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26 Abstract

27 Background

28 Tuberculosis (TB) infections among children (below 15 years) is a growing concern, particularly 

29 in resource-limited settings. However, the TB burden among children is relatively unknown in 

30 Kenya where two-thirds of estimated TB cases are undiagnosed annually. Very few studies have 

31 used Autoregressive Integrated Moving Average (ARIMA), hybrid ARIMA, and Artificial 

32 Neural Networks (ANNs) models to model infectious diseases globally. We applied ARIMA, 

33 hybrid ARIMA, and Artificial Neural Network models to predict and forecast TB incidences 

34 among children in Homa bay and Turkana Counties in Kenya.

35 Methods

36 The ARIMA, ANN, and hybrid models were used to predict and forecast monthly TB cases 

37 reported in the Treatment Information from Basic Unit (TIBU) system for Homa bay and 

38 Turkana Counties between 2012 and 2021. The data were split into training data, for model 

39 development, and testing data, for model validation using an 80:20 split ratio respectively.

40 Results

41 The hybrid ARIMA model (ARIMA-ANN) produced better predictive and forecast accuracy 

42 compared to the ARIMA (0,0,1,1,0,1,12) and NNAR (1,1,2) [12] models. Furthermore, using the 

43 Diebold-Mariano (DM) test, the predictive accuracy of NNAR (1,1,2) [12] versus ARIMA-

44 ANN, and ARIMA-ANN versus ARIMA (0,0,1,1,0,1,12) models were significantly different, 

45 p<0.001, respectively. The 12-month forecasts showed a TB prevalence of 175 to 198 cases per 

46 100,000 children in Homa bay and Turkana Counties in 2022.
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47 Conclusion

48 The hybrid (ARIMA-ANN) model produces better predictive and forecast accuracy compared to 

49 the single ARIMA and ANN models. The findings show evidence that the prevalence of TB 

50 among children below 15 years in Homa bay and Turkana Counties is significantly under-

51 reported and is potentially higher than the national average.
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67 Introduction

68 Background
69 Tuberculosis (TB) is a highly infectious disease ranked among the top ten most lethal 

70 causes of mortality. Approximately 33% of the global population has been plague-ridden with 

71 TB, particularly in developing countries [1]. In 2016, over 10 million new TB cases were 

72 reported globally with children below 15 years of age accounting for about 7% of those cases 

73 [3]. In 2018, about 1 million TB disease cases and over 230,000 TB-related deaths occurred 

74 among children below 15 years with about 55% of these reported TB cases going undiagnosed 

75 and/or unreported [2].

76 Pediatric TB is usually overlooked [4] amid diagnosis and treatment challenges. 

77 Developing countries account for over 85% of new cases of TB globally with Asian and African 

78 countries contributing 61% and 25% of global new TB cases [2] respectively. In 2016, 

79 approximately 7 countries, globally, accounted for close to 65% of all new TB cases [2] while in 

80 2019, 30 high TB burdened countries accounted for 87% of all new TB cases while only 8 

81 countries accounted for approximately 67% of the total new TB cases [5].

82 The TB burden in Sub-Saharan Africa (SSA) is far much greater and is exacerbated by 

83 poverty, political strive, and weak health systems which have curtailed the implementation of TB 

84 control interventions. Consequently, TB has become an enormous burden to health systems that 

85 are already overstretched [6].

86 Tuberculosis is a disease of major concern in Kenya and is among the top five causes of 

87 mortality. Kenya is listed among the top 30 TB high burdened countries [7]. Kenya is also 

88 among 14 countries globally that suffer from the TB, TB-HIV co-infection, and Multi-Drug 

89 Resistant TB [8] triple burden. The TB prevalence for Kenya in 2015 was 233 per 100,000 
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90 population with a mortality of 20 per 100,000. In Kenya, the TB case notification increased from 

91 11,000 to 116,723 between 1990 and 2007 [9] occasioned by the HIV epidemic and improved 

92 case detection due to improved diagnostic capacity.

93 The use of mathematical models in the modeling of epidemic interactions within 

94 populations has been detailed extensively. While existing interventions to control TB have been 

95 partially successful, within the context of resource constraints, mathematical modeling can 

96 increase understanding and result in better policies toward the implementation of effective 

97 strategies that would compound better health and economic benefits [10]. In addition, 

98 mathematical models are essential in guiding policymakers in resource allocation toward the 

99 prevention and control of diseases.

