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Abstract 
 
Both common and rare genetic variants influence complex traits and common diseases. Genome-wide 
association studies have discovered thousands of common-variant associations, and more recently, large-
scale exome sequencing studies have identified rare-variant associations in hundreds of genes1–3. However, 
rare-variant genetic architecture is not well characterized, and the relationship between common- and rare-
variant architecture is unclear4. Here, we quantify the heritability explained by gene-wise burden of rare coding 
variants and compare the genetic architecture of common and rare variation across 22 common traits and 
diseases in 400,000 UK Biobank exomes5. Rare coding variants (AF = 1e-6 - 1e-3) explain 1.3% (SE = 0.03%) 
of phenotypic variance on average – much less than common variants – and most burden heritability is 
explained by ultra-rare loss-of-function variants (AF = 1e-6 - 1e-5). Common and rare variants implicate the 
same cell types, with similar enrichments, and they have pleiotropic effects on the same pairs of traits, with 
similar genetic correlations. They partially colocalize at individual genes and loci, but not to the same extent: 
burden heritability is strongly concentrated in a limited number of significant genes (median: 6 genes explaining 
19% of h2), while common-variant heritability is much more polygenic. Burden heritability is also more strongly 
concentrated in constrained genes (median enrichment: 4.5x vs. 2.1x for common variants), indicating that 
negative selection affects common- and rare-variant architecture differently. Finally, we find that burden 
heritability for schizophrenia and bipolar disorder6,7 is approximately 2%. Our results show that there are a 
tractable number of large-effect genes to discover by studying rare variants, that common and rare 
associations are mechanistically convergent, and that rare coding variants will contribute only modestly to 
missing heritability and population risk stratification.  
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Introduction 
 
Genome-wide association studies have discovered thousands of common variants that are associated with 
common diseases and traits. Common variants have small effect sizes individually, but they combine to explain 
a large fraction of common disease heritability8,9. More recently, sequencing studies have identified hundreds 
of genes harboring rare coding variants, and these variants can have much larger effect sizes1–3,5. However, it 
is unclear how much heritability rare variants explain in aggregate, or more generally how common- and rare-
variant architecture compare: whether they are equally polygenic; whether they implicate the same genes, cell 
types and genetically correlated risk factors; whether rare variants will contribute meaningfully to population 
risk stratification. 
 
To characterize common-variant architecture, a productive approach has been to quantify components of 
heritability by aggregating subtle associations across the genome. This approach has been used to address 
the problem of “missing heritability”9–11, to quantify the shared genetic basis of related diseases and traits12–14, 
to prioritize disease-relevant cell types and regulatory elements15–18, and to quantify the effect of negative 
selection on common-variant architecture19–22. 
 
For rare variants, however, heritability estimation is more challenging23. Most rare alleles are observed only 
once or twice, leading to low statistical power, and confounding due to uncorrected population stratification and 
cryptic relatedness is a major concern. Wainschtein et al.24 estimated that common and rare variants combine 
to explain most of the twin-heritability of height and BMI, with wide confidence intervals, but did not report an 
estimate for the rare-variant contribution specifically.  
 
To characterize rare variant genetic architecture, we estimated the heritability explained by gene-wise burden 
of rare and ultra-rare coding alleles, while avoiding confounding due to population stratification. Analyzing 
association statistics from 394,783 UK Biobank exomes 5 together with common-variant association data from 
the same individuals25, we find that the burden heritability due to rare coding variants is modest (1.3% +/- 
0.03%), and we systematically compare the architecture of common and rare variants. 
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Results 
 
Estimation of burden heritability 
 
In sequencing studies, most rare variants are observed in only one or a few individuals, motivating the use of 
burden tests that aggregate minor alleles within genes26. We define burden heritability as the fraction of 
phenotypic variance explained by minor allele burden in each gene under a random effects model (Figure 1A; 
see Methods). It is a component of the total coding-variant heritability, and it is statistically tractable even for 
singletons. The alleles comprising the burden are stratified by their predicted functional impact, and we focus 
primarily on predicted loss-of-function (pLoF) variants, whose gene-wise burden is expected to explain the 
majority of their total heritability (due to their similar functional consequences) (Figure 1A). 
 
