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Abstract 

Introduction: A large majority of genome-wide significant (GWS) loci identified for 

substance use traits (SUTs) in genome-wide association studies (GWAS) have been for alcohol 

and smoking-related phenotypes. GWAS of opioid use disorder (OUD) and cannabis use 

disorder (CUD) have lagged those of the two historically legal substances. Methods: We 

applied multi-trait analysis of GWAS (MTAG) to 2,888,727 single nucleotide polymorphisms 

(SNPs) common to GWAS of four SUTs (OUD, CUD, alcohol use disorder [AUD], and smoking 

initiation [SMK]) in European-ancestry (EUR) subjects. We calculated polygenic risk scores 

(PRS) for the four traits in an independent sample (i.e., the Yale-Penn sample; N=5,692 EUR) 

and examined the power increment for each set of MTAG-GWAS summary statistics relative to 

those of the input GWAS. Results: MTAG increased the effective sample size for all four SUTs, 

which showed high pairwise genetic correlations. After clumping, MTAG identified independent 

GWS SNPs for all 4 traits: 41 SNPs in 36 loci (including 5 novel loci not previously associated 

with any SUT) for OUD; 74 SNPs in 60 loci (including 4 novel loci) for CUD; 63 SNPs in 52 loci 

(including 10 novel loci) for AUD; and 183 SNPs in 144 loci (including 8 novel loci) for SMK. In 

PRS analyses in the Yale-Penn sample, the MTAG-derived PRS consistently yielded more 

significant associations with both the corresponding substance use disorder diagnosis and 

multiple related phenotypes than each of the 4 GWAS-derived PRS. Conclusions: MTAG 

boosted the number of GWS loci for the 4 SUTs, including identifying genes not previously 

linked to any SUT. MTAG-derived PRS also showed stronger associations with expected 

phenotypes than PRS for the input GWAS. MTAG can be used to identify novel associations for 

SUTs, especially those with sample sizes smaller than for historically legal substances. 
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Introduction 

Genome-wide association studies (GWAS) of substance use traits (SUTs) have 

successfully identified genome-wide significant (GWS) risk variants. However, despite high 

estimates of heritability (~50%) for many SUTs, difficulty in recruiting large study samples has 

limited gene discovery efforts 1. Because common genetic variants have small effects on trait 

susceptibility, large samples are usually needed to provide adequate statistical power to identify 

GWS variant associations. Thus, variant discovery for some traits [e.g., opioid use disorder 

(OUD) and cannabis use disorder (CUD)] has lagged that of more common SUTs, including 

alcohol and smoking-related phenotypes.  

Recent GWAS of OUD, CUD, alcohol use disorder (AUD), and smoking initiation (SMK) 

have identified more than 300 substance-associated loci, some of which are shared between 

multiple SUTs. SUTs have also shown high degrees of genetic correlation in both GWAS and 

twin and family studies of the respective traits 2. A GWAS of OUD in the Million Veteran 

Program (MVP), with 31,473 OUD cases, identified 10 loci in the cross-ancestry meta-analysis 3 

including OPRM1, FURIN, NCAM1, and 7 other novel genes. An initial GWAS of cannabis use 

disorder (CUD) identified one GWS locus (on chromosome 8, near CHRNA2 and EPHX2) 4, 

which was subsequently confirmed in a meta-analysis that included 20,916 CUD cases and 

identified a second GWS locus on chromosome 7 (FOXP2) 5. A cross-ancestry GWAS of AUD 

in the MVP sample found 26 associated loci, of which 4 (ZNF804A, MLN, NICN1, MIR5694), 

though previously associated with psychiatric or other SUTs, were novel for alcohol-related 

phenotypes 6. Finally, a meta-analysis of smoking initiation (SMK) in 1.2 million individuals 

identified 278 loci (including NCAM1) 7.  

Multi-trait analysis of GWAS (MTAG), developed to boost the statistical power of GWAS 

by incorporating information from effect estimates across traits 8, enables the joint analysis of 

multiple, genetically correlated traits. MTAG is also valuable because it can be applied to 

summary statistics of GWAS rather than requiring individual genotypes, addressing the sample 
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overlap often present across GWAS discovery samples for different traits using linkage 

disequilibrium (LD) score regression 8. Further, it generates trait-specific estimates of the effects 

of each single nucleotide polymorphism (SNP), yielding a lower mean-squared error than 

standard, single-trait GWAS estimates when a key assumption of the procedure—that all SNPs 

share a variance-covariance matrix of effect sizes across traits—is not satisfied 8. 

