of these
349  signatures are under active investigation as biomarkers of response to ICl, we investigated more
350 generally how classification of regions into high/low was affected by ITH. Remarkably, in more
351 than half of the patients, clinically relevant signatures (Angiogenesis, T-effector, Myeloid, and
352 JAVELIN) could not be consistently classified as high or low (Fig. 2b, 2 patients (MR05 and

353  NIVO10) were excluded since WTS data of only one region was available).
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354 We hypothesized elevated microenvironmental heterogeneity may reflect the presence of
355 underlying genomic driver alterations. To test this, we leveraged multi-regional WES data
356 collected for these patients. Frequencies of established ccRCC driver alterations were in
357  agreement with a previous multi-regional study by TRACERXx Renal [14] (Fig. 3a). We performed
358  unsupervised hierarchical clustering of major ccRCC driver mutations (i.e., VHL, PBRM1, SETD2,
359  BAPT) and genomic alterations enriched with metastatic disease and ICI response (HLA LOH
360 and CDKN2A/B copy number loss)[37, 43, 48], ultimately identifying two clusters (Fig. 3b, Table
361  S4). We compared the results of these clusters to aggregate, univariate measures of intra-tumoral
362 DNA, RNA, and T-cell receptor (TCR) heterogeneity. Interestingly, one cluster was characterized
363 both by an enrichment of specific genomic alterations (SETD2 mutations, Fisher exact test
364 P=0.002; CDKN2A/B copy number loss, Fisher exact test P=0.0001; HLA LOH, Fisher exact test
365 P=0.0007). This same cluster of patients, which we refer to herein as “ITH-high”, had comparable
366 levels of tumor purity to the other “ITH-low” cluster, but demonstrated elevated ITH at the level of
367 somatic DNA alterations, RNA, and TCR (combined Fisher exact test P=0.0495). Moreover, by
368 classifying patients into previously described ccRCC evolutionary subtypes (Fig. S2), we
369 observed that PBRM1-driven tumors were enriched in the ITH-high cluster (on sample level,
370  Fisher exact test P=0.0018), in agreement with TRACERXx Renal [14]. However, this finding must
371  Dbe treated with caution due to our relatively small cohort size as well as low number of regions
372  collected in some patients. These findings were robust to the number of regions collected per
373  tumor, and we found no significant association between ITH and exposure to ICI (Fisher exact
374  test P=0.65, Fig. 3b). Together, our results demonstrate (1) that ITH is not restricted to genomic
375 events, but rather is pervasive in the transcriptome, microenvironment, and immune compartment
376  of ccRCC tumors, and (2) correlates with specific somatic events at the level of individual patients

377  (i.e., PBRM1 and SETD2 mutations, HLA LOH and CDKN2A/B loss).

378

16


https://doi.org/10.1101/2022.07.11.22277322

medRxiv preprint doi: https://doi.org/10.1101/2022.07.11.22277322; this version posted July 13, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

379  ITH-high ccRCC tumors are immunologically distinct

380 Comparing the TME characteristics of ITH-high and ITH-low patients, we observed that
381  ITH-high tumors (defined as all regions belonging to a patient who is classified as ITH-high) were
382  characterized by high myeloid and low T cell effector (Teff) signatures (Fig. 3c). Similarly, a
383  signature associated with antigen presentation (APM)[3] was downregulated in ITH-high patients,
384  consistent with elevated levels of HLA LOH in the ITH-high subtype. To validate if genomic
385  features uniquely characterizing ITH-high tumors (HLA LOH and CDKN2A/B loss) might be more
386  generally associated with myeloid infiltration in a large, independent cohort, we obtained DNA
387 and RNA sequencing data from the TCGA KIRC study and scored samples by the presence of
388 CDKN2A/B loss, ITH (as measured by the number of clones estimated per sample using
389  PhyloWGS, see Methods), and myeloid infiltration. This analysis confirmed that in ccRCC,
390 CDKN2A/B loss was associated with higher levels of ITH (P=3x10"°) and higher myeloid infiltration
391  (P=7x107%) (Fig. 3d). However, the association between genomic ITH and myeloid infiltration did
392  not reach statistical significance in TCGA KIRC cohort suggesting the association between
393  myeloid infiltration and ITH is likely indirect through certain genomic events such as CDKN2A/B

394  loss.