We developed burden heritability regression (BHR) to estimate burden heritability and to partition it across 
genes and alleles (see Methods). BHR inputs variant-level association summary statistics and allele 
frequencies. It regresses burden test statistics on “burden scores,” which are related to the combined allele 
frequency, and it estimates burden heritability from the regression slope (Figure 1B, Supplementary Tables 1-
2). Similar to LD score regression10, this approach distinguishes heritable signal, which affects the slope of the 
regression, from confounding due to population stratification and relatedness, which affect its intercept. 
Intuitively, burden heritability arises from the positively correlated effects of minor alleles within a gene, such 
that aggregating minor alleles amplifies correlated effects, to an extent that is quantified by the burden score. 
In contrast, noise and confounding are uncorrelated across alleles, so they are not amplified (however, minor-
allele biased stratification is possible; see Methods). BHR relies on the assumption that genes with larger or 
smaller burden scores do not have larger or smaller per-allele effect sizes, which might be violated due to 
selection-related effects; we use two approaches to avoid selection-related bias (see Methods). Exome-wide 
significant genes are excluded from the regression and treated as fixed effects (see Methods). We calculate 
standard errors using a block jackknife (see Methods). BHR can be used to calculate the heritability and 
heritability enrichment of subsets of genes by using a different regression slope for each subset (see Methods). 
  
We evaluated the performance of BHR in analyses of simulated data under realistic genetic architectures, with 
no LD (see Methods, Supplementary Table 3). These simulations included negative selection, which causes 
trait-associated genes to have fewer minor alleles, and population stratification, which causes systematic 
inflation in the test statistics. BHR produced unbiased estimates of the burden heritability, and in non-null 
simulations, it was well powered to detect a burden heritability of 0.5% (Figure 1C). We performed an 
extensive set of simulations to evaluate the robustness of BHR (Supplementary Figure 1), including with 
different amounts of selection, different amounts of population stratification (including minor-allele biased 
stratification), different ranges of allele frequencies, and different sample sizes. BHR produced approximately 
unbiased estimates in all of these simulations.  
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Figure 1: Overview of Burden Heritability Regression (BHR). (A) Burden heritability is 
defined as the fraction of phenotypic variance explained by gene-wise burden of minor alleles in 
a functional class within a certain frequency range (e.g., ultra-rare pLoF variants). The burden 
heritability of a gene is determined by its mean minor allele effect (dashed lines) and its “burden 
score,” which is related to the combined allele frequency of those variants. (B) BHR regresses 
gene burden statistics on gene burden scores. The slope of the regression is the mean squared 
per-allele effect, while the intercept captures confounding factors such as population 
stratification and sampling noise. We plot real burden scores and effect sizes for ultra-rare 
pLoF/synonymous variants and LDL, averaging across burden score bins for visualization. (C) 
Performance of BHR in null and non-null simulations.  We varied the sample size, the allele 
frequency of the variants, and the strength of negative selection. The boxplots are the 
distribution of BHR h2 estimates across 100 simulation runs.  
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Burden heritability of 22 complex traits 
 
We analyzed publicly available UK Biobank exome sequencing association statistics from Genebass for 22 
complex traits and up to 394,783 individuals of European ancestry, including 18 continuous traits and 4 
common diseases (see Data Availability and Supplementary Table 4) (estimates are reported on observed 
scale; see Methods)5. We analyzed 6.9 million coding variants in 17,318 protein coding genes (see Methods). 
Within each gene, variants were stratified into three allele frequency bins (MAF < 1e-5, 1e-5 - 1e-4, 1e-4 - 1e-
3); we refer to MAF < 1e-5 variants as ultra-rare, and to MAF = 1e-5-1e-3 variants as rare. Variants were also 
stratified into four functional categories (pLoF, missense damaging, missense benign, and synonymous) 
(Figure 2A, Supplementary Table 5); missense functional predictions were obtained using PolyPhen227 
 
We estimate that on average across traits, gene-wise burden of rare and ultra-rare pLoF and damaging 
missense variants explain 1.3% (SE = 0.03%) of phenotypic variance (Figure 2B). All 22 traits had nonzero 
burden heritability at a nominal significance level (Supplementary Tables 6-7). Burden heritability concentrates 
among variants with the most severe predicted functional consequences: pLoF variants explain the majority of 
burden heritability, followed by damaging missense variants, while benign missense variants and synonymous 
variants explain little or no heritability (Figure 2B). Among rare variants, we observed less burden heritability 
than among ultra-rare variants (median 0.4% across rare pLoF and damaging missense variants). With 
common-variant summary statistics for the same traits in UK Biobank, we estimated common variant SNP-
heritability using LD score regression (see Methods). As expected, a much larger fraction of phenotypic 
variance is explained by common variants (median 13%), and common-variant and rare burden heritability 
were highly correlated (Figure 2C, Supplementary Table 8).  
 