MTAG has been employed to boost genetic findings for SUTs, both for traits involving 

the same substance and for cross-substance traits. In a meta-analysis of problematic alcohol 

use (PAU) 9,  MTAG analysis of PAU and a measure of weekly alcohol consumption 7 increased 

the number of independent loci for PAU from 29 to 76. MTAG analysis of OUD with AUD and 

CUD 10 increased the number of GWS loci for OUD to 18 from 3 in the initial GWAS meta-

analysis. Because MTAG for multiple, genetically correlated SUTs yields greater statistical and 

interpretive power than individual trait GWAS, the availability of large GWAS of alcohol- and 

smoking-related traits could enhance findings from GWAS of traits with smaller accumulated 

samples (e.g., CUD and OUD). 

Here we conduct an MTAG analysis of the largest available GWAS for four SUTs: OUD, 

CUD, AUD, and SMK. We integrated information from the four sets of GWAS summary statistics 

to identify novel loci for each SUT. We also conducted gene prioritization, gene-set, and protein-

protein interaction analyses to characterize the underlying biology of the novel genes in the 

context of SUTs. Finally, we generated polygenic risk scores (PRS) to examine the power 

increment for each set of MTAG-GWAS summary statistics in an independent sample. 
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Methods 

GWAS Summary Statistics 

We examine four substance use traits (SUTs) in European ancestry (EUR) samples: 

OUD 3 (Effective N = 74,635), CUD 5 (Effective N = 48,900), AUD 6 (Effective N = 171,601), and 

SMK 7 (Effective N = 632,802). Both the OUD and AUD GWAS were conducted in the Million 

Veteran Program (MVP), a large genomic dataset linked to electronic health records data. The 

CUD GWAS was a meta-analysis of three datasets (Psychiatric Genomics Consortium, 

iPSYCH, deCODE). The SMK GWAS was a meta-analysis of multiple datasets conducted by 

the GWAS consortium of alcohol and nicotine use (GSCAN). Because our downstream PRS 

analysis used the Yale-Penn dataset, and the CUD GWAS included genotype data from Yale-

Penn subjects, we avoided sample overlap by generating summary statistics for CUD using a 

“leave-one-out” meta-analysis that excluded Yale-Penn subjects. All other GWAS were 

independent of the Yale-Penn dataset. 

 

Genetic Correlations 

We calculated pairwise genetic correlations (rg) for the four SUTs using linkage 

disequilibrium score regression (LDSC) 11 and HapMap 3 SNPs. Pre-computed European LD 

scores and weights were downloaded from the LDSC GitHub website 

(https://github.com/bulik/ldsc).  

 

Multi-trait Analysis of GWAS Summary Statistics (MTAG) 

Given the high pairwise genetic correlations for the four SUTs, which ranged from 0.45 

to 0.80, we conducted a joint analysis of these traits using MTAG, a generalized meta-analysis 

method that outputs trait-specific SNP associations. It uses bivariate LD score regression to 

account for potential sample overlap between two or more input summary statistics. We used 

trait-specific effective sample sizes and transformed Z-scores. SNPs present in all four sets of 
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SUT summary statistics were included in the MTAG calculation. Default MTAG parameters were 

used (i.e., each SNP’s sample size must be larger than two-thirds of the 90th percentile of all 

SNPs’ sample sizes). We used PLINK1.9 to perform clumping procedures on the four MTAG-

GWAS results across a range of 3000 kb and r2 > 0.1. GWS variants located within 1 Mb were 

merged into a single locus. Loci were annotated with the nearest protein-coding gene (within 1 

Mb) using SNPsnap 12. We calculated maxFDR 8 as the upper bound of FDR for each MTAG-

GWAS result. Low maxFDR values support the robustness of the MTAG-GWAS results. Of 

note, SNP rs1229984, located in the alcohol dehydrogenase gene ADH1B, did not pass the 

default MTAG quality control parameter as it was not present in at least two- thirds of the 

sample. Because of the well-known strong association of rs1229984 with alcohol phenotypes 

[6,9], we conducted a separate analysis with a less stringent filter to include that SNP and report 

the results in Supplemental Table 18.   

