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ABSTRACT 

 

Objective 

 

Analyze a publicly available sample of rule-based phenotype definitions to characterize and evaluate the 

types of logical constructs used. 

 

Materials & Methods 

 

A sample of 33 phenotype definitions used in research and published to the Phenotype KnowledgeBase 

(PheKB), that are represented using Fast Healthcare Interoperability Resources (FHIR) and Clinical Quality 

Language (CQL) was analyzed using automated analysis of the computable representation of the CQL 

libraries. 

 

Results 

 

Most of the phenotype definitions include narrative descriptions and flowcharts, while few provide 

pseudocode or executable artifacts. Most use 4 or fewer medical terminologies. The number of codes used 

ranges from 5 to 6865, and value sets from 1 to 19. We found the most common expressions used were 

literal, data, and logical expressions. Aggregate and arithmetic expressions are the least common. 

Expression depth ranges from 4 to 27.  

 

Discussion 

 

Despite the range of conditions, we found that all of the phenotype definitions consisted of logical criteria, 

representing both clinical and operational logic, and tabular data, consisting of codes from standard 

terminologies and keywords for natural language processing. The total number and variety of expressions 

is low, which may be to simplify implementation, or authors may limit complexity due to data availability 

constraints. 

 

Conclusion 

 

The phenotypes analyzed show significant variation in specific logical, arithmetic and other operators, but 

are all composed of the same high-level components, namely tabular data and logical expressions. A 

standard representation for phenotype definitions should support these formats and be modular to support 

localization and shared logic. 
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BACKGROUND AND SIGNIFICANCE 
 

The generation of biomedical knowledge from electronic health record (EHR) data requires establishing 

cohorts of patients meeting certain criteria.[Banda2018] This cohort identification process is referred to as 

EHR-driven phenotyping and the sets of inclusion and exclusion criteria are known as phenotype definitions, 

or just phenotypes (the term used here for brevity). Although here we focus on the use within a research 

context, phenotypes support a wide variety of purposes beyond research, including quality improvement, 

clinical decision support, population health management, and public health. While often developed and 

executed at a single institution, research networks such as the National Patient-Centered Clinical Research 

Network (PCORnet),[Fleurence2014] the electronic Medical Records and Genomics (eMERGE) Network, 

[McCarty2011, Gottesman2013, Zouk2019] and the Observational Health Data Sciences and Informatics 

(OHDSI) program [Hripcsak2015] have run distributed studies to pool their results to improve statistical 

power and cohort diversity, leveraging shared phenotype definitions to meet these goals.[Ahmad2020, 

Hripcsak2019, Burn2020] 

 

Beyond coordinated research networks, the re-use of phenotype definitions can save time across 

organizations and create many efficiencies.[Richesson2016] But this requires that potential users be able to 

search, retrieve, and assess existing definitions. At present, there is no widely used platform for sharing 

existing phenotype definitions, although multiple phenotype libraries or inventories have been created 

within research consortia. Historically, phenotypes have been shared between sites via repositories in the 

form of narrative descriptions,[Kirby2016, Denaxas2019] sometimes accompanied by flowcharts or 

pseudocode. Lists of codes from common terminologies like the International Classification of Diseases 

version 9 (ICD-9) are usually also included, but in most cases directly computable artifacts, such as SQL 

scripts or programming code, are not. Despite the potential gains of phenotype re-use, this current method 

of phenotype distribution has proven to be a major limiting factor in scaling up biomedical knowledge 

generation,[Pathak2013a, Newton2013, Shivade2014a, Adekkanattu2020] since implementing sites must 

individually interpret narrative descriptions to produce queries that can extract patient cohorts from local 

data sources. This process is time-consuming, may be operator dependent and error prone, compounded by 

the fact that narrative descriptions can be ambiguous or difficult to interpret.[Yu2021]  

 

However, at present there is no universally accepted standard for representing the attributes and 

specification for computable phenotype definitions, although several have been proposed and evaluated 

[Peterson2014a, Pathak2013, Mo2015b, Mo2016, Jiang2017, Chapman2020a, Hong2019, Brandt2020]. 