Inflation in exome association test statistics due to uncorrected population stratification is a major concern, 
especially when estimating heritability. The BHR intercept quantifies the inflation in burden test statistics due to 
sampling variation, most forms of confounding, and overdispersion effects (analogous to the LD Score 
Regression intercept10). A potentially problematic form of confounding is minor-allele biased population 
stratification; however, there was no evidence of this based on the genome-wide average minor allele effect of 
synonymous variants (Supplementary Figure 2). Across traits, we found that for ultra-rare pLoF variants, 
confounding and overdispersion explained 4% of the variance in the test statistics, sampling variation 
explained 85%, and genuine burden heritability explained the remaining 10% (Figure 2D, Supplementary 
Table 6). For ultra-rare synonymous variants, there was zero burden heritability; confounding and 
overdispersion explained 4% of variance, and sampling variation explained 94% (Supplementary Table 6). 
These estimates are corrected for within-gene LD, which causes inflation in the burden test statistics in 
proportion to the number of alleles per gene (see Methods). 
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Figure 2: Burden heritability of 22 complex traits and common diseases in UK Biobank. 
(A) Proportions of coding variants by allele frequency and functional consequence in Genebass. 
Variants in the “Missense: Benign” category are defined by a “benign” Polyphen annotation. 
Variants in the “Missense: Damaging” category are defined by a “possibly damaging” or 
“probably damaging” Polyphen annotation. Ultra-rare is defined as AF < 1e-5. Rare is defined 
as 1e-5 ≤ AF < 1e-3. Common is defined as AF > 0.05 (B) Estimates of burden heritability 
across frequency bins and functional categories. Boxplots show the distribution of heritability 
estimates across 22 complex traits and common diseases (Supplementary Tables 4, 6). (C) 
Comparison of the total burden heritability (ultra-rare + rare) with the common-variant heritability 
of each trait (estimated using LDSC1). Error bars are standard errors. Numerical results for each 
trait are contained in Supplementary Tables 7, 8. (D) Comparison of test statistic inflation 
between ultra-rare pLoF (red) and synonymous variants (gray) across the 22 traits. Lambda GC 
is the median burden 𝝌2 statistic divided by 0.454.2 
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Concentration of burden heritability in significantly associated genes 
 
In GWAS, a consistent observation has been that common diseases and complex traits are highly polygenic: 
significant loci have small effect sizes, they are spread all across the genome, and they explain a modest 
fraction of the total common-variant heritability28,29. In contrast, most rare diseases are caused by large-effect 
mutations in a much smaller number of genes, and it is unclear whether the rare-variant genetic architecture of 
common diseases is highly polygenic like common variants or more oligogenic like rare diseases. We 
quantified the proportion of burden heritability that is explained by exome-wide significant genes (Methods), 
and we compared the extent to which common- and rare-variant heritability is concentrated in large-effect 
genes and regions of the genome. 
 
17 of 22 traits had at least one significantly associated gene in Genebass5 (Methods), and they had a median 
of 6 significant genes per trait (Supplementary Tables 9-10). These genes explained a substantial proportion of 
the burden heritability (median: 19%; Figure 3A), after partially correcting for winner’s curse30; see Methods 
and Supplementary Figure 3. For LDL cholesterol levels, APOB alone explained 39% (SE = 4%) of burden 
heritability, and for diabetes, GCK explained nearly 15% (SE = 4%). Height had numerous genes explaining 
>1% of its burden heritability, and even behavioral and cognitive traits had significant genes that explained 1-
5%.  
 
In contrast, individual common-variant associations are dramatically smaller as a fraction of common-variant 
heritability (Figure 3B, Supplementary Table 11). Even aggregating common-variant heritability across large 
LD blocks (most > 1Mb), top rare-variant associated genes (out of 17,318) explain a much larger fraction of 
heritability than top LD blocks (out of 1,651) (Supplementary Figure 4, Supplementary Table 12). The 
difference in common- vs. rare-variant polygenicity can be explained by “flattening” due to negative selection, 
as we previously hypothesized19 (see Discussion). 
 
We sought to reconcile the difference in polygenicity with the observation that rare-variant associations are 
strongly enriched near GWAS loci3. For traits with at least 5 significant genes, we quantified the fraction of 
common-variant heritability mediated by those genes using the Abstract Mediation Model (AMM), which fully 
accounts for uncertainty in which SNPs regulate which genes31 (Supplementary Table 13). We confirm that 
rare-variant associated genes are enriched for common-variant heritability; for example, the 81 exome-wide 
significant genes for height explain 9.5% of its common-variant heritability (SE = 2.5%). However, these same 
genes explain 32.1% of burden heritability (SE = 2.0%) and other traits exhibit similar patterns (median 
burden:common ratio = 1.9x) (Figure 3C). For individual genes as well, LD blocks containing exome-wide 
significant genes are enriched for common-variant heritability, but these enrichments are modest compared 
with the rare-variant associations themselves (Supplementary Figure 5). These analyses indicate that while 
common and rare variants implicate many of the same large-effect genes, rare-variant heritability is more 
strongly concentrated in those genes, while common-variant heritability is more polygenic. 
 