 

Identification of novel variants for each SUT 

       We systematically evaluated whether variants identified in the MTAG analysis were 

previously associated with either the primary SUT or other SUTs. First, for each lead variant, we 

determined whether any nearby variant (within 1 Mb) was GWS in the initial GWAS or in the 

other three contributing GWAS. We then determined whether the locus had prior SUT 

associations using the GWAS catalog 13 implemented in FUMA 14, annotating all lead variants 

with prior associations with any SUT (not limited to the GWAS included in this study). For 

completeness, we also labelled the variant with the closest protein-coding gene (within 1 Mb) 

and searched the GWAS catalog 13 for prior associations of that gene with SUTs. Loci that were 

not previously GWS for any SUT were labeled as “novel”. 

                

Gene-Set Analysis 
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To determine whether the identified genes are involved in important biological 

processes, GWS SNPs were mapped to genes by ANNOVAR 15 implemented in FUMA 14. Next, 

we curated gene-set enrichment and Gene Ontology (GO) terms using the GO annotation 

database 16,17, with gene-set enrichment p-values adjusted using a Bonferroni correction for 

each test.  

 

Protein-Protein Interaction 

We used STRING database v11.5 18 to conduct protein-protein interaction (PPI) 

analyses. For each SUT MTAG result, we used annotated GWS genes as input to query the 

PPIs in the database. PPI enrichment p-value and pairwise interaction scores were reported by 

the STRING database. We used a cut-off interaction score >0.4 to identify PPIs with high 

confidence.   

 

Yale-Penn Dataset 

The Yale-Penn sample was recruited for genetic studies of substance use disorders 

(SUDs) 19. It was deeply phenotyped using the Semi-Structured Assessment for Drug 

Dependence and Alcoholism (SSADDA), a comprehensive psychiatric interview schedule that 

assesses the physical, psychosocial, and psychiatric manifestations of SUDs and co-occurring 

psychiatric disorders 20,21. Using the SSADDA, trained interviewers elicit information on 

demographics, substance use history, psychosocial history, medical history, and lifetime 

diagnostic criteria for DSM-IV 22 and DSM-5 23 substance use and DSM-IV psychiatric disorders. 

Diagnoses and individual criteria for SUDs and psychiatric disorders obtained with the SSADDA 

show acceptable reliability 20,21. The Yale-Penn PheWAS dataset includes 5,692 unrelated 

European-ancestry genotyped individuals and over 650 summarized phenotypes categorized 

into 20 substance, medical, demographic, and psychiatric sections 19.  
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Polygenic Risk Score (PRS) and Phenotype Association Test 

We used PRS-continuous shrinkage (PRS-CS) 24 to generate PRS in the Yale-Penn 

dataset 19, pre-computed LD reference for HapMap3 SNPs in EUR samples to account for local 

LD, and an optimal global shrinkage parameter learned from the data. We generated four 

GWAS-based PRS and four MTAG-based PRS, i.e., one of each for each of the four SUTs. To 

ensure comparability between GWAS-based and MTAG-based PRS, only the SNPs used in the 

MTAG calculation were included in PRS calculation. Effective sample size was used to generate 

GWAS- and MTAG-based PRS.  

To compare the power of GWAS-based PRS with MTAG-based PRS, we tested the 

associations of each PRS in the Yale-Penn dataset with phenotypes in the corresponding 

substance section (e.g., AUD PRS were tested with alcohol-related phenotypes). We used 

linear regression or logistic regression models as appropriate, covarying for age, sex, and 10 

genetic principal components. Each substance section includes DSM-IV and DSM-5 diagnoses 

for the corresponding substance use disorder. For diagnoses, we calculated the incremental 

pseudo R2 value after adding the polygenic score to the logistic regression model. 
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Results 
 

Genetic Correlation Between SUTs 

Pairwise rg calculated using LDSC were significant and were moderate or high across all 

pairs of SUTs (Figure 1, Supplementary Table 1). The strongest rg was between OUD and AUD 

(0.80), followed by OUD and CUD (0.67), CUD and SMK (0.65), CUD and AUD (0.63), AUD and 

SMK (0.52) and OUD and SMK (0.45). 