100 Several studies have utilized ARIMA, Seasonal ARIMA (SARIMA), neural network, and 

101 hybrid ARIMA models to model TB incidences in other countries [11, 13] and in these studies, 

102 the hybrid models were demonstrated to offer better predictive and forecast accuracy. In Africa, 

103 Azeez et al. compared the predictive capabilities of the SARIMA and the hybrid SARIMA 

104 neural network auto-regression (SARIMA-NNAR) models in modeling TB incidences in South 

105 Africa and the SARIMA-NNAR model was found to have better goodness-of-fit [12]. In 

106 addition, Li et al.  compared the the predictive power of the ARIMA and ARIMA-generalized 

107 regression neural network (GRNN) hybrid models in forecasting TB incidences in China and 

108 concluded that the hybrid model was superior to the single ARIMA model [13].

109 The ARIMA and Neural Networks models have also been applied in modeling other 

110 infectious diseases. Zeming and Yanning predicted HIV-AIDS incidences in China in 2017 using 

111 the back propagation (BP) artificial neural network and the ARIMA models and concluded that 
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112 the hybrid (BP-ANN) model offered better predictive power compared to the single ARIMA 

113 model [14]. Zhou et al. modeled the prevalence of schistosomiasis in Qianjiang city in China 

114 using a hybrid model of ARIMA-NARNN (Nonlinear Autoregressive Neural Network) and 

115 concluded that the hybrid ARIMA-NARNN model produced high-quality prediction accuracy 

116 [15]. Yu et al. used the hybrid seasonal ARIMA and NARNN model to forecast incidences of the 

117 Coxsackie viral infection in Shenzhen China, and concluded the hybrid seasonal ARIMA-

118 NARNN was the best model [16].

119 While hybrid ARIMA models have been applied in forecasting both the short-term and 

120 long-term incidences of infectious diseases in other countries, there has been little to no 

121 application of these cutting-edge methods in African countries with the majority of the models 

122 limited to only ARIMA models [17]. In Kenya, while ARIMA models have been applied in 

123 forecasting disease incidence [18], very little has been done in the application of hybrid ARIMA 

124 models in predicting disease incidence except in non-public health settings such as agriculture 

125 and economics.

126 The popularity of ARIMA models stems from their flexibility to represent varieties of 

127 time series with simplicity but with a profound limitation stemming from their linear 

128 assumptions which in many cases is usually impractical [19] since real-world applications 

129 mainly involve data exhibiting non-linear patterns. Consequently, to overcome this disadvantage, 

130 non-linear stochastic models such as the ANN models have been proposed [20]. Despite this, a 

131 single ANN model is not able to incorporate both linear and non-linear patterns and this has led 

132 to the adoption of hybrid models that can address this challenge [21]. To attain a higher degree of 
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133 predictive and forecasting accuracy, theoretical and empirical findings show that combining 

134 different models can be effective [22].

135 To better understand the status of TB infection among children in Kenya, it is important 

136 to assess the trend and forecast these incidences using available surveillance data and novel 

137 models to elicit a better understanding and innovative interventions to curtail the spread of 

138 pediatric TB in Kenya. This study compares linear-based ARIMA, non-linear-based ANN, and 

139 hybrid ARIMA in modeling TB incidences among children below years in Homa bay and 

140 Turkana counties in Kenya.

141 Materials and methods

142 Study design and setting

143 This was a retrospective study that utilized aggregated monthly TB cases among children 

144 data reported by health facilities located in Homa Bay and Turkana Counties to the National 

145 Tuberculosis, Leprosy and Lung Disease Program (NTLLDP) in the Treatment Information from 

146 Basic Unit (TIBU) electronic system between January 2012 to December 2021. The data 

147 comprised 120 data points. The study utilized data reported by health facilities in Homa bay and 

148 Turkana Counties which are among the top 10 TB endemic Counties in Kenya [50]. 

149 Data collection and analysis

150 Tuberculosis case data were abstracted and aggregated for each month between January 

151 2012 to December 2021 for health facilities located in Homa bay and Turkana Counties in 

152 Kenya. In 2012, the Kenya Ministry of Health (MoH) through the Division of Leprosy, 

153 Tuberculosis and Lung Disease transitioned the reporting of TB cases from paper-based to the 

154 TIBU system [23]. The TIBU system is a national case-based surveillance system used in the 
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155 storage of individual cases of TB that are reported to the national TB program monthly with 

156 nationwide coverage [24]. This study did not collect or utilize patient-level data.