Five out of the 22 traits (Birth weight, Neuroticism, Alcohol frequency, Asthma, Osteoarthritis; Supplementary 
Table 9) had significant burden heritability but no individual genes with a significant ultra-rare pLoF burden 
association. These traits are promising candidates for re-evaluation at larger sample sizes. More generally, 
none of our estimates for fraction of burden heritability explained by significant genes were close to 1, 
indicating that there are still substantial opportunities for gene discovery with increased power in sequencing 
studies.  
 
For the cancer phenotype, which is a composite of multiple cancer types, the seven exome-wide significant 
genes (MSH2, BRCA1, BRCA2, APC, ATM, PALB2, CHEK2) explain 33% (SE = 4%) of its burden heritability. 
Noting that all of these genes are well-known tumor suppressors, we analyzed known tumor suppressors and 
oncogenes from the Cancer Gene Census32 (CGC). Indeed, the 172 CGC tumor suppressor genes explain 
nearly half of the burden heritability (48%, SE = 10%) (Figure 3D, Supplementary Table 14). In contrast, the 
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101 oncogenes do not explain any burden heritability (1%, SE = 2%). These results are concordant with the 
known biology of tumor suppressors and oncogenes. They contrast with common-variant architecture: tumor 
suppressor genes only mediate 5% (SE = 4%) of common-variant heritability, and the seven exome-wide 
significant genes mediate 0% (SE = 2%) (Figure 3D).  
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Figure 3: Burden heritability explained by significant genes. (A) Fraction of burden 
heritability explained by exome-wide significant genes from Genebass3. Each box represents an 
exome-wide significant gene for the corresponding trait, and its length represents the fraction of 
burden heritability it explains. (B) Fraction of common variant heritability explained by GWAS 
significant loci. Each box represents a genome-wide significant locus, and its width represents 
the fraction of common variant heritability explained by that locus.  (C) The fraction of common 
variant heritability mediated by exome-wide significant genes, estimated using AMM4, compared 
with the fraction of burden heritability explained by the same genes, for traits with at least 5 
exome-wide significant genes. (D) Common- vs. rare-variant cancer heritability mediated by 
cancer genes. The blue bars are the BHR estimates, and the grey bars are the AMM estimates. 
Error bars in A-D are standard errors. 
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Concentration of burden heritability in genes under selective constraint   
 
We investigated the contribution of different gene sets to the burden heritability, defining the burden heritability 
enrichment of a gene set as its fraction of burden heritability divided by its fraction of burden variance 
(approximately the fraction of minor alleles, not of genes) (see Methods). We estimated common variant gene-
mediated enrichments for the same gene sets using AMM.  
 
First, we analyzed sets of genes that are differentially expressed in trait-matched cell and tissue types (see 
Methods, Supplementary Tables 10, 14). For these gene sets, burden heritability enrichments and common-
variant enrichments were approximately equal (median rare:common enrichment ratio: 1.1x, Figure 4A). For 
example, in a set of 3,396 genes specifically expressed in cordblood-derived red blood cells (RBC), we 
estimate a 2.1x (SE = 0.4x) enrichment of common variant heritability for RBC count and a 2.2x (SE = 0.3x) 
enrichment of burden pLoF heritability. This concordance implies that common and rare variation converge on 
the same causal cell types and tissues. Even though common-variant heritability is less strongly concentrated 
among top genes compared with burden heritability, it is equally enriched in causal cell types, consistent with 
the cell-type-centric omnigenic model33.  
 
Next, we compared common- vs. rare-variant enrichments across the spectrum of constraint34 (Supplementary 
Tables 6, 13). Rare variant enrichments were larger than common variant enrichments in constrained genes 
for 21/22 traits (median rare:common enrichment ratio: 2.5x) (Figure 4B). Fluid intelligence score had a rare 
variant enrichment of 8.1x (SE = 1.0x), compared with a common variant enrichment of 2.2x (SE = 0.3x). We 
hypothesized that rare variant enrichments would decrease rapidly with decreasing constraint. From the 1st to 
the 5th quintiles of constraint, rare variant enrichments decayed from a median of 4.5x to 0.3x, while common 
variant enrichments declined from a lower maximum (2.1x) to a similar minimum (0.5x) (Figure 4C). These 
observations are consistent with the expected effect of negative selection, which prevents both coding and 
regulatory variants affecting highly constrained genes from becoming common in the population, thereby 
limiting the magnitude of common variant enrichments19,22,35,36 (see Discussion).  
 