 

MTAG SUTs and Locus Discovery 

We retained 2,888,727 SNPs for the MTAG analysis after extracting common SNPs from 

all four input sets of GWAS summary statistics and filtering them with the criteria described in 

the MTAG methods description. The mean χ2 statistics for the MTAG-GWAS results are: χ2
 MTAG-

OUD = 1.38, χ2
 MTAG-CUD = 1.46, χ2

 MTAG-AUD = 1.46 and χ2
 MTAG-SMK = 1.87. The maxFDR values are 

6.7 x 10-2 for MTAG-OUD, 1.1 x 10-1 for MTAG-CUD, 8.9 x 10-3 for MTAG-AUD and 1.2 x 10-4 for 

MTAG-SMK (Table 1). 

Among the four sets of MTAG results (Figure 2, Supplementary Tables 2-5), 20 loci were 

significantly associated with all four SUTs, the most significant of which was the locus 

containing NCAM1, supported by two intronic variants in complete LD (rs1940701 for OUD and 

AUD and rs4479020 for CUD and SMK). Other loci associated with all four SUTs included 

intronic variants in DPP4 (rs6432708) and CADM2 (rs62250713) and an intergenic variant near 

ZNF184 (rs35984974). 

 

Opioid use disorder (MTAG-OUD) 

MTAG increased the effective sample size for OUD from 74,635 in the input GWAS to 

176,876 in the MTAG analysis. After clumping, we identified 41 independent GWS SNPs in 36 

genomic risk loci (Supplementary Table 2). Of these, 3 loci were GWS in the OUD GWAS, 17 

were GWS in at least one of the other of the three SUT GWAS used for MTAG, and 30 were 
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GWS in other GWAS of SUTs, not limited to the GWAS included in this study. Variants including 

exonic SNPs in OPRM1 (rs1799971, p = 7.52 x 10-9) and FURIN (rs4702, p = 3.29 x 10-12) have 

been shown to be GWS in previous OUD GWAS 3,10. Five GWS loci are novel with no prior 

associations found with OUD or any SUT. These include a variant in the 3’ UTR of POR 

(rs17685, p = 1.42 x 10-8), intronic variants in CNOT4 (rs2696880, p = 3.97 x 10-9) and MTMR2 

(rs7110786, p = 1.38 x 10-8), and intergenic variants near TMEM170B (rs112126124, p = 8.35 x 

10-9) and SNAI1 (rs73274724, p = 9.92 x 10-9). 

 

Cannabis use disorder (MTAG-CUD) 

MTAG increased the effective sample size from 48,900 to 223,956, yielding 74 

independent GWS SNPs in 60 genomic risk loci (Supplementary Table 3). Of the 60 loci, 3 were 

GWS in the CUD GWAS, 43 were GWS in at least one of the other three SUT GWAS used for 

MTAG, and 51 were GWS in other GWAS of SUTs. We replicated previously associated loci for 

CUD 5, including an intergenic variant near CLU in the same locus identified in the input CUD 

GWAS, an intronic variant in GBF1 (rs4919626, p = 1.38 x 10-8), and an exonic variant in FURIN 

(rs4702, p = 4.69 x 10-8). Four novel GWS loci with no prior associations with any SUT were 

identified, including three intronic variants - one each in CNOT4 (rs2696880, p = 4.44 x 10-8), 

TMEM245 (rs11794648, p = 4.26 x 10-8), and MTMR2 (rs7110786, p = 8.21 x 10-9) - and an 

intergenic variant near TMEM170B (rs112126124, p = 4.47 x 10-9). 

 

Alcohol Use Disorder (MTAG-AUD) 

With an effective sample size that increased from 171,601 in the input GWAS to 282,208 

in the MTAG analysis, we identified 63 independent GWS SNPs in 52 genomic risk loci for AUD 

(Supplementary Table 4). Of these, 9 loci were GWS in the AUD GWAS, 23 were GWS in at 

least one of the other three SUT GWAS used for MTAG, and 40 were GWS in other GWAS of 

SUTs. These included multiple previously reported AUD-associated variants – exonic variants in 
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GCKR (rs1260326, p = 1.53 x 10-11) and SLC39A8 (rs13107325, p = 1.47 x 10-18), and intronic 

variants in ANKK1 (rs12360992, p = 3.29 x 10-8) and FTO (rs7206122, p = 2.03 x 10-9) 6. We 

also identified 10 novel GWS loci, including exonic variants in POR (rs17685, p = 3.44 x10-8) 

and SYNGAP1 (rs411136, p = 9.10 x 10-9); intronic variants in DNM3 (rs742510, p = 9.63 x 10-