157 The 120 TB cases data points in the data used in this study were split using the 80:20 

158 ratio with 80% (2012 to 2019) of the data assigned to the training set and 20% (2020 to 2021) 

159 assigned to the testing set. Splitting the data into training and testing data using the 80:20 ratio, 

160 in this case, was based on the available chronological data points as this has been proved to yield 

161 test error rate estimates with reasonably low bias and variance [25]. Furthermore, when the 

162 training data is large enough, the model learns well and this gives predicted values that are much 

163 closer to the actual values [26]. The models were built on the training set and their performance 

164 was evaluated on the testing set; this method is the holdout-validation method for model 

165 performance evaluation.

166 Data analysis was performed using R statistical software [27] together with applicable 

167 packages for analyzing time-series data. The results were summarized using tables and figures.

168 The Time Series concept

169 A time series is a sequential set of data points measured over time and is typically 

170 composed of the trend, cyclical, seasonal, and irregular (random) components.

171 An autoregressive (AR) model is a type of random process used to describe certain time-

172 varying processes within a time series [28]. The basic idea of AR models is that the present value 

173 of a series Yt can be linearly explained by a function of p past values, that is,
 

174 .

175 Assuming , an AR process of order p can be written as;
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176        (1)

177 Where  is white noise (WN), and is uncorrelated with Ys for all s < t

178 However, if the mean is  then  is replaced by  to obtain;

179                                          (2)

180 Equation 2 can also be written as;

181                    (3)

182 Where; 

183

184 Furthermore, equation (1) can be written in the form;

185                                                                                 (4)

186 However, by applying the backshift operator we get;

187

188 Or using notation, we can write;

189                    (5)

190 Where  denotes the autoregressive (AR) operator;

191                                                                                       (6)

192 A moving average (MA) model uses the dependency between an observed value and the 

193 residual error from a moving average model applied to the lagged observations. This implies that 

194 the output variable is linearly dependent on the current and past values of a stochastic term [28].

195 Consequently,  is a moving average process of order q if

196        (7)
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197 Where  is WN and  are constants

198 On the other hand, a MA(q) process can also be written in the form;

199        (8)

200 Where the moving average operator;

201        (9)

202 defines a linear combination of values in the shift operator  

203 Autoregressive Integrated Moving Average models (ARIMA) models

204 An ARMA (p, q) model is a class of stochastic processes whose auto-covariance 

205 functions depend on a finite number of unknown parameters. Generally, an ARMA process of 

206 orders p and q can be represented mathematically [29] as;

207       (10)

208 In the lag operator notation, the ARMA (p, q) process is given by

209                               (11)

210 Box and Jenkins introduced the ARIMA model in 1960 [30]. The ARIMA model requires 

211 only historical time series data on the variable under forecasting. Most importantly, ARIMA 

212 models are represented as ARIMA (p, d, q) where p is the number of AR terms, d is the number 

213 of non-seasonal differences, and q is the number of lagged forecast errors [31]. The ARIMA 

214 model assumes that the residuals are independent and normally distributed with homogeneity of 

215 variance and zero mean value.
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216  Seasonal Autoregressive Integrated Moving Average models (SARIMA) models

217 The SARIMA model is made up of non-seasonal and seasonal components in a multiplicative 

218 model. A SARIMA model can be written as ARIMA (p,d,q) (P, D, Q)S  where p is the non-

219 seasonal AR order, d is the non-seasonal differencing, q is the non-seasonal MA order, P is the 

220 seasonal AR order, D is the seasonal differencing, Q is the seasonal MA order and S is the period 

221 of repeating seasonal pattern. Generally, S=12 for monthly data. 

222 Let the backshift operator be presented as BYt = Yt-1

223 Without differencing, a SARIMA model can be written formally as;

224      (12)

225 Where on the left of equation 12, the seasonal and non-seasonal AR processes multiply each 

226 other, and on the right of equation 12, the seasonal and non-seasonal MA processes multiply 

227 each other. Also, in this study, S=12 since monthly TB case data are used.