For phenotypes that directly affect fitness, loss-of-function alleles are expected to be deleterious almost 
exclusively, since if gene loss were protective, the gene would be lost. Indeed, pLoF variants in constrained 
genes are associated with childlessness in UK Biobank37. Moreover, a standard approach in severe psychiatric 
and neurodevelopmental disorders is to aggregate pLoFs across a set of candidate genes38–40 (this approach 
cannot be used to estimate burden heritability, as the candidate-gene burden effect is attenuated when some 
of the candidate genes are not causal). We calculated the genome-wide mean minor allele effect of ultra rare 
pLoFs on each trait (Supplementary Table 6). These values were much larger for pLoFs than for synonymous 
variants (Supplementary Figure 2), indicating that they are not driven by minor-allele biased population 
stratification (see Methods). Traits with large mean minor-allele effect sizes tended to have a strong burden 
heritability enrichment in constrained genes (Figure 4D), consistent with the hypothesis that these traits are 
directly under selection (but not providing evidence against the importance of pleiotropic selection41). 
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Figure 4: Common- vs. rare-variant heritability enrichments. (A) Common and rare variant 
enrichments across cell type differentially expressed gene sets for selected trait-cell type pairs 
(see Supplementary Table 14 for the selected trait-gene set pairs). Error bars are standard 
errors. (B) Contrasting common and rare variant enrichments in constrained genes, defined as 
genes in the bottom 1/5th of observed/expected pLoF alleles in gnomAD5. Error bars are 
standard errors. (C) Contrasting common and rare variant enrichments for 22 traits across 
quintiles of constraint (observed/expected pLoF ratio in GnomAD). (D) Absolute mean minor 
allele effect size of ultra rare pLOF variants genome wide, vs. the constrained gene enrichment 
of each trait. (+) and (-) denote the sign of the mean minor allele effects.  
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Burden genetic correlations across traits and functional categories 
 
Exome-sequencing studies often aggregate pLoF and damaging missense variants to maximize power6,42, 
raising the question of whether damaging missense variants generally act via loss of function. We used BHR to 
compute burden genetic correlations between pLoF and damaging missense variants (Figure 5A, see 
Methods, Supplementary Table 15). We observed a mean burden genetic correlation of 0.53 (SE = 0.10), 
implying that pLoF and missense variants in the same genes often have divergent phenotypic effects. One 
explanation is that deleterious missense variants frequently act via mechanisms other than partial loss of 
function. Alternatively, PolyPhen2 predictions may vary in quality across genes, such that missense damaging 
variants approximate pLoFs in some genes but not others.  
 
Common-variant effect sizes are often correlated across traits, providing evidence of shared biological 
mechanisms. We estimated pairwise burden genetic correlations from ultra-rare pLoF variants among an 
extended group of 37 traits (Supplementary Table 16). We identified 197 trait pairs that passed a nominal 
threshold for statistical significance and 55 trait pairs that passed a Bonferroni threshold. For the same group 
of UKB traits, we also computed common variant genetic correlations using LDSC12 (Methods, Supplementary 
Table 16). We highlight the genetic correlations among 10 selected traits in Figure 5B, displaying both burden 
genetic correlations (lower triangle) and LDSC-computed common variant genetic correlations (upper triangle). 
Both common and rare variants had correlated effects within clusters of closely related traits (e.g. 
LDL/Triglycerides/High Cholesterol, Calcium/Albumin, Neuroticism/Depression). and also within less obvious 
trait pairs (FVC/BMI, Osteoarthritis/Depression). 
 
More generally, rare-variant genetic correlations were concordant with those from common variants (Figure 
5C). Rare-variant genetic correlations were stronger than common-variant genetic correlations, by 1.7x on 
average. One potential explanation is that coding variants are less likely to be cell-type specific, and therefore 
more likely to have pleiotropic effects; a second possibility is that pleiotropic genes are more strongly 
constrained41, which would dampen common-variant genetic correlations. We note that rare-variant genetic 
correlations, similar to common-variant correlations, can be an artifact of cross-trait assortative mating43 
(Supplementary Figure 6). 
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Figure 5: Burden genetic correlations between variant classes and traits. (A) Burden 
genetic correlations between ultra rare pLoF and damaging missense variants, across 9 traits 
that have nominally significant burden heritability for both classes. Error bars denote standard 
errors; the mean is 0.53 (s.e.=0.10). (B) Clustered heatmap of genetic correlations estimated 
with Burden Heritability Regression from ultra-rare pLoF variants (lower triangle) and genetic 
correlations estimated with LD Score Regression (upper triangle). Traits are hierarchically 
clustered based on BHR genetic correlation. * nominal significance (two-tailed p < 0.05). (C) 
Comparison of common and burden genetic correlations across trait pairs. The dashed line 
indicates the total least squares regression fit (slope = 1.7). 
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Burden heritability of schizophrenia and bipolar disorder 
 