The lack of a common representation for computable phenotypes has hindered the analysis and comparison 

of different phenotype algorithms. For example, it is not possible to do an equal technical comparison of a 

phenotype implemented in SQL against a local data warehouse and one done in Python against the OMOP 

CDM. Previous analyses have been performed in a few domains including an early review of 11 narrative 

phenotype descriptions;[Conway2011] clinical quality measures (CQMs);[Dorr2011] and high-level 

categorizations of the elements that make up clinical trial inclusion and exclusion criteria.[VanSpall2007, 

Ross2010a] Comparisons of multiple phenotype definitions have also been done,[Richesson2013] but have 

focused on a single disease or condition.  However, no work to date has evaluated phenotype composition 

across diseases using a consistent computable representation. 
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The goal of this study is to characterize EHR-based phenotype definitions using a consistent computable 

representation, and generate new knowledge about the types and variability of constructs that must be 

accommodated in a system that is capable of formally representing a rich and diverse set of phenotype 

algorithms. 

Materials & Methods 

Data Set 

We used a set of 33 phenotype definitions that were represented using FHIR and CQL. Full details about 

the creation of the phenotype definitions are explained elsewhere,[Brandt2021] but briefly, the data set is 

comprised of phenotype algorithms that utilized structured data, were marked as "Final" in PheKB, and 

were used in a published research study. These phenotype algorithms were then translated into FHIR 

(selected for its growth and use in healthcare and research contexts) and CQL (selected for its use within 

eCQMs and ability to represent phenotype algorithms), and validated using manual review and automated 

testing. The dataset is open source and available on GitHub1. 

Data Analysis 

Metadata Analysis 

PheKB allows phenotype submitters to voluntarily annotate their phenotype algorithm with metadata. We 

extracted and reviewed the metadata available on the PheKB page for each phenotype in JSON format, but 

this metadata was not used in our analysis due to issues with irrelevant, incomplete or outdated information. 

Instead, supplemental metadata was manually assembled by two authors (PSB, LVR) who independently 

conducted a review of PheKB for each phenotype in the dataset and curated relevant dimensions, emergent 

patterns, and characteristics. We categorized the artifacts provided with each phenotype definition (e.g., 

flowcharts) and whether or not the definition for controls, subtypes, or suspected cases is provided. We also 

provided a "Type" categorization to capture the intent of the phenotype, and note whether or not the 

phenotype used tabular data, and how these data are provided. In most cases tabular data refers to lists of 

codes from standard terminologies, but may also include lists of keywords or medication names. Following 

this manual review, the two reviewers met to discuss their findings and resolved any discrepancies. 

Phenotype Definition Analysis 

To evaluate the phenotype definition logic, we conducted an automated analysis of the Expression Logical 

Model (ELM) representation of each CQL library. An ELM representation is an instance of an Abstract 

Syntax Tree (AST),[Parr2009] which acts as a machine-readable representation of a complete program and 

is used to evaluate or execute the program. ASTs can be used in program translation, as has been shown for 

CQL,[Brandt2020] or for program analysis, as we demonstrate here. We evaluated the ELM for each 

phenotype by making use of the Visitor Pattern,[Gamma1995] which is a mechanism for inspecting each 

node of tree-like data structures and executing custom code in the context of each node. Our Java 

implementation used an interface provided by the reference implementation of the CQL translator,2 which 

 
1 https://github.com/PheMA/phekb-phenotypes 
2 https://github.com/PheMA/elm-utils 
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is the same one used by the CQL engine during program execution. Our evaluator program calculated a 

number of measures about a given CQL library, including how many value sets are referenced, how many 

Boolean, temporal, and aggregate operators are used, and how these operators are combined. We also 

determined the total number of expressions, how many data types are used, and how many unique data 

queries are performed. After a preliminary manual review of the phenotype definitions, we identified 11 

dimensions along which to evaluate each phenotype, shown in Table 1. We note that the library used did 

not include NLP implementations, and so NLP-related metrics were not considered in our analysis. 