395 The findings above suggested that ITH-high tumors may be distinct in their
396 immunophenotype, including in the diversity of their T cell repertoire. We therefore investigated
397  the association between ITH and T cell diversity both peripherally and within the tumor. To do so,
398 we compared the overlap between tissue-resident and peripheral T cells. Repertoire overlap
399 analysis (Fig. S3) illustrated a high degree of shared clonotypes across different tumor regions
400 from the same patient, but a lack of shared clonotypes across patients. ITH-high patients
401  demonstrated a significantly lower peripheral TCR diversity, richness and clone count compared
402  to ITH-low patients (Fig. 3e), suggesting that elevated heterogeneity in the primary tumor is

403  associated with reduced peripheral immunologic diversity in a manner that is consistent with
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404  reports in other diseases [49]. To allow a fair comparison of samples with different number of T
405  cells and account for TCR subsampling, we also studied rarefaction curves and estimated TCR
406  diversity by sequentially resampling TCR clonotypes and computing mean number of unique
407  clones [50]. Estimated diversity using rarefaction curves led to a similar conclusion confirming the
408 observed differences in the TCR diversity are unlikely to be due to artifacts in T cell subsampling
409  (Fig. S3b). Together, the above data argue that elevated molecular heterogeneity in ccRCC

410  tumors is associated with a distinct microenvironmental and immunologic phenotype.
411
412  ICl therapy is associated with loss of putative neoantigens and HLA LOH

413 The clinical management of ccRCC (for which pre-surgical biopsies are often not indicated
414  or used) makes serial profiling of primary tumors on therapy challenging, rendering our
415  understanding of how ICI may remodel tumor physiology incomplete. To overcome this challenge,
416  we took advantage of 16 patients from our neoadjuvant nivolumab clinical trial who had WES
417  performed on their pre-treatment biopsies. This offered a unique opportunity to interrogate both
418 genomic adaptations (including both somatic mutations as well as the expression of potentially
419  immunogenic endogenous retroviral elements, HERVs) to ICI therapy, as well as immunologic

420  changes in the T cell repertoire.

421 Focusing first on genetic alterations, we anticipated that ICl administration would lead to
422 elimination of some tumor clones and therefore a contraction in total mutation count. However,
423  we observed no consistent trend in the change of either SNV or indel mutational count following
424  ICl therapy (Fig. S4). Nevertheless, the number of non-synonymous SNVs that were predicted to
425  bind to MHC complex in silico was consistently reduced across all patients and all biopsies except
426  for NIVOO3 (Fig. S4 and Fig. 4a). An opposite trend was observed in the number of putative non-
427  binders, suggesting a selection in favor of non-neoantigenic mutations by tumor during clonal

428  evolution (Fig. 4a).
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429 In order to characterize the clonality of putative neoantigen depletion across distinct tumor
430 regions, we counted all 8-11 amino-acid-long putative neoantigens seen prior to treatment but
431 deleted in at least one biopsy after treatment. Among 7 patients with at least 4 tumor regions
432  sequenced, we observed an enrichment for putative neoantigen depletion across 4 or more sites
433 (Fig. 4b). Focusing on patient NIVO20, all 6 identified depleted putative neoantigens were deleted
434 in at least 4 regions, suggesting putative neoantigen depletion is a clonal event (Fig. 4c). Genes
435  expressing these depleted neoantigens demonstrated a 2-3-fold reduction in expression related
436  to pre-treatment biopsy (NIVO20-RA/RB/RC/RD/RE vs NIVO20-BX) (Fig. 4d). Together with the
437  data above, these observations suggest that ICI therapy in ccRCC is associated with the clonal

438  loss of mutations with elevated immunogenicity.

439 Premised on prior reports [51] of the increased immunogenicity of hydrophobic residues,
440  we sought to determine whether a selective pressure exists on certain neoantigens. We compared
441  the number of amino acids preserved versus depleted upon immunotherapy, and noticed a strong
442  selection against Phenylalanine (F, extremely hydrophobic) in favor of Arginine (R, extremely

443 hydrophilic) and Glutamic acid (E, extremely hydrophilic) in our cohort (Fig. 4e).

444 We next examined the magnitude of putative neoantigen depletion in each patient by
445  measuring the average number of putative neoantigens deleted per biopsy (i.e., the ratio of the
446  deleted neoantigens in a treated region compared to pre-treatment over the total number of pre-
447  treatment neoantigens). We observed that the fraction of neoantigens depleted was strongly
448  associated with myeloid-high regions (n = 16 patients whose pre-ICl treatment WES data was
449 available, Fig. 4f). The association between myeloid activation and neoantigen depletion
450  remained strong when total number of neoantigens depleted was used (instead of fraction) (Fig.
451  S5b) or when putative neoantigen (transcriptional) expression was taken into account (n = 7
452  patients whose pre-treatment WTS data was available, Fig. 4g) and was not affected by variation

453  intumor purity (Fig. S5). Furthermore, the correlation between the degree of neoantigen depletion
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454  and myeloid infiltration was also evident when examining different regions of individual patients,
455  where highly depleted regions were associated with the highest myeloid and lowest ImmuneScore

456  (Fig. 49).