Damaging variants in constrained genes are strongly associated with neuropsychiatric disorders42,44,45. We 
applied BHR to estimate neuropsychiatric rare variant genetic architecture using summary statistics from 
recent exome-sequencing studies of schizophrenia (SCHEMA study6: 24,248 cases, 97,322 controls) and 
bipolar disorder (BipEx study7: 14,210 cases, 14,422 controls) (Methods). Following the original reports, we 
analyzed ultra-rare variants with minor allele count less than 5 (MAF < 2e-5 for SCZ, MAF < 9e-5 for BPD). 
 
We estimate that schizophrenia and bipolar disorder have a pLoF burden heritability of 1.7% (SE = 0.3%) and 
1.8% (SE = 0.3%) respectively (on a liability scale) (Figure 6A, Supplementary Table 17). These estimates 
were larger than those of the UK Biobank traits except for height, consistent with their high common variant 
heritability. The burden genetic correlation between bipolar disorder and the two main schizophrenia cohorts 
was 0.39 (SE = 0.22) and 0.51 (SE = 0.28), roughly consistent with estimates of their common-variant genetic 
correlation of 0.7246. We additionally computed the burden heritability due to ultra-rare damaging missense 
variants (MPC > 2)47, which was significant for schizophrenia (0.35%, SE = 0.12%) but not for bipolar disorder 
(0.14%, SE = 0.12%). There was no evidence of nonzero burden heritability for synonymous variants. 
 
The SCHEMA study6 identified 9 autosomal genome-wide significant genes associated with schizophrenia, 
and we estimate that they explain 7% (SE = 1.5%) of the burden heritability. Larger studies will discover many 
additional significant genes, and the same will probably occur for bipolar disorder, which has a high burden 
heritability but no exome-wide significant genes in the BipEx sample. 
 
A consistent observation in exome-based analyses of neuropsychiatric disorders is an enrichment of significant 
associations in constrained genes6,7. Indeed, in the top quintile of constrained genes, burden heritability is 9.6x 
(SE = 1.2x) enriched for schizophrenia and 4.6x (SE = 1.1x) enriched for bipolar disorder (Figure 6B). The 
constrained gene enrichment for schizophrenia is the largest observed of any trait in this study; we estimate 
that constrained genes explain 70% (SE = 9%) of its burden heritability.  
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Figure 6: Burden heritability of schizophrenia and bipolar disorder. (A) Burden heritability 
of ultra-rare pLoF variants, ultra-rare missense variants with MPC > 2, and ultra-rare 
synonymous variants. Gray violin plots show the distribution of burden heritability estimates in 
22 UK Biobank traits (Figure 2B). (B) Constrained gene enrichment of ultra-rare pLoF 
vs.  common variant heritability. Error bars denote standard errors. 
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Discussion 
 
Rare protein-coding genetic variation is a rich source of biological insight. Rare diseases are often caused by 
mutations in one or a handful of genes, and the discovery of those genes has led to effective therapies48,49. For 
common diseases and complex traits, the role of rare variation has been debated24,50. In this study, we found 
that rare loss-of-function variants comprise ~1% of phenotypic variance for most traits, that burden heritability 
concentrates among ultra-rare variants in highly constrained, large-effect disease genes, and that these genes 
are modestly enriched for common-variant heritability. Our findings make us highly optimistic about the 
potential for rare coding associations to inform our understanding of common disease biology, for two reasons.  
 
First, for rare, syndromic forms of common diseases (e.g., MC4R-driven obesity), a critical question is whether 
their causal genes are relevant to common variant liability as well. If common and rare variants converge on 
the same disease-causing processes, therapeutics targeting rare-variant associated genes have the potential 
to benefit a large number of patients, not only the few who carry specific mutations. Reassuringly, we find that 
common- and rare-variant associations are mechanistically convergent: rare-variant associated genes are 
enriched for common-variant heritability (Figure 3C), common and rare variants implicate the same cell types 
and tissues (Figure 4A), and they have pleiotropic effects on the same pairs of traits (Figure 5C). These 
findings provide quantitative, genome-wide confirmation of previous reports that common and rare variants 
implicate overlapping genes3,6,31 and pathways40,51. 
 