9), CSMD3 (rs6469450, p = 8.91 x 10-9), CNOT4 (rs2686880, p = 8.26 x 10-9), LRFN5 

(rs58734839, p = 4.55 x 10-9), ZNF804A (rs1366839, p = 1.53 x 10-8), and TCF20 (rs9306356, p 

= 1.30 x 10-8); and two intergenic variants near TMEM170B (rs112126124, p = 5.62 x 10-11) and 

SORCS3 (rs73274724, p = 1.27 x 10-8).  

 

Smoking Initiation (MTAG-SMK) 

With an effective sample size increase from 637,082 to 709,603, MTAG identified 183 

independent GWS SNPs in 144 genomic risk loci (Supplementary Table 5). Of these, 86 were 

GWS in the SMK GWAS, 7 were GWS in at least one of the other three SUT GWAS used for 

MTAG, and 130 were GWS in other GWAS of SUTs. Eight GWS loci were novel, including a 

variant within TNRC6B (rs5750911, p = 2.38 x 10-9) and seven intergenic variants: one each 

near WDR12 (rs4675308, p = 2.50 x 10-8), PCDH7 (rs7680926, p = 8.81 x 10-9), ITGA1 

(rs7680926, p = 4.05 x 10-8), TMEM170B (rs12526369, p = 7.41 x 10-9), SP4 (rs6974377, p = 

3.37 x 10-9), CTDP1 (rs56235016, p = 7.76 x 10-9), and SORCS3 (rs10884186, p = 4.01 x 10-8). 

 

Gene-Set Analysis 

After Bonferroni correction, we identified enriched gene sets for all studied traits 

including 28 for MTAG-OUD, 73 for MTAG-CUD, 51 for MTAG-AUD, and 70 for MTAG-SMK, as 

shown in Supplementary Tables 6-9. The gene-set “regulation of cell differentiation”, which 

contains the novel gene POR and the opioid-specific gene OPRM1, showed significant 

enrichment for OUD (PBon = 1.0 x 10-3). “Protein dimerization activity”, one of the significantly 
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enriched gene-sets for CUD (PBon = 3.7 x 10-9), harbors the novel genes MTMR2 and FOXP2. 

For AUD, the enriched gene set “regulation of synapse structure or activity” (PBon = 1.2 x 10-2) 

contained the novel genes DNM3, LRFN5, and SYNGAP1 along with DRD2. For SMK, 70 gene 

sets showed significant enrichment, with the novel gene TNRC6B mapping to 12 of them. Of 

note, the gene set “neuron differentiation”, which includes NCAM1, is significantly enriched (PBon 

= 3.1x 10-2). 

 

Protein-protein Interaction 

Using the STRING database, we observed significant PPI enrichment (p < 0.05) for 

genes that were GWS for MTAG-AUD and MTAG-SMK, whereas PPI enrichment was non-

significant for GWS genes in MTAG-OUD (p = 0.175) and MTAG-CUD (p = 0.175) 

(Supplementary Tables 10-13). For GWS genes in MTAG-AUD, we identified high PPI for NF1 

and SYNGAP1 (interaction score = 0.697), NF1 and CSMD3 (interaction score = 0.42), and 

NCAM1 and SEMA6D (interaction score = 0.467). For GWS genes in MTAG-SMK, TNRC6B 

and FOXO3, two smoking- associated genes, showed high PPI (interaction score = 0.9).  

 

PRS Associations with Primary Phenotypes 

As shown in Figure 3, all four MTAG-based PRS (PRSMTAG) showed stronger 

associations with the primary diagnosis than the individual-trait GWAS-based PRS (PRSGWAS) 

(Supplementary Tables 14-17). This difference was most evident for DSM-IV cannabis 

dependence, where the Bonferroni-corrected association was non-significant with PRSGWAS-CUD 

(OR = 1.16, p = 1.94 x10-3) but significant with PRSMTAG-CUD (OR = 1.30, p = 2.18 x 10-9). 