228 Artificial Neural Networks (ANNs) models

229 Artificial Neural Networks have been suggested as alternative and better modeling 

230 approaches to time series forecasting [32]. The main goal of ANNs is to construct a model that 

231 mimics the human brain intelligence into a machine [33] and is biologically motivated [34]. The 

232 most common ANNs are multi-layer perceptrons (MLPs) that utilize a single hidden layer feed-

233 forward network (FNN) [35] made up of the input layer, the hidden layer, and the output layer 

234 connected by acyclic links [36]. A neuron is a data processing unit while the nodes in the various 

235 layers of ANNs are the processing elements. In this study, the inputs were the lagged TB case 

236 observations and the outputs were the predicted or fitted TB cases from the model. According to 

237 Zhang [37], the ANN can be written as:
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238      (13)

239 Where Yt-i (i=1, 2, …, p) are the p inputs, Yt is the output,  q are the hidden nodes,  (j=0, 1, 2, 

240 …, q) and  (i=0, 1, 2, …, p; j=0, 1, 2, …, q) are the connection weights and  is the random 

241 shock;  and  are the bias terms. There is no systematic rule in deciding the choice of q while 

242 p, which is the number of neurons is equal to the number of features in the data. The logistic 

243 function h(.) is applied as the nonlinear activation function, where:

244       (14)

245 As a matter of fact, the model in equation 13 performs a nonlinear functional mapping from past 

246 observations of a time series to the future value. That is:

247       (15)

248 Where v is a vector of all parameters and f(.) is a function determined by the structure of the 

249 network and the connection weights.

250 Hybrid (ARIMA-ANN) models

251 Generally, a time series can be observed as having linear and nonlinear components as 

252 shown in equation 16.

253      (16)

254 Where lt and nt are the linear (from the ARIMA model) and nonlinear (ANN fitted 

255 ARIMA model residuals) components respectively. Residuals from the ARIMA model are fitted 

256 with the ANN model. 
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257 Proposed Methodology

258 The proposed methodology for this study was based on the combination of the Box-

259 Jenkins methodology for ARIMA modeling, and the ANN and hybrid ARIMA models as shown 

260 in Fig 1.

261 Fig 1: The Proposed methodology

262 Model identification and specification

263 Optimal values of p, d, and q for the ARIMA model were determined by examining the 

264 autocorrelation functions and the best model was determined by testing models with different 

265 parameters of p, d, and q. The models were estimated using the maximum likelihood estimation 

266 (MLE) method and the Akaike Information Criterion (AIC) and Bayesian Information Criterion 

267 (BIC) [38] penalty function statistics were used to determine the best model that minimizes AIC 

268 or BIC. 

269 One assumption of the ARIMA model is that the residuals should be white noise. As 

270 such, the Ljung-Box Q test [39] was used to test the hypothesis of independence, constant 

271 variance and zero mean of the model residuals.

272 Accuracy measures

273 Various accuracy measures have been proposed [40] to determine predictive and forecast 

274 performance. This study used the Root Mean Squared Error (RMSE), Mean Absolute Error 

275 (MAE), and the Mean Absolute Percent Error (MAPE) to measure the predictive and forecast 

276 accuracy of the three models. The lower the values of these accuracy measures the better the 

277 model. Furthermore, MAPE values of 10% or below, 10-20%, and 20-50% should be considered 

278 as high accuracy, good accuracy, and reasonable accuracy [41].
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279 The study also compared the predictive accuracy of the forecasts from the three models 

280 using the Diebold-Mariano (DM) test [42]. The test was used to test the null hypothesis that two 

281 models have similar predictive accuracy.

282 Ethical approval and considerations

283 Authorization for use of the data from the TIBU system was obtained from the National 

284 Commission for Science, Technology, and Innovation (NACOSTI) through a research permit 

285 and letters of approval from the research unit of the department of health services Homabay 

286 County and the department of medical services Turkana County.

287 Results

288 Exploratory data analysis

289 There was a total of 120 data points in this dataset. The trend of the TB cases among 

290 children below 15 years in Homa bay and Turkana counties in the data is shown in Fig 2 

291 showing a marginal increase in the TB cases reported between 2018 and 2021.