457 A recent study [52] identified tumor infiltrating lymphocyte specific HERV epitopes that are
458 translated, can bind to MHC | complex, and induce high-avidity cytotoxic T cells. In [52] as well
459  as other previous reports [53], over expression of HERVs on tumor cells has been reported and
460 a link to ICI response has been documented [54]. To interrogate other tumor intrinsic features
461  associated with immune response in our cohort we utilized our deep RNA sequencing (~200
462  millions read/library) to quantify HERV expression. HERVs were overexpressed in tumors
463  compared to normal tissues in our cohort (Fig. 4h), and median HERV (median of all HERV loci
464  investigated) was correlated to angiogenic expression (Fig. S7a). Notably, PBRM1 mutations,
465  which lead to further HIF upregulation [55] and angiogenic expression [56, 57], were also
466  positively associated with HERV (Fig. S7b), consistent with a recent report [58]. In agreement
467  with [54] we then confirmed the association between the median expression of different HERV
468 loci and TIL abundance (Fig. S7a). Median HERV was anti-correlated with tumor purity; however,
469  the association between HERYV expression and TIL abundance remained valid even when HERV
470  expression was corrected for tumor purity (Fig. S7a). Conversely, we observed a significant
471  reduction in HERV expression an observation akin to reduction in neoantigens (Fig. 4i). Likewise,
472  we observed a strong correlation between HERV editing (i.e., change in the expression of
473  immunogenic HERYV loci after treatment, see Methods) and myeloid signature further highlighting
474  the association between neoantigen depletion and myeloid enrichment (Fig. 4j). Due to the
475  limitations of HERV quantification using WTS, we could not rule out that a strong correlation
476  between HERV and TIL abundance might be due to expression of HERV on immune cells.
477  However, the expression of HERV on ccRCC tumor cells has been previously shown [59] and

478  their immunogenicity is well-established [52]. Nevertheless, rigorous determination in future
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479  studies of cell-specific expression of HERVs will be critical to understanding their putative

480  association with ICI response.

481 Finally, using TCRseq of tissue resident and peripheral T cells, we investigated the impact
482  of ICl and neoantigen depletion on T cell diversity. Focusing again on patient NIVO20 where TCR
483  data of multiple regions of pre-treatment and ICI treated tumor were available, we evaluated the
484  degree of overlap between T cell clonotypes at different regions and time points i.e., pre-
485  treatment, on-therapy, and post ICI treatment (Fig. 4k). Tracking dominant tissue resident T cell
486  clonotypes, we noticed a substantial depletion of dominant T cell clones upon ICI therapy (Fig.
487  4k). This observation was mirrored across our entire cohort, where we observed a strong negative
488  association between peripheral TCR diversity and neoantigen depletion and allele specific HLA
489 loss across the entire cohort where PBMC TCRseq data was collected (Fig. 41, m). Together, if
490  validated using future mechanistic experiments, our findings suggest that neoantigen depletion in
491  primary ccRCC tumors is associated with peripheral loss of neoantigen reactive T cells. However,

492  at this point, no causal relationship between neoantigen loss and TCR diversity can be drawn.
493
494  Subclonal evolution underlies immune escape

495 In order to understand the immunologic mechanisms driving subclonal evolution after IClI,
496  we investigated in detail patients whose tumors underwent subclonal immunoediting in distinct
497  regions. Strikingly, subclonal reconstruction revealed recurrent subclonal evolution of HLA LOH
498 and CDKN2A/B loss following ICI therapy (Fig. 5a). Notably, we observed HLA LOH and
499  CDKN2A/B loss co-occur in 9 patients (Fisher exact test P=0.003) and most tumor regions (Fisher
500 exact P=5x107) (Fig. 5b). Strikingly, comparing the untreated and treated regions, we only
501  observed a significant immunological response (as measured by Th1 response) in regions without
502  CDKN2A/B loss or HLA LOH (Fig. 5c¢), suggesting that HLALOH or CDKN2A/B loss are subclonal

503  determinants of response to ICI [37, 43, 48]. This is consistent with recently published data [49]
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504  indicating the loss of 9p21 - encompassing CDKN2A/B — confers a cold tumor immune
505  microenvironment and resistance to ICI. In that study, Han et al. [49] linked 9p21 loss to a
506 decreased abundance of B, T, CD8 T, NK cells and cytotoxic lymphocytes, and an increased
507  fractions of macrophages, as well as reduced TCR CDR3 repertoire abundance and diversity. We
508 interpret our observations to mean that immuno-editing occurs under selective pressure by which
509  certain tumor subclones transform to a less immunogenic phenotype through HLA LOH and