 

Category Description Examples 

Aggregate 
Operations that calculate single values from 

collections 

sum, count or mean 

Arithmetic Mathematical operations +, -, or * 

Collection 
Operations on collections of data like sets 

and lists 

first, exists or union 

Comparison Numeric or date comparisons > or = 

Conditional Branching logic if or case 

Data Data retrieval and filtering operations FHIR resource querying and filtering by value set 

Expressions 
Total number of expressions as well as their 

depth 

Total expression count, where clause expression 

depth 

Literals Explicit values, codes and quantities 23, 5 months or 0.5 mg/dL 

Logical Boolean logical operators and or not 

Temporal Operators relating to dates and times before, starts or overlaps 

Terminology 
Number of value sets used and the number of 

individual codes 

Value sets per phenotype, codes per code system 

 

Table 1. Phenotype definition analysis dimensions. 

Results 

Metadata 

Table 2 provides metadata extracted by manually reviewing each phenotype definition. Our manually 

determined types align with the self-reported PheKB types, but we introduce a new type with the label 

"Valid Data". This indicates that the phenotype is trying to identify patients without disqualifying data. For 

example, the Height phenotype identifies individuals who have a valid height measurement and do not have 

any conditions that may impact height. We also introduce the "Treatment / Therapy" type, which identifies 

individuals who have had a specific treatment, for example, Bone Scan Utilization. Finally, we describe the 

approach outlined for NLP implementation (if applicable). 

 

About two thirds of the definitions provide a narrative description (n=20) and flowchart (n=19), while only 

about one third (n=12) provide pseudocode. While tabular data is provided by all but three phenotypes, 

only 4 provide this data in a computable format. Computable artifacts in the form of KNIME workflows 

are provided for 5 phenotypes, and we found that these workflows require users to prepare their data in a 

specified custom format before execution. 
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Most phenotypes (n=20) provide control definitions, 8 provide phenotype subtype definitions, and 4 include 

a category for suspected cases. About half (n=16) of the phenotypes provide a list of covariates to be 

collected. All but 5 phenotypes rely on some form of NLP, with 17 providing a list of keywords, 8 providing 

regular expressions, and 6 providing a list of medication names. 

Terminologies 

Figures 2 and 3 provide histograms related to codes, code systems and value. The figures were generated 

using automated analysis of the ELM representation of the phenotype definitions and the value sets in FHIR 

format. Most phenotypes (n=28) use four or fewer code systems, and almost all (n=30) use ICD-9 codes, 

driven in part by the prevalence of phenotype algorithms in PheKB developed prior to or shortly after the 

adoption of ICD-10 in the United States. RxNorm (n=21), LOINC® (n=17), and CPT (n=16) are the next 

most commonly used. Five code systems (AMT, dm+d, BDPM, CIEL, and MedDRA) are each only used 

by a single phenotype. 

 

About half of all codes (n=7020) are ICD-9 codes, and about a quarter (n=4112) are ICD-10 codes. CPT 

(n=1221) and RxNorm (n=699) are the next most common. The total number of codes used varies from 5 

(Warfarin Dose/Response) to 6865 (Developmental Language Disorder), with a median of 147 (mean: 

509.2, std: 1206.3). The total number of value sets used ranges from 1 (Lipids and Sickle Cell Disease) to 

19 (Resistant Hypertension), with a median of 5 (mean: 6, std: 4.4). 
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Name Type Narrative Flowchart Pseudocode Tabular Executable Suspected Controls Subtypes Covariates NLP 

Asthma Response to Inhaled Steroids Drug Response ✔️   NC      regex 

Atrial Fibrillation Disease   ✔️ NC  ✔️ ✔️ ✔️  keywords; regex 

Autism Disease ✔️ ✔️  NC   ✔️ ✔️ ✔️ DSM-IV criteria 

Benign Prostatic Hyperplasia Disease  ✔️ ✔️ NC KNIME  ✔️  ✔️ keywords 

Bone Scan Utilization Treatment / Therapy ✔️ ✔️  NC   ✔️   keywords 

Cardiac Conduction Trait ✔️   NC     ✔️ keywords; negation; uncertainty 

Cataracts Disease  ✔️ ✔️ NC   ✔️ ✔️ ✔️ MedLEE concepts; negation; regex 

Clopidogrel Poor Metabolizers Drug Response  ✔️  NC   ✔️ ✔️  keywords 

Crohn's Disease Disease   ✔️ NC  ✔️ ✔️ ✔️  keywords; regex 

Developmental Language Disorder Disease ✔️ ✔️  CSV KNIME   ✔️   
Digital Rectal Exam Treatment / Therapy ✔️ ✔️  NC   ✔️   documentation is obtained from clinical notes 