Associations with the corresponding primary diagnoses for the other three SUTs were all orders 

of magnitude less significant for the PRSGWAS than the PRSMTAG: PRSGWAS-OUD: OR = 1.30, p = 

2.64 x10-16 vs. PRSMTAG-OUD: OR = 1.50, p = 3.34 x10-33; PRSGWAS-AUD: OR = 1.27, p = 5.44 x10-12 
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vs. PRSMTAG-AUD: OR = 1.40, p = 9.94 x10-21; PRSGWAS-SMK: OR = 1.61, p = 1.57 x10-44 vs. 

PRSMTAG-SMK: OR = 1.71, p = 5.14 x10-53.  

For each of the SUTs, there were more Bonferroni-corrected significant associations 

with PRSMTAG than PRSGWAS (Supplementary Tables 14-17). Notably, the number of significantly 

associated phenotypes for PRSGWAS-CUD was six, while for PRSMTAG-CUD it was 25. Phenotypes 

that became significantly associated when using PRSMTAG-CUD included age of first use of 

marijuana, the DSM-IV cannabis dependence diagnosis, and the DSM-5 CUD criterion count.  

In addition, the incremental R2 values both for diagnoses and related phenotypes were 

higher for PRSMTAG than PRSGWAS (Table 2). The greatest improvement was between PRSMTAG-

CUD and PRSGWAS-CUD, where the incremental R2 for “ever used cannabis” was 1.62% and 0.38%, 

respectively. Moderate improvement was also observed for PRSMTAG-SMK compared with the 

well-powered PRSGWAS-SMK. 
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Discussion 

We performed a joint analysis of four SUTs using MTAG, which yielded an effective 

sample size that was up to four-fold that of the four individual GWAS. This led to our identifying 

novel associated variants in loci not previously linked to any SUT. Among the most significant 

risk loci for substance-use phenotypes are those that encode proteins with clear connections to 

the substance involved. This includes the mu-opioid receptor for OUD 25, various nicotinic 

cholinergic receptor subunits for smoking initiation 7, and alcohol metabolism enzymes for 

alcohol consumption and AUD 26.  

However, beyond the substance-specific proteins that directly interact with the drug are 

a wide range of biological mechanisms common to all addictive behavior, which includes reward 

pathways, learning and memory, withdrawal, and other functions27.  We therefore expected that 

the greater statistical power of MTAG would reveal novel genes with associations to multiple 

substances based on common mechanisms of risk (i.e., an addiction factor 28,29). In fact, five of 

the 19 novel loci identified in our analysis were significantly associated with two or more 

substances. Variants in POR were significant for OUD and AUD, in MTMR2 was significant for 

OUD and CUD, near SORCS3 was significant for AUD and SMK, in CNOT4 was significant for 

OUD, CUD and AUD, and near TMEM170B was significant for all four SUTs. Interestingly, 

CNOT4 was recently identified in a GWAS of maximum alcohol use 30, which supports our 

discovery here. The use of multiple substances is common and has been associated with 

poorer treatment outcomes in individuals with SUDs 31. These shared genes may represent 

targets for therapies aimed at treating co-occurring SUDs. 

POR encodes a reductase that contributes electrons to cytochrome P450 enzymes 32, 

which are essential components of drug metabolism. Variation in POR can affect the enzymatic 

activities of multiple CYP450 enzyme family members 33–35, including CYP2D6 and CYP3A4 33, 

enzymes responsible for the primary metabolism of many opioids. Our MTAG results indicate 

that the A-allele of the POR variant rs17685 is associated with decreased risk of OUD and AUD. 
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This SNP was also found to be an expression quantitative trait locus (eQTL) for POR, with the 

A-allele predicting higher expression in cerebellum 36. If increased POR correlates with 

increased CYP450 activity, the association of rs17685 with OUD could reflect altered opioid 

pharmacokinetics. There may be a similar connection between POR and AUD. CYP2E1, which 

accounts for ~20% of alcohol metabolism 37,38, has been shown to interact with POR 39. CYP2E1 

expression is also induced by ethanol itself 38. Thus, there is a potential synergistic effect 

wherein rs17685-A allele carriers who consume alcohol may simultaneously have an increased 

amount and activity of the enzyme. 