510 CDKN2A/B loss, and that this subclonal selection can produce a highly heterogenous TME.

511 To further shed light on the how tumor evolution can transform TME, we sought to analyze
512 the spatial distribution of TILs within the TME and their interaction with the stromal compartment
513  using immunohistochemical data. Following A.W. Zhang and colleagues [60], a dedicated
514  genitourinary pathologist classified tumor regions into 3 subtypes according to the co-localization
515  of tumor infiltrating lymphocytes and tumor cells: N-TIL (tumors sparsely infiltrated by TILs), S-
516  TIL (tumors dominated by stromal TILs), and ES-TIL (tumors with substantial levels of both
517  epithelial and stromal TILs) (Fig. 5d). We observed that an ES-TIL enriched TME is strongly
518  associated with regions with HLA LOH (ES=4, N=7, S=5 compared to ES=2, N=32, S=21 in HLA
519 intact regions, Fisher's exact test P = 0.036) or loss of CDKN2A/B (ES=4, N=7, S=9 compared to
520 ES=2, N=32, S=17 in regions without loss of CDKN2A/B, Fisher's exact test P = 0.03) whereas
521  N-TIL pathology is linked with regions with no HLA LOH and no CDKN2A/B loss across the cohort.
522 These findings suggest that despite abundant TILs, post-ICI ES-TIL are associated with tumor
523  clones that have evolved genetic mechanisms for evasion of the immune response (HLA LOH
524  and/or CDKN2A/B loss). However, future mechanistic studies are needed to pinpoint the primary

525  genomic event that transforms the ccRCC TME into a cold niche.
526

527  An adverse ccRCC TME is enriched stroma and myeloid signatures
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528 We hypothesized that neoantigen depletion could be associated with a specific
529  ftranscriptional signature, akin to those identified in clinical trial settings as biomarkers for
530 response to ICl in ccRCC. To identify such a signature, we performed unsupervised Weighted
531 Gene Co-expression Network Analysis (WGCNA) [44] to reconstruct modules from our
532 transcriptomic samples similar to [10] (Fig. 6a). Reassuringly, we identified two gene expression
533 modules #7 and #4 reflecting established microenvironmental features associated with
534  therapeutic response in ccRCC: immune inflammatory response (“JAVELIN-like" signature) and
535  “angiogenesis-like” (Fig. 6a, b). We next assessed the correlation between the expression of each
536  WGCNA gene module and neoantigen depletion. While the JAVELIN-like and angiogenesis-like
537 modules showed no association with neoantigen depletion, module 16 demonstrated the
538  strongest association (Fig. 6a). Correlation analysis with previously known gene expression
539  signatures illustrated that module 16 (which we refer to as an “/Immune Escape” signature) was
540  strongly associated with myeloid and stroma features of TME. The Immune Escape signature
541  also resembled a recently described pan-cancer TGF[ signature derived in a previous study [45]
542  which was linked to cancer-associated fibroblasts enriched in immune evasion and
543 immunotherapy failure. However, no association between the Immune Escape signature and

544  treatment status was observed (Wilcox P=0.79) (Fig. S8).

545 To reveal the primary cellular populations driving the Immune Escape signature in the
546  ccRCC TME, we leveraged scRNAseq from multiple tumor regions, lymph node, normal kidney,
547  and peripheral blood of two ICl-naive and four ICl-treated patients [15] (n=167283 single cells)
548  (Fig. 1c). We identified 28 clusters (Fig. 6¢) using Louvain clustering [61, 62] and each cluster
549  was annotated based on our previous study [15]. As expected, scRNAseq revealed enrichment
550  of this signature in renal epithelium, tumor stroma as well as tumor associated macrophages
551  (TAMs) and monocytes (Fig. 6¢). Hence, both scRNAseq and histopathological evaluation further

552 confirmed the association between Immune Escape and neoantigen depletion (Fig. 6a, Spearman
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553  correlation = 0.6), ITH (Fig. 6d, Wilcox P=0.003), myeloid activation (Fig. 6b, Spearman

554  correlation = 0.8) and with stroma, and renal epithelium histopathology (Fig. 5d and Fig. 6e, ).
555
556 Immune Escape correlates with clinical outcome to ICI therapy

557 Several previous studies have associated signatures of Immune Escape with poor clinical
558  outcome in ICI treated patients [63]. Thus, we evaluated whether our Immune Escape signature
559  can correlate with clinical outcome to ICI treatment. We obtained publicly available RNAseq data
560 for several clinical trials including phase 3 JAVELIN Renal 101 trial [10] — a phase Ill randomized
561 anti-PD-L1 (avelumab) plus tyrosine kinase inhibitor (TKI, axitinib) versus multi-target TKI
562  (sunitinib), IMmotion151 [64] — a phase lll trial comparing anti-PDL1 (atezolizumab) plus anti-
563  angeniogenesis agent (bevacizumab) versus TKI (sunitinib) in first-line metastatic renal cell
564  carcinoma, CheckMate 009/010 — a phase l/ll, aPD-1 (nivolumab) treated, and CheckMate 025 —
565 a phase lll randomized mTOR inhibitor (everolimus) versus aPD-1 [9]. We stratified patients by
566  the median score (see Methods) of the 3 gene signatures obtained in our study (i.e., module

567  4/JAVELIN_like, 7/angiogenesis-like, and 16/immune escape.