Drug Induced Liver Injury Drug Response ✔️ ✔️  NC   ✔️  ✔️ medication names; "diagnosis mentioned" 

Familial Hypercholesterolemia Disease ✔️ ✔️ ✔️ XLSX   ✔️  ✔️ detailed pseudocode 

Height Healthy / Valid Data  ✔️  NC KNIME    ✔️ keywords 

Herpes Zoster Disease  ✔️ ✔️ XLSX   ✔️  ✔️  

High-Density Lipoproteins Trait  ✔️ ✔️ NC      keywords 

Hypothyroidism Disease ✔️   NC   ✔️  ✔️ keywords 

Lipids Healthy / Valid Data ✔️ ✔️ ✔️ NC KNIME    ✔️  

Multimodal Analgesia Treatment / Therapy ✔️ ✔️  NC   ✔️   medication names 

Multiple Sclerosis Disease   ✔️ NC  ✔️ ✔️   keywords; regex 

Peripheral Arterial Disease Disease ✔️   NC  ✔️   ✔️ keywords 

Red Blood Cell Indices Healthy / Valid Data ✔️ ✔️  NC     ✔️ medication names 

Resistant hypertension Drug Response ✔️   NC   ✔️  ✔️ medication names 

Rheumatoid Arthritis Disease   ✔️ NC  ✔️ ✔️   keywords; regex 

Sickle Cell Disease Disease ✔️   NC       
Statins and MACE Drug Response ✔️ ✔️  NC   ✔️ ✔️ ✔️ medication names; keywords 

Steroid Induced Osteonecrosis Drug Response  ✔️  NC   ✔️   keywords 

Systemic Lupus Disease ✔️         keywords 

Type 2 Diabetes Disease   ✔️ NC   ✔️   keywords; regex 

Type 2 Diabetes Mellitus Disease ✔️ ✔️ ✔️ XLSX KNIME; SQL fragments  ✔️  ✔️ medication names; regex 

Urinary Incontinence Treatment / Therapy ✔️         executable Python code 

Warfarin Dose/Response Drug Response  ✔️      ✔️  keywords 

White Blood Cell Indices Healthy / Valid Data ✔️   NC      ✔️    

Table 2. Metadata manually extracted from PheKB. 

          
NC – Non-computable (e.g., Word or PDF), XLSX – Microsoft Excel file, CSV – Comma Separated Value file, KNIME – KoNstanz Information MinEr files, SQL – Structured Query Language  
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Figure 2. Histograms of code and code system usage. 

 
ICD9CM – International Classification of Diseases, Ninth Revision, Clinical Modification; ICD10CM – International Classification of 

Diseases, Tenth Revision, Clinical Modification; LOINC - Logical Observation Identifiers Names and Codes; CPT - Current Procedural 

Terminology; ICD9Proc – International Classification of Diseases, Ninth Revision, Procedures; ; ICD10PCS – International Classification of 
Diseases, Tenth Revision, Procedure Coding System; HCPCS - Healthcare Common Procedure Coding System; SNOMED – Systematized 

Nomenclature of Medicine; MeSH - Medical Subject Headings; AMT - Australian Medicines Terminology; dm+d - Dictionary of Medicines 

and Devices; BDPM - Public Database of Medications; CIEL - Columbia International eHealth Laboratory; MedDRA - Medical Dictionary 

for Regulatory Activities 
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Figure 3. Histogram of value sets used. 

 

Logical Expressions 

Logical expressions were analyzed by programmatically examining the ELM representation of each 

phenotype definition. Figure 4 illustrates the total number of expressions used in each phenotype broken 

down by CQL expression category, enabling easy comparison between phenotypes and demonstrating the 

range of variability among the definitions. Figure 5 provides a histogram of the individual expressions 

within each category and Figure 6 illustrates the data types utilized by literal expressions. 