Second, rare-variant architecture is much less polygenic. Already, exome-wide significant genes explain a 
substantial proportion of the total burden heritability for well-powered traits (Figure 3A), suggesting that large-
effect mechanisms involve a tractable number of genes. In contrast, common-variant polygenicity has been a 
challenge for translational efforts4. Further work is needed to characterize the distribution of rare-variant effect 
sizes and the sample sizes that will be needed to identify them. 
 
The differences that we observe between common- and rare-variant architecture support the flattening 
hypothesis, which we previously proposed as an explanation for extreme common-variant polygenicity19. Under 
the flattening hypothesis, a small fraction of genes and regions of the genome have large effect sizes when 
mutated, and a much larger number of genes and regions have small effect sizes. Even though small-effect 
variants are more numerous, the difference in effect size is so large that large-effect genes dominate the rare-
variant heritability. However, these genes are constrained, limiting their common-variant associations, and  
common-variant heritability is spread across a much larger mutational target. This hypothesis provides an 
explanation for the differences we observe between common vs. rare-variant polygencity (Figure 3A-B) and 
between their enrichments in constrained genes (Figures 4C, 6B). 
 
Just as negative selection affects the distribution of heritability among genes, it also affects the fraction of 
heritability in protein-coding versus regulatory regions. Gazal et al.22 found that coding variants explain a much 
larger fraction of heritability for low-frequency variants (~26%) than for common variants (~8%), due to 
negative selection. If this trend continues at even lower frequencies, then rare and ultra-rare noncoding 
variants would explain little heritability and would not explain “missing heritability.”  
 
Polygenic risk scores derived from common variants may stratify individuals into clinically meaningful groups52–

54. The growing accessibility of whole exome and genome sequencing raises the question of whether these 
genetic profiles should expand to include both common and rare variants. On the one hand, large-effect rare 
variants can be highly relevant to disease risk for individuals, especially when they have been ascertained by 
phenotype or family history55. However, at a population level, our estimates suggest that rare coding variation 
will only modestly improve the performance of genetic risk scores56. 
 
Our analysis has a number of limitations. First, it is limited to coding variants, and we do not quantify the 
contribution of rare noncoding variants. Second, for missense variants in particular, burden heritability might 
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represent a fraction of the total rare coding heritability, due to overdispersion effects (Figure 1A). We stratified 
missense variants by their PolyPhen predicted effect, but with a more sophisticated approach, it would be 
possible to capture a larger fraction of the total missense heritability. Third, our analysis is limited to European-
ancestry participants in the UK Biobank, which reflects a well-documented bias in human genetics research57. 
Fourth, the UK Biobank is a relatively healthy population cohort58, which limits our power to analyze diseases. 
For the same reason, the UK Biobank sample might be depleted of deleterious genetic variation37, potentially 
causing decreased burden heritability in this population.  
 
These characteristics of biobanks highlight the importance of ascertained case-control cohorts for the study of 
disease genetic architecture and the need for public sharing of full variant-level summary statistics from these 
studies. Sharing of GWAS summary statistics has been catalytic, and we advocate for sequencing studies to 
share variant-level association statistics, including variant frequencies, functional annotations, and per-allele 
effect sizes, which are sufficient for estimating genetic architecture with BHR. 
 
Just as genome-wide approaches to common variant associations enabled deeper insight into GWAS data, our 
approach offers powerful new insight into exome-based association studies.  We have released open-source 
software implementing the full suite of BHR analyses (Code Availability), and we hope that the community will 
use these tools to further characterize genetic architecture across the variant frequency spectrum. 
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Additional information 
 
Data availability 
 
All data used in this manuscript is publicly available and documented in Supplementary Tables. All results are 
available in the Supplementary Tables. Neale Lab UKB GWAS summary statistics: http://www.nealelab.is/uk-
biobank/ 
 
Code availability 
 
BHR is implemented in R, and its source code is publicly available at https://github.com/ajaynadig/bhr. We 
have also published scripts allowing the results of the manuscript to be reproduced using publicly available 
data (Data availability).  
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Methods 
 
Definition of burden heritability 
 
Let 𝑋!	be the mean-centered genotype matrix for gene 𝑔, and let 𝑍! be the standardized genotype matrix, 
whose columns have zero mean and unit variance. We define the burden for gene g as the mean-centered 
minor allele count for each individual: 
 

𝑏! ≔ 𝑋!1"!×$ = 𝑍!𝑤!	 (1) 
 
where 1"!×$ is the all-ones vector, 𝑚! is the number of variants in gene 𝑔, and 𝑤! is the vector of burden 
weights. The entries of 𝑤! are the standard deviations of the corresponding columns of 𝑋!; under Hardy-
Weinberg equilibrium, they are equal to .2𝑝(1 − 𝑝) (where 𝑝 is the allele frequency). 
 