568 The Immune Escape signature was strongly associated with the response to all three ICI
569  regimens (avelumab plus axitinib HR=1.53 P=0.008, atezolizumab plus bevacizumab HR=1.35
570  P=0.019 and nivolumab HR=1.45 P=0.02, Fig. 7 and Fig. S9). In contrast, the JAVELIN-like
571  inflammatory signature was strongly associated with clinical outcome to avelumab plus axitinib
572  (HR=0.64 P=0.006), but no association with clinical benefit was found between atezolizumab plus
573  bevacizumab (HR=0.82 P=0.126) or nivolumab treatment (HR=0.97 P=0.823) (Fig. 7). Similarly,
574  the angiogenesis-like signature was strongly correlated with the response to sunitinib in both
575  IMmotion151 (HR=0.48 P<0.001) and JAVELIN Renal 101 (HR=0.68 P=0.008) as expected, but
576  not with ICl-associated regimens. Associations between the Immune Escape signature and

577  therapeutic response remained valid even when thresholds other than median were used to
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578  define immune escape high and low (Fig. S10). Even though the Immune Escape signature was
579 also associated with response to sunitinib in JAVELIN Renal 101, no association between
580  sunitinib response or mTOR inhibition was observed in IMmotion151 and CheckMate 025.
581  Overall, this analysis suggests that a transcriptional signature associated the tendency to lose
582  putative neoantigens after ICl is associated with response to combination ICI therapy and

583  nominates a new potential biomarker for this therapeutic regimen.
584
585 Discussion

586 Here we used spatiotemporal, multimodal profiling to investigate the link tumor genomics,
587  microenvironmental heterogeneity, peripheral immune response, and eventual immune escape
588 in advanced and metastatic ccRCC. The fundamental discovery of our analysis is that ITH
589  manifests well beyond the tumor genome and produces highly heterogeneous immune
590  microenvironments in the tumor. Our findings clearly suggest that the ccRCC genome and
591  microenvironment co-evolve, and that loss of putative neo-antigens (including SNVs, indels, and
592  HERVs) is associated with a qualitatively myeloid-high environment and the loss of HLA and
593  CDKN2A/B. These distinct genomic alterations are also associated with more peripheral changes,

594  i.e., reduced T cell clonal diversity in the peripheral circulation.

595 Emerging data on biomarkers of response to ICl in ccRCC has identified two potentially
596  paradoxical observations: first, that TIL abundance alone is an insufficient predictor of ICI
597  response [9], and second, that the presence of myeloid cells correlate with resistance to both ICI
598 and anti-VEGF treatments. Strikingly, we observed that high myeloid score tumors were
599  associated with neoantigen depletion which could, in principle, render ICI treatment ineffective. In
600 agreement with this, we derived a transcriptomic signature associated with neoantigen depletion
601 and Immune Escape, which was expressed in renal epithelium, tumor stroma as well as tumor

602  associated macrophages (TAMs) and monocytes. This Immune Escape signature was associated
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603  with response to several ICI regiments in published clinical trials. In total, these findings suggest
604  that myeloid cells are associated with tumor clones that have evolved mechanisms to escape
605  anti-tumor immune responses. Critically, such a hypothetic model requires detailed work and

606  mechanistic validation in immunocompetent systems, which we are actively developing.

607 Why do regions with neoantigen depletion demonstrate elevation of myeloid cells but not
608  cytotoxic T cells that would presumably eliminate tumor clones? Cancer immunoediting proceeds
609 through three phases: elimination, equilibrium and escape [65]. Throughout these phases, tumor
610 immunogenicity evolves, and thereby, despite possible initial response to therapy, acquires
611  immunosuppressive mechanisms that may enable disease progression. Our data suggests that
612  myeloid-high, neoantigen-depleted tumor regions historically experienced a cytotoxic T cell
613 response, which prompted the selection of tumor clones losing neoantigens and/or
614 HLA/CDKN2A/B. Such a loss of target antigens through HLA LOH or neoantigen depletion would
615 result in loss of antigen-TCR stimulation, leading to death of the corresponding neoantigen
616 reactive T cells (Fig. 8). Importantly, as with other findings in this analysis, the association
617  between neoantigen loss and myeloid activation observed in our data remains purely correlative,
618 and future studies will be necessary to mechanistically establish how immune evasion

619  spatiotemporally evolves in ccRCC following ICI therapy.