 

The most widely used expression categories are literal (n=767), data (n=229), logical (n=341), and 

collection (n=292), with the latter three categories used by every phenotype. The least commonly used 

expression categories are aggregate (n=30) and arithmetic (n=80). The total number of expressions used 

ranges from 6 (Autism) to 228 (Familial Hypercholesterolemia), with a median of 59 (mean: 69.7, std: 

53.3). 
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Only two types of aggregate expressions were used, with count (n=28) being the most common. The 

exists (n=191) expression is the most common collection expression used, with equal (n=109) and if 

(n=141) the most common comparison and conditional expressions respectively. The retrieve (n=228) 

expression was the most common non-literal expression overall, while the aggregate data expression 

was used only once. The and (n=170) expression was the most common logical operator, being used about 

twice as many times as not (n=83) and or (n=88). The start (n=30), which extracts the start date or 

time from an interval, is the most common temporal operator. 

 

Figure 6 shows the frequency of data types for literal expressions. Of these, terminology literals are the 

most commonly used types, with the code, code system, and concept types each occurring in 27 or 

more phenotypes. The next most common are primitive types like Boolean (20) and Integer (24). In 

total, 18 phenotypes make use of a Quantity data type (a scalar value with a unit).
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Figure 4. Cumulative expression counts per category. 
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Figure 5. Total numbers of individual expression types by category (excluding literal expressions). 
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Figure 6. Utilization of various data types by literal expressions. 

 

Data Sources 

Figure 7 illustrates how many data types (distinct FHIR resources, such as Condition or Encounter, given 

the use of FHIR as the data model) are used per phenotype definition and how many phenotypes used each 

data source. The majority of phenotypes (n=22) used 3 data types or fewer. Condition was the most common 

data type, used by almost all (n=30) phenotypes, followed by medications (n=22), procedures (n=17), and 

observations (n=17). Demographic and encounter data were the least frequently used. 

 

Also provided are histograms of the numbers of retrieve operations (used to fetch records for data 

sources). The majority of phenotypes use fewer than ten retrieves. The outliers are Familial 

Hypercholesterolemia (n=24) and High-Density Lipoproteins (n=18). The number of retrieves vary 

depending on the phenotype logic. For example, Resistant Hypertension has few retrieves (n=7). The 

retrieve count indicates how many distinct data requests are made, such as querying for all medications 

using codes from a specific value set, which can then be filtered or shaped in multiple ways. 
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Figure 7. Data retrieval expressions and data types. 

 

 

Figure 8. Example of expression depth (a), along with histograms of total (b) and where clause (c) 

expression depths. 

 

Expression Depths 

Expression depth is an indicator of how many logical expressions are applicable concurrently, which is 

roughly correlated with how many phenotype definition criteria are concurrently applicable. Figure 8 

provides a histogram of total expression depth as well as where clause expression depth. where clause 

expression depth is an indicator of how complicated data filtering expressions are. Finally, Figure 9 

illustrates expression depth per expression category, which shows how many expressions of each different 

category are concurrently applicable. 
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The lowest total expression depth is 4 (Multiple Sclerosis, Crohn's Disease, and Autism) and the highest is 

27 (Familial Hypercholesterolemia), with a median of 14 (mean: 13.5, std: 5.7). Seven phenotypes have a 

where clause expression depth of zero (White Blood Cell Indices, Rheumatoid Arthritis, Multiple 

Sclerosis, Crohn's Disease, Atrial Fibrillation, Autism, and Developmental Language Disorder), meaning 

that data is only filtered by value set and no other criteria. Red Blood Cell Indices has the highest where 

clause expression depth of 18, and the median where clause expression depth is 7 (mean: 6.6, std: 5.4). 

 

Many phenotypes have expression depths of zero or one for aggregate, arithmetic, collection, comparison, 

and conditional expression. Logical expressions always have a depth of at least one. There are some 

instances of expression depths in the two to four range for conditional, collection, comparison, and logical 

expressions, but only logical and arithmetic expressions have a depth of five or greater. Only logical 

expressions have a depth greater than six, with a maximum of 10 in two cases (Red Blood Cell Indices and 

Familial Hypercholesterolemia). 