We also identified novel loci associated with individual SUTs. For OUD, we detected a 

novel variant near SNAI1 and for CUD, a novel intronic variant in TMEM245. For AUD, six 

variants were identified that had not previously been associated with any SUT (SYNGAP1, 

DNM3, CSMD3, LRFN5, ZNF804A, TCF20). For SMK, six novel variants not associated with 

any other SUTs were identified (TNRC6B, WDR12, PCDH7, ITGA1, SP4, CTDP1).  

In addition to polysubstance use, patients with SUDs also have higher rates of comorbid 

psychiatric disorders than the general population 40. Phenome-wide association studies 

(PheWAS) using data from electronic health records (EHR) have shown associations between 

PRS for SUTs and non-substance use psychiatric diagnostic codes 9, suggesting genetic 

overlap between them. Consistent with this hypothesis, nine of the 19 novel genes identified in 

our MTAG analysis were significant in GWAS of depression or schizophrenia 41–45.  

A prior MTAG analysis of PAU9, which leveraged information from a GWAS of drinks per 

week, identified 119 GWS variants. Of the variants in common between that MTAG analysis and 

the present analysis, we also observed association with 14 of the 45 SNPs in our MTAG-AUD 

results. In our MTAG-OUD analysis, we also replicated six of the nine variants in common with a 

recent OUD MTAG analysis of OUD, CUD and AUD 10. Although OPRM1 was not significantly 

associated in the prior MTAG, our MTAG-OUD analyses identified the OPRM1 SNP rs1799971 
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as a lead variant, potentially due to our inclusion of the smoking initiation GWAS or the larger 

input OUD GWAS sample in our analysis. 

We functionally annotated the GWS loci in all four SUTs to explore plausible underlying 

biological processes. We found that associations for AUD were enriched in genes (including 

CNOT4) involved in regulating synapse structure and activity, an enrichment not previously 

observed in the AUD GWAS 6. In addition, we find evidence for neuronal differentiation in 

smoking initiation, in line with findings in the original SMK GWAS 7. In the PPI analysis, we 

observed significantly enriched protein interaction networks for MTAG-AUD and MTAG-SMK. In 

addition, we observed multiple interactions between novel genes identified by MTAG and 

previously identified SUT-associated genes, which provide biological support for the MTAG 

results.  

In PRS analyses, the PRSMTAG outperformed the PRSGWAS for all SUTs. This was of 

particular importance for the CUD PRS, where the PRSMTAG was significantly associated with 

the diagnosis, whereas the PRSGWAS was not. As PRS for many traits are being considered as 

potential biomarkers for disorders 46, the use of MTAG may yield more powerful PRS without 

having to recruit larger samples for GWAS. However, careful evaluation is required to assess 

the broader impact of MTAG-based PRS on phenotypic associations beyond the primary 

phenotype. A loss of specificity may result from the inclusion of multiple genetically correlated 

traits, potentially confounding PheWAS of MTAG-PRS. 

In summary, in an MTAG analysis of four SUTs we identified 19 novel loci and, in an 

independent dataset, found that the associations of PRSMTAG with relevant traits were more 

significant than with PRSGWAS. As the size of GWAS samples continues to increase, MTAG 

analyses could provide a complementary method that leverages more powerful GWAS to boost 

the findings of risk variants for genetically correlated traits in which case ascertainment is more 

challenging, thereby enhancing our understanding of the biology underlying these phenotypes. 
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Figure Legends 

 

Figure 1: Overview of the analysis. The four SUTs that were used in MTAG-analysis have pair-

wise genetic-correlations between 0.45 to 0.80. For each SUT MTAG-GWAS result, we 

identified novel loci, performed gene-set analysis, protein-protein interaction analysis, and 

examined the increased predictive power of the corresponding polygenic risk score.  

 

Figure 2: Manhattan plots of MTAG-OUD (NEffective = 176,876), MTAG-CUD (NEffective = 223,956), 

MTAG-AUD (NEffective = 282,208) and MTAG-SMK (NEffective = 709,603). Dashed-lines indicate 

genome-wide significance (P < 5 x 10-8) and yellow dots indicate genome-wide significance 

SNPs. 

 

Figure 3: Comparison of GWAS-based PRS and MTAG-based PRS. Red and blue dots in each 

plot represent the GWAS-based polygenic risk score and MTAG-based polygenic risk score 

respectively. Vertical dashed lines indicate significance threshold after Bonferroni correction. 
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