620 Our multi-regional data also has significant implications for biomarker development. We
621  demonstrated that TME markers of response such as JAVELIN and myeloid scores can be
622  heterogenous within tumors regions (Fig. 2). This underscores the importance of accounting for
623  ITH when these signatures are used for patient selection for a specific therapy and longitudinal
624  monitoring of therapies. Given recent data that ICl may have a role in adjuvant therapy following
625  nephrectomy for high-risk disease, our data would suggest that several regions of the primary
626  tumor should be sampled specially in the presence of ITH associated genomic alterations (e.g.,

627  HLA LOH and CDKN2A/B loss). An intriguing finding was a trend towards lower ITH in ICI treated
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628  tumors, even though this observation did not reach statistical significance. If validated in other
629  studies, this in part can be attributed to outgrowth of few non-immunogenic tumor subclones that

630  managed to escape immune surveillance upon ICI treatment.

631 An important limitation of this study is that TME heterogeneity of metastatic disease was
632  not assessed and may be less of an issue in biomarker development. Our study has several other
633  potential limitations including its small sample size. To overcome this shortcoming, we validated
634  several of our major findings in several independent cohorts. Another potential limitation of our
635  study is the unavailability pre-treatment multi-regional sequencing data. However, inclusion of
636  multi-regional data from 6 untreated patients allowed us to account for ITH in untreated tumors.
637  Moreover, our neoadjuvant cohort was treated with single agent nivolumab over a short course
638  which may not reflect the TME, and genomic changes induced by more potent combination
639  strategies. Finally, we portrayed the characteristics of an adverse TME which may contribute to
640  IClI resistance. Our study clearly demonstrates the interplay between genomic events and TME
641 transformation from a cytotoxic to a cold immuno-phenotype. However, these findings remain
642  purely an association of several contributing factors to ICI resistant and the exact causative

643  hierarchy of events requires further investigation.

644 In conclusion, we find distinct genomic event enriched in immune escape tumor
645  microenvironment in ccRCC both across and within tumors. Our findings have implications for

646  future biomarker development for ICI response across ccRCC and other solid tumors.
647
648  Availability of data and materials

649  No new code was generated. All data generated in this study are provided in Extended Data Table

650  and Figures or available upon reasonable request from corresponding author.

651
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658  ITH: Intra-tumoral heterogeneity

659  TCR: T cell receptor

660  ccRCC: clear cell Renal Cell Carcinoma

661  TME: Tumor microenvironment

662  ICI: Immune checkpoint inhibitor

663  TKI: Tyrosine kinase inhibitor

664  HERV: Human endogenous retrovirus
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916  with ICl or in combination with TKI. TCRseq of PBMC was performed at 4 time points on therapy
917  for a subset of patients. In addition, pathological review was performed to assign N-TIL (tumors

918  sparsely infiltrated by TILs), S-TIL (tumors dominated by stromal TILs), and ES-TIL (tumors with
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919  substantial levels of both epithelial and stromal TILs) classes to a subset of patients. c)

920  Additionally, scRNAseq data for 6 patients were available from [15].
921

922  Figure 2. TME ITH in ccRCC. a) Intra-tumoral heterogeneity of several gene expression
923  signatures across multiple tumor regions. Radar charts show Z-score of each feature normalized
924  across the cohort. Min and max radius for each feature in each panel represent min and max of
925 that feature across the cohort. b) For each gene signature, the number of patients who were
926 classified as high or low or a mixture of high and low across tumor regions are shown. Two
927  patients (MR0O5 and NIVO10) were excluded since WTS data of only one region was available.
928  Also, pre-treatment regions of IC| treated patients were excluded to avoid treatment-related
929 effects in these signatures. ¢) Intra-tumoral heterogeneity of myeloid score observed across

930  multiple regions of tumors of patients in this study.
931

932  Figure 3. Landscape of ITH in ccRCC. a) Oncoprint of key ccRCC driver mutations and copy
933  number alterations for all regions of all 29 patients in this cohort. Margin shows comparison
934  between mutation frequency observed in this cohort and TRACERXx Renal. b) We have performed
935  unsupervised hierarchical clustering of genomic features including patient level presence or
936  absence of a small variant in VHL, PBRM1, SETD2, BAP1 (most commonly mutated genes) as
937  well as loss of heterozygosity in HLA genes as well as 9p (which includes CDKN2A/B) SCNA
938  which are known to affect ICI response. Heatmap shows ITH high vs low classification across
939 data type. Annotation illustrates evolutionary subtypes and treatment status of patients. A patient
940 is annotated as wildtype if all regions are wild type for that alteration. Cases where ITH score
941  could not be calculated due to lack of sufficient number of biopsies are shown in gray pixels. CIN:
942  chromosome instability. ¢) Association between antigen presentation machinery (APM), effector

943 T cell (Teff) and myeloid gene signatures and ITH. Wilcox P, False Discovery Rate (FDR) and
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944  Linear Mixed Effect (LME) P shown. d) Intra-tumoral heterogeneity and myeloid score are
945  associated with CDKN2A/B loss in TCGA KIRC cohort. e) ITH low patients show a significantly

946  higher TCR diversity, richness and clone count.
947

948  Figure 4. The landscape of heterogeneity of neoantigen depletion. a) Change in the number
949  of non-synonymous binder SNVs (predicted in silico) and non-synonymous non-binder SNVs
950  compared to pre-treatment. Reduction in only putative neoantigens illustrates selective pressure
951 and immunoediting. One sample Wilcox test P (compared to zero) is shown. b) Clonality of
952  neoantigen depletion. Only strong binders are shown. ¢, d) Immunoediting in an HLA-intact
953  patient NIVO20 through reduced neoantigen expression. NKA/NKB/NKC (shown in RED) are
954  normal adjacent tissues 1cm, 2cm, and 4cm away from the center of the tumor; BX (shown in
955  blue) represents pre-treatment biopsy; RA/RB/RC/RD/RE (shown in green) illustrate 5 tumor
956  regions from the treated tumor sample. e) Immunoediting with amino acid resolution. Higher
957  Phenylalanine (F) depletion compared to Glutamic Acid (E) and Arginine (R) suggests immune
958  selection. f) Association between putative neoantigen depletion and myeloid activation across all
959  regions of patients where pre-treatment WES data was available (n = 16 patients). g) Association
960 between the fraction of expressed putative neoantigens depleted and immune signatures. In (g)
961 correlations are calculated across different regions of the same patient, for all patients with >3
962 treated as well as pre-treatment RNA samples were available (n = 7 patients). h, i) HERVs are
963  enriched in tumors compared to normal samples and are associated with treatment. j) HERV
964  depletion association with myeloid signature. k) Circos plot (left) illustrates the fraction of shared
965 T cell clonotypes between tissue and different time points on therapy. Ribbons connecting
966 different regions of the tumor are scaled based on clonotype overlap. (right) clonotype tracking of
967 dominant untreated T cell clones in treated regions of patient NIVO20. The color of each ribbon

968  shows different T cell clones, and the width is scaled corresponding to the frequency of that clone.
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969  Tissue data consists of 5 tumor regions after treatment (RA/RB/RC/RD/RE), one single normal
970  adjacent (NKC), and one tumor region pre-treatment (BX). Likewise, PBMC data points on
971 treatment are NIVO20-68, -54, -40, -12. I, m) TCR diversity is negatively associated with

972  neoantigen depletion and HLA LOH.
973

974  Figure 5. Branch evolution demonstrates immune evasion. a) Evolutionary tree illustrates
975  tumors can exploit concurrent HLA LOH and CDKN2A/B loss to escape immune surveillance. b)
976  Co-occurrence of HLA LOH and CDKN2A/B can be seen both across regions and patients. c)
977  Differential immune response to ICI therapy in patients with CDKN2A/B loss or HLA LOH or
978  belonging to ITH high subtype. d) Regions of tumor associated with immune escape depict a

979  distinct pathology where colocalization of TILs and stroma can be observed.
980

981 Figure 6. Immunoediting correlates with stroma and myeloid signatures. a) WGCNA
982 identifies gene expression modules associated with inflammation (“*JAVELIN-like”), angiogenesis,
983 and Immune Escape. Gene dendrogram was first generated and then modules were extracted
984  using dynamic tree cutting (top). Modules were annotated by comparing the correlation between
985 the module eigengenes and previously known gene signatures describing different phenotypes
986  (bottom). b) Modules 7 (black), 4 (salmon), and 16 (magenta) are associated with previously
987  described signatures, JAVELIN, angiogenesis and myeloid/stroma. ¢) scRNAseq demonstrates
988 the cell type enrichment of Immune Escape signature in ccRCC patients. Different colors
989  represent different cell types inferred from scRNAseq data. UMAP plot illustrates single cells
990 collected from all 6 patients including treated and untreated patients. Computational extracted
991 clusters were annotated as previously described [15] d, e) Association between ITH groups,

992  Immune Escape signature and N/S/ES pathologies. f) These regions demonstrate an elevated

37


https://doi.org/10.1101/2022.07.11.22277322

medRxiv preprint doi: https://doi.org/10.1101/2022.07.11.22277322; this version posted July 13, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

993  Immune Escape gene signature in NIVO21. RA, RB, RC, RD, and RE denote different regions of

994  atumor sample.
995

996 Figure 7. Association between immune escape and clinical outcome to checkpoint
997  Dblockade. Survival analysis shows the association between gene signatures obtained in this
998  study and clinical outcome of different independent retrospective trials. a) Immune Escape and
999  JAVELIN-like signatures are associated with PFS in patients treated Avelumab plus Axitinib in
1000  JAVELIN Renal 101 cohort. b) Immune Escape signature, but not the JAVELIN-like signature,
1001  correlates with the response to Atezolizumab plus Bevacizumab in IMmotion151 but not JAVELIN
1002  signature. ¢) Immune Escape signature, but not the JAVELIN-like signature, correlates with the

1003  efficacy of anti-PD1-treament in CheckMate 009, 010, 025.
1004

1005  Figure 8. A hypothetical model for spatiotemporal evolution of ccRCC links ITH to immune
1006  escape and adverse TME. Cancer cell death, potentially by cytotoxic killing, early in tumor
1007  evolution selects for tumor clones with HLA LOH and/or CDKN2A/B loss. This promotes the
1008  evolution of a TME depleted of antigen-specific T cells and enriched for myeloid cells.

1009

1010  Supplementary Figure Legends

1011  Fig. S$1. Validation of TME associated gene signatures using IF. Myeloid signature correlates
1012 with CD11b/CD68 markers. CD31 endothelial and CD8 T cell markers are correlated with

1013 Angiogenesis and JAVELIN signatures.
1014  Fig. S2. ccRCC evolutionary subtypes and their association with angiogenic TME score.

1015 Fig. S3. Clonotype overlap analysis. a) Hierarchical clustering of TCR clonotypes across

1016  different regions of patients where tissue TCRseq data was available. B) Rarefration analysis of
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1017  ITH high vs ITH low patients ¢) Circos plot illustrates the fraction of shared T cell clonotypes
1018  between tissue and different time points on therapy. Ribbons connecting different regions of the
1019  tumor are scaled based on clonotype overlap. Labels show patient ID followed by time to
1020  nephrectomy (e.g., NIVO09-7: patient NIVOOQ9 at 7 days to nephrectomy) d) Number of CDR3

1021  clone counts shown for all samples where TCR seq was performed.

1022  Fig. S4. Boxplots show total and change compared to pre-treatment (when sample was
1023  available) for mutational count, and neoantigen count across different regions of all
1024  patients. Count change is shown only for 16 patients whose pre-treatment WES data was

1025 available.

1026  Fig. S5. Association between neoantigen loss and myeloid signature. a) No association
1027  between TMB and tumor purity (FACETS) was observed b) Association between total number of
1028  neoantigens depleted and myeloid signature. ¢) The fraction of mutations or neoantigens depleted
1029 is not correlated with tumor purity for samples with tumor purity larger than 0.3; however, the
1030  association between myeloid signature and neoantigen depletion remains strong even after
1031  excluding samples with low purity. d) Association between immune elimination and escape with

1032  myeloid signature.
1033  Fig. S6. Comparison between SNPs neoantigen depletion and INDEL depletion.

1034  Fig. S7. Treatment impact of HERV association with TME. a) Association between HERV
1035  expression and immune signatures. b) PBRM1 mutations are associated with elevated HERV
1036  expression. ¢) Association between ClearCode34 classes and HERV expression. d) Association

1037  between ClearCode34 classes and neoantigen depletion.

1038  Fig. S8. Association between immune escape signature and treatment.
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1039  Fig. S9. Validation of escape signature in independent cohorts (IMmotion151). a) Escape
1040  signature is associated with improved survival in patients treated with ICI but not sunitinib. b)

1041  Escape signature is associated with CDKN2A/B alteration in Immotion151.

1042  Fig. S10. Relationship between escape gene signature and treatment outcome in different
1043  clinical trials. HRs are calculated for each threshold for ICI or ICI in combination with TKI arms

1044 in JAVELIN Renal 101, IMmotion151, and CheckMate 009, 010, 025.

1045  Fig. S11. Refinement of immune escape gene signature. a) 85 genes immune escape gene
1046  signature is strongly associated with response to Avelumab plus Axitinib in JAVELIN Renal 101
1047  trial. b) Pairwise spearman correlation between 85 genes in module 16 (immune escape). c)

1048  Refinement of 85 genes into 12 genes with the highest pairwise spearman correlation.
1049

1050

1051  Supplementary Materials

1052

1053  Supplementary Tables

1054  Table S1: Data availability.

1055  Table S2: Patient characteristics and relevant clinical data.
1056  Table S3: WTS related gene signatures.

1057  Table S4: ITH classification.
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Figure 6
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Figure 7
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Figure 8
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Extended Data Fig. 1
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Extended Data Fig. 2
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Extended Data Fig. 3
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Extended Data Fig. 4
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Extended Data Fig. 5
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Extended Data Fig. 6
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Extended Data Fig. 7

a

Association between immune signatures and median HERV expression (not corrected for purity)

untreated (P<0.05)
treated (P<0.05)
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Extended Data Fig. 8
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Extended Data Fig. 9
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Extended Data Fig. 10
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Extended Data Fig. 11
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