 

 

 

Figure 9. Expression depth utilization per category. 
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Discussion 

In this work we found that all of the 33 phenotypes evaluated use a combination of clinical logic and 

operational logic as part of their definitions. Similarly, despite the range of conditions, all of the definitions 

consisted of logical criteria, representing both clinical and operational logic, and tabular data, consisting of 

codes from standard terminologies and keywords for natural language processing. The original metadata 

associated with phenotype algorithms we evaluated was found to be irrelevant for this analysis or incorrect, 

demonstrating the need not only to identify more relevant metadata elements and ensure they are 

appropriately curated and verified, but also ensure metadata review and curation is ongoing to ensure 

accuracy. Some metadata elements that were originally curated by hand in PheKB, such as the categories 

of data or medical vocabularies used, could be extracted and updated programmatically if phenotype 

algorithms were represented in a standard computable format, such as CQL and FHIR. Overall, ongoing 

work is needed to improve metadata collection for phenotype algorithms, with some groundwork proposed 

in the field.[Chapman2021, Alper2022] 

 

The artifacts that comprised the phenotype definitions can be divided into two high-level categories: logic 

and tabular data. The tabular data consists of value sets of codes from various code systems and lists of 

keywords or regular expressions used for NLP, although we did not analyze the latter in depth. We 

identified that diverse vocabularies are used for phenotype algorithms - all of which could be represented 

in CQL and FHIR. The OMOP common data model standardizes the terminologies used to a smaller subset, 

however, and comprehensive phenotyping platforms should anticipate accommodating a broad set of 

vocabularies. 

 

Phenotype logic can be further divided into two categories: clinical logic and operational logic. Clinical 

logic is the core of the phenotype definition, and describes the clinical definition of the phenotype. Clinical 

logic includes things such as which diagnoses are relevant, which procedures, medications, and laboratory 

orders are associated with the phenotype, as well as patient demographic criteria that should be considered. 

Operational logic is also important, and while it contributes to the clinical definition, it is typically a bridge 

to how data are recorded in the EHR. Patterns in operational logic have been observed,[Rasmussen2014] 

but they can be difficult to express accurately using universally applicable logical expressions. For example, 

the Herpes Zoster phenotype requires that a matching patient have at least 5 years of continuous enrollment. 

The reason for this requirement is to "increase the probability that a subject’s status with respect to herpes 

zoster infection is known by the health care system." This does not necessarily increase the correctness of 

the phenotype definition, but may nevertheless increase the negative predictive value. Another very 

common operational criterion is the requirement that a patient have at least 2 diagnoses of a given condition. 

This criterion is relatively simple to define using universally applicable CQL logic, while the concept of 

enrollment is determined differently at different institutions. One solution to this problem, which is 

available when using a modular formal representation, is to have local implementations for common 

operational criteria that are used during cohort execution. This is the same approach used in computer 

software, where system libraries provide routines with known names and well-defined parameters, but the 

implementation varies according to the operating system. However, this highlights the need for more 

broadly accepted metrics applicable to a wide range of health data that convey information about the 

completeness of capture of patient data, for a given data source. Completeness has been explored and 

reported in data quality frameworks,[Kahn2016, Schmidt2021] but work is needed to integrate these 

considerations more readily into phenotype authoring. 
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The types of expressions observed were simple, and required more complex calculations and aggregations 

of data to take place within the phenotype. The complexity of the phenotypes then comes from the topology 

- many simple expressions linked together in increasingly complex ways. The prevalence of certain 

expressions such as data retrieval, manipulation, and literal expressions is expected, but we were surprised 

by the relatively low usage of arithmetic and aggregate expressions, which indicates that in most cases data 

values are used directly, not used to construct derived values. Both the count and sum aggregate 

expressions are used as cardinality constraints (e.g., at least 2 diagnoses required) and not in an arithmetic 

context. The highly used existential operator (exists) is used for the same purpose (e.g., does an 

observation exist that meets certain requirements). Additionally, even though about two thirds of 

phenotypes use temporal expressions, the total number used is relatively small. The fact that the and 

operator is used about twice as much as the or and not operators makes sense, since conceptually, many 

phenotypes are defined by clusters of concurrent criteria rather than by the disjunction of many different 

criteria.  

 

Overall expression depths seem to be normally distributed around 15, while where clause expression depth 

appears to be bimodal, but generally trends down at high values. The downward trend implies that 

complicated data filtering expressions are uncommon. Most expression categories are not very deeply 

nested, and only logical expressions (and in one case arithmetic expressions) have a depth of 5 or higher. 