Let 𝑦 be the 𝑛 × 1 standardized phenotype vector, and let 𝛽6! be the 𝑚! × 1	vector of per-allele effect sizes: 

𝛽6! ≔ 𝐸8𝑋!%𝑋!9
&$
𝐸8𝑋!%𝑦9. (2) 

 
Let 𝛽! be the vector of per-normalized genotype effect sizes, or correlations: 

𝛽! ≔ 𝐸8𝑍!%𝑍!9
&$
𝐸8𝑍!%𝑦9 = 𝑤! ∘ 𝛽6!	 (3) 

 
where ∘ denotes the element-wise product. The burden effect size 𝛾! is the correlation between the burden 𝑏! 
and the phenotype 𝑦: 

𝛾! ≔
𝐸8𝑏!%𝑦9

>𝐸(𝑦%𝑦)	𝐸8𝑏!%𝑏!9
 

=
𝑤!%𝐸8𝑍!%𝑦9

>𝑛	𝑤!%𝐸8𝑍!%𝑍!9𝑤!
 

=
𝑤!%𝛽!

>𝑤!%𝑤!
. (4) 

 
We assumed that there is no LD, such that 𝐸8𝑍!%𝑍!9 = 𝑛𝐼, in the third line (see below).  
 
Burden heritability is defined under a random effects model for the burden effect sizes 𝛾. Suppose that the 
vector of per-allele effect sizes 𝛽6! has mean 𝜇!1 and zero covariance. Then the per-normalized genotype 
effect size vector 𝛽 has mean 𝜇!𝑤!, and the burden effect 𝛾! has mean 

𝐸8𝛾!|𝜇!9 =
𝑤!%𝐸(𝛽!|𝜇!)

>𝑤!%𝑤!
=
𝜇!𝑤!%𝑤!

>𝑤!%𝑤!
= 𝜇! CD𝑤!DC . (5) 

 
We define the burden heritability of gene g as: 

ℎ'()*+,
- (𝑔) ≔ 	𝐸8𝛾!|𝜇!9

- = 𝜇!- 	CD𝑤!DC
-
. (6) 

 
The total burden heritability across a set of genes 𝐴 is: 
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ℎ'()*+,
- (𝐴) = I𝐸 Jℎ'()*+,

- (𝑔)K = I𝐸(𝜇!-) CD𝑤!DC
-

!∈/

.
!∈/

(7) 

 
The burden heritability is a component of the total heritability. For gene g, its total heritability (without LD) is: 

ℎ01023- (𝑔) = 𝐸 J𝑣𝑎𝑟8𝑍!𝛽!|𝛽!9K = 𝐸8𝛽!%𝛽!9 ≥ ℎ'()*+,- (𝑔). (8) 
 
Burden heritability regression 
Burden test statistics, which are commonly used to identify associated genes, are essentially burden effect 
estimates. The burden effect estimate, 𝛾!, is the sample correlation between 𝑏! and 𝑦: 

𝛾R! ≔
𝑏!%𝑦

>(𝑏!%𝑏!)(𝑦%𝑦)
. (9) 

 
(It is related to the burden 𝜒- statistic: 𝑛𝛾R!- ∼ 𝜒$-|𝐻4). Without LD, and without correlated stratification effects 
(see below), 𝛾R! has mean 𝛾! and variance: 

𝑣𝑎𝑟8𝛾R!D𝜇!9 ≈ 𝑛&$ + 𝑎 + 𝑣𝑎𝑟8𝛾!D𝜇!9. (10) 
 
There are three terms. 𝑛&$ is the ordinary sampling variation, which is the approximate term; the approximation 
is accurate when the burden effect is small. 𝑎 quantifies inflation due to population stratification and cryptic 
relatedness, and we assume that it is not gene specific (see below). The third term quantifies overdispersion-
related sampling variation in the true value of 𝛾!. If variants in the same gene have uncorrelated overdispersion 
effects with a constant effect-size variance 𝑑!	in per-standard deviation units, then the overdispersion term is: 

𝑣𝑎𝑟8𝛾!D𝜇!, 𝜎!-9 =
𝑤!% J𝐸8𝛽!𝛽!%9 − 𝐸8𝛽!9𝐸8𝛽!9

%
K𝑤!

𝑤!%𝑤!
=
𝑤!%