292 Fig 2: Monthly TB cases among children below 15 years from Homabay and Turkana 

293 Counties between 2012 and 2021

294 The monthly cycle box plot of TB cases is shown in Fig 3 where there is a potential 

295 presence of seasonality within the reported TB cases. However, whether or not to account for 

296 seasonality in the model depends on whether this would improve model accuracy. This implies 

297 that there is need to account for seasonality within the ARIMA model. Furthermore, outliers 

298 were detected in some months. 

299 Fig 3: Monthly cycle plot of TB cases

300
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301 Comparison of model performance in predicting TB cases among children below 15 years 

302 in Homabay and Turkana Counties, Kenya

303 ARIMA Model estimation and accuracy

304 The Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) 

305 were used to pick the best parsimonious model based on the least AIC or BIC estimated values. 

306 The best model was ARIMA (0,0,1,1,0,1,12); where p=0, d=0 and q=1 respectively and P=1, 

307 D=0 and Q=1 respectively. The Ljung-Box Q test for the best model showed a p-value of 0.971 

308 implying that the ARIMA (0,0,1,1,0,1,12) model residuals were independently distributed.

309 The best model was made up of non-differenced seasonal AR (1), non-seasonal MA (1) model 

310 and seasonal MA (1) polynomials and using equation 12, the ARIMA (0,0,1,1,0,1,12) model 

311 equation can be written as:

312      (17)

313 Where  is WN, and uncorrelated with Ys for each s < t

314 From the model output, the estimated coefficients were (see Table 1); ma1 =  = 0.291, sar1 =  

315  = 0.997, sma1 =   = -0.953 and  = Intercept = 50.902

316 Plugging these estimated coefficients into equation 17, yields the model equation:

317       (18)

318 Table 1: Estimated model coefficients

Coefficients Std. Error Z-value Pr(>|z|)
ma1 0.291 0.108 2.701 0.007*
sar1 0.997 0.015 68.167 <0.001**
sma1 -0.953 0.127 -7.512 <0.001**
Intercept 50.902 5.064 10.052 <0.001**

319 Significance codes:  0 ‘***’ 0.001‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’1
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320 ARIMA Model residual diagnostics

321 The best ARIMA model was assessed for fit using the standard model residual analysis. 

322 In model diagnostic checking, 4 plots were used to test the underlying assumptions as shown in 

323 Fig 4. The Q-Q plot was relatively normal except for a few outliers at the tails, with model 

324 residuals being normally distributed. Inspection of the Autocorrelation Function (ACF) and 

325 Partial Autocorrelation Function (PACF) plots to test residual randomness to identify patterns or 

326 extreme values showed significant auto-correlations at lag 3.

327 Fig 4: ARIMA Model residual diagnostics

328 ARIMA model performance

329 The performance of the ARIMA (0,0,1,1,0,1,12) model was carried out by comparing 

330 predicted and forecasted TB cases with the actual TB cases reported and presented in Fig 5 and 

331 Fig 6 respectively.

332 Fig 5: Comparison of ARIMA predicted versus actual (training data) TB cases

333 Fig 6: Comparison of  ARIMA 24-month forecast versus actual (test data) TB cases

334 ARIMA (0,0,1,1,1,0,1,12) model accuracy

335 Table 2 compares the accuracy of parameters/measures of the ARIMA (0,0,1,1,0,1,12) 

336 model on the training (2012 to 2019) and testing (2020 to 2021) data. The accuracy measures 

337 compared were RMSE, MAE, and MAPE correspondingly.

338 The accuracy measure comparison in table 2 demonstrates that the model performs slightly 

339 worse on the testing data an RMSE value of 29.17 compared to 18.74 on the training data.
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340 Large RMSE values generally imply that the fitted model fails to account for important 

341 information within the underlying data hence the need to account for such information which 

342 might be captured within the non-linearities as shown in the additive hybrid model methodology 

343 which provides fitted values that are as closer to the actual/observed data.

344 Table 2: Model (ARIMA (0,0,1,1,0,1,12)) accuracy comparison on training and testing data

Data RMSE MAE MAPE
Training 18.74 14.39 39.00
Testing 29.17 20.47 33.15

345 Artificial Neural Network (ANN) model estimation and accuracy

346 The training dataset was fit using an ANN model using the Neural Network Auto-

347 Regressive (NNAR) function to produce an NNAR (p,P,k) [m] model. The optimal lag 

348 parameter, p, and the number of nodes in the hidden layer, k, were automatically selected while 

349 P=1 by default. In addition, a decay parameter of 0.001 and a maximum iteration of 200 were 

350 pre-set for the model to help restrict the weights from becoming too large and ensure that the 

351 model can test different models until the optimal model that has the minimal RMSE  produced 

352 respectively.

353 The optimal NNAR model produced was NNAR (1,1,2) [12] with an average of 20 

354 networks each of which was a 2-2-1 network with 9 weights. The plot of the point forecast 

355 values from the NNAR (1,1,2) [12] model on the training set against the actual training data were 

356 presented in Fig 7 while Fig 8 presents the 24-month forecast based on the NNAR (1,1,2) [12] 

357 model. Table 3 shows the accuracy measures from the model. The model seems to perform badly 

358 on the testing dataset although the MAPE values below 50% are reasonable.
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359 Fig 7: Comparison of NNAR (1,1,2) [12] predicted TB cases versus actual TB cases 
360 (training data)
361 Fig 8: Comparison of NNAR (1,1,2) [12] 24-month forecast TB cases versus actual TB cases 
362 (test data)

363 Table 3: Model (NNAR (1,1,2) [12]) accuracy comparison between training and testing set

Data RMSE MAE MAPE
Training 18.56 14.58 29.89
Testing 28.65 21.95 38.86

364 Hybrid (ARIMA-ANN) model estimation and accuracy

365 Residuals from the optimal ARIMA (0,0,1,1,0,1,12) model were fit using an ANN model 

366 and the accuracy measures and comparison of the forecast and prediction were presented in 

367 Table 4, Fig 9 and Fig 10 respectively.

368 Fig 9: Comparison of ARIMA-ANN predicted TB cases versus actual TB cases (training 

369 data)

370 Fig 10: Comparison of ARIMA-ANN 24-month forecasted TB cases versus actual TB cases 

371 (testing data)

372 Table 4: Hybrid ARIMA-ANN model accuracy

Data RMSE MAE MAPE
Training 19.08 15.32 42.42
Testing 27.61 19.69 32.89

373 Comparison of predictive accuracy of the models

374 The predictive accuracy of the models was compared using the Diebold-Mariano (DM) 

375 test with the null hypothesis that the predictive accuracy of the two models compared are the 

376 same. The results in table 5 show that the NNAR (1,1,2) [12] and ARIMA-ANN models present 

377 significantly different predictive accuracies, similar to ARIMA (0,0,1,1,0,1,12) versus ARIMA-
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378 ANN models. In general, the ARIMA-ANN model offers better predictive accuracy compared to 

379 the NNAR (1,1,2) [12] and ARIMA (0,0,1,1,0,1,12) models.

380 Table 5: Comparison of predictive accuracy

Model DM statistic Loss Function 
Power

P-value

ARIMA (0,0,1,1,0,1,12) Vs NNAR (1,1,2) [12] 0.732 2 0.466

NNAR (1,1,2) [12] Vs ARIMA-ANN 6.260 2 <0.001

ARIMA (0,0,1,1,0,1,12) Vs ARIMA-ANN 8.732 2 <0.001

381 Comparison of model performance in forecasting temporal trends of TB incidences

382 The resulting ARIMA (0,0,1,1,0,1,12), NNAR (1,1,2) [12] and ARIMA-ANN models 

383 were used to forecast TB cases for the next 12 months (2022). The forecast results were 

384 presented in table 6. The 12-month mean forecasted TB cases was 55, 59 and 52 cases per month 

385 based on the ARIMA (0,0,1,1,0,1,12), ANN (1,1,2) [12] and ARIMA-ANN respectively for 

386 2022 giving a total of 657, 706 and 629 TB cases forecasted for the year 2022  from the ARIMA 

387 (0,0,1,1,0,1,12), ANN (1,1,2) [12] and ARIMA-ANN models respectively.

388

389

390

391

392

393

394
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395 Table 6: TB cases 12 month point forecast comparison

Month ARIMA (0,0,1,1,0,1,12) NNAR (1,1,2) [12] ARIMA-ANN
Jan-22 57 53 44
Feb-22 61 53 45
Mar-22 62 52 60
Apr-22 56 58 43

May-22 46 52 44
Jun-22 54 52 71
Jul-22 63 72 54

Aug-22 46 52 52
Sep-22 53 56 62
Oct-22 63 103 49

Nov-22 48 57 46
Dec-22 48 46 59
Mean 55 59 52
Total 657 706 629

396 Discussion

397 Although all three models were able to predict TB cases among children below 15 years, 

398 the hybrid ARIMA-ANN model was able to offer better predictive performance compared to 

399 single ARIMA and ANN models. These findings compare with those from other studies which 

400 applied either hybridized ARIMA or SARIMA in the modeling of TB incidences and other 

401 infectious diseases [12, 16, 43, 44] with the overall conclusion that hybrid models have better 

402 predictive performance. The majority of infectious disease data are neither purely linear nor non-

403 linear and mostly present with both linear and nonlinear properties. As such, single models are 

404 not enough in modeling such kinds of data. Hybrid models are found to be most appropriate for 

405 the accurate estimation  of such data [45]. The use of hybridized ARIMA models has been 

406 proposed in recent years and used extensively with improvements proposed over time.

407 The estimated TB prevalence in Kenya was 259 TB cases per 100,000 population in 2020 

408 [4]. This translates to approximately 134,680 TB cases and with children accounting for about 
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409 20% (26,936) of these cases [46], the prevalence among children below 15 years was 

410 approximately 121 TB cases per 100,000 population of children. 

411 From the forecasted mean of 52 to 59 TB cases per month in 2022 for Homabay and 

412 Turkana Counties, this study estimates that for the year 2022, the number of TB cases reported 

413 would be approximately 629 to 706. However, given that these are estimated reported cases, they 

414 most likely represent only about 35% of TB cases since up to 65% of pediatric TB cases are 

415 potentially missed each year [2]. Taking this into account, the estimated TB cases for 2022 will 

416 be approximately 1797 to 2017 for Homa Bay and Turkana Counties among children. The 

417 estimated population of children below 15 years in Homabay and Turkana Counties for 2022 is 

418 approximately 1,020,795 [47]. As such, the estimated TB prevalence among children in Homa 

419 Bay and Turkana Counties in 2022 would be approximately 176 to 198 TB incidences per 

420 100,000 population. These TB prevalence estimates for 2022 are way higher than the estimated 

421 national average of 121 per 100,000 population of children below 15 years in 2020.

422 The findings of this study show that the estimated TB prevalence among children below 

423 15 years is much higher compared to the estimated national average for 2020. These findings are 

424 in line with the WHO newsletter that showed that the number of people developing TB and 

425 dying from the disease could be much higher in 2021 and 2022 mainly because of the COVID-19 

426 pandemic [48]. These findings also confirm those by Oliwa et al. who indicated that notification 

427 data may underestimate the TB burden among children [49] while Mbithi et al. reported a 

428 decrease in TB diagnosis in Kenya by an average of 28% in the year 2020 [50].
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429 Conclusion

430 The hybrid ARIMA model offers better predictive accuracy and forecast performance 

431 compared to single ARIMA and ANN models in modeling TB cases among children below 15 

432 years in Homabay and Turkana Counties.

433 The findings in this study allude to the under-reporting of TB cases among children 

434 below 15 years. As such, there is need to re-look at the TB surveillance framework data more 

435 closely to understand existing gaps. There is an urgency to re-align vital resources towards the 

436 National TB program to have the TB fight back on track. 

437 Limitations

438 This study utilized data collected and reported in the TIBU system, as such, the study did 

439 not have control over the quality and accuracy of the data.

440 This study utilized data between 2012 to 2021 which comprised 120 data points. Deep 

441 learning algorithms such as ANNs usually demand a large amount of data to allow the algorithm 

442 to effectively learn. In this study, there were 96 data points for model development and while this 

443 represented 80% of the records, it might not have been sufficient enough to allow proper learning 

444 of the algorithm. Furthermore, there were only 24 records used for model validation and this 

445 might not have been large enough to allow for better learning by the algorithm.

446 This study combined data and analysis for Turkana and Homabay County. However, 

447 these two counties might present different scenarios when it comes to pediatric TB.

448 Finally, since the study focused on modeling TB cases among children below 15 years in 

449 Homa bay and Turkana counties, the findings might not be generalized to other counties of 

450 Kenya.
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