This can be interpreted to mean that conceptually simple criteria are combined in complex ways using and 

and or expressions. This can be confirmed by looking at the flowcharts provided with some phenotype 

definitions, which may have a complicated topology, but the criteria represented by each node are relatively 

simple. 

 

The total number of expressions per phenotype is generally not very high, with a median of just 59. The 

total number of expression types is also quite low, at just 43 (CQL has over 200 expression types). There 

are several possible reasons for the simplicity of the phenotypes in the data set. First, in our experience, 

implementing even simple phenotype definitions is quite challenging, so authors may choose to keep 

definitions simple to make implementation practical. Second, the phenotypes generally restrict themselves 

to data available in the EHR, which may be simplified, as this data is often for billing purposes. Further, 

since the PheKB phenotypes are designed to be shared, authors may limit themselves only to data available 

to most implementers, such as the most basic data elements. Finally, since phenotypes are created as 

narrative text, the lack of a formal expression language may be a factor that limits the level of detail 

provided.    

 

There is no clear correlation between the severity or complexity of presentation of a disease and the number 

of expressions used. For example, something ostensibly simple like Height has ten times as many 

expressions as Multiple Sclerosis. There are also two Type 2 Diabetes phenotypes, one with 49 expressions 

and one with 100, so even the same disease can be represented in vastly different ways. This implies that a 

large part of phenotype definition complexity is determined by the level of detail that the author decided to 

use. This is independent of any formal representation, and may depend on the intended use of the phenotype 

definition. 
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Limitations 

 

We note the following limitations in this work. First, the data set used is relatively small, consisting of only 

33 phenotype definitions, and there may exist additional phenotype definitions that would alter our 

conclusions. Additionally, many of the phenotypes evaluated were developed for conducting genomic 

studies, and the implementation decisions may have been tuned specifically for that purpose, biasing our 

findings. We also note that all the definitions in our dataset were designed to detect patients with a single 

condition. Even though EHR data provides the opportunity to conduct research on patients with multiple 

simultaneous conditions, the phenotype definitions we used were not designed to identify cohorts of such 

complex patients. The phenotypes analyzed are reminiscent of those that might be used for recruiting 

patients for randomized controlled trials, but we hope this work will provide some insights that lead to 

methods for developing higher fidelity phenotype definitions, and that these definitions can be used for so-

called deep phenotyping. 

 

The decision not to include NLP directives in our analysis was purposeful, but impacts any conclusions we 

would wish to draw about individual phenotypes. We know that most (n=28) phenotype definitions make 

use of some form of NLP, so we are omitting data from a significant number of definitions. However, 

almost all definitions including NLP directives simply provide a keyword list or regular expressions, and 

not higher-level entities, negation, and/or temporal constructs. In some cases, no details are given about 

how the NLP should be implemented. For example, the Red Blood Cell Indices phenotype definition says 

only “NLP was implemented to that regard” (referring to identifying patients taking specific medications). 

So, we believe that including a more detailed analysis of NLP data elements would not be informative due 

to their underspecificity in the dataset. A substantial amount of data useful for EHR-driven phenotyping 

may be stored in clinical notes. The body of research focused on extracting this data is growing,[Zeng2018] 

but to our knowledge, no widely accepted standard representation for NLP metadata and processes has yet 

emerged. The PhEMA research team is working on methods for integrating NLP into both FHIR 

[Hong2019] and CQL [Wen2021] and in future work we hope to integrate this research into our analysis of 

phenotype definitions using formal representations. 

Conclusion 

In this work, we characterize a set of 33 validated research phenotype definitions, identifying how 

phenotype implementations use a combination of clinical logic and operational logic. The phenotypes 

analyzed are composed of the same high-level components, namely tabular data and logical expressions. 

The most important type of tabular data analyzed here are value sets, which can readily be represented in a 

standard format. Despite the limited number of expressions used from those available, individual phenotype 

algorithms could become complex in the total number of expressions needed and depth of nested operations, 

often to accommodate the needed operational bridge from how EHR data is collected and recorded. This 

complexity points to the need to use standard-based representations for expressing, sharing and 

implementation of phenotype definitions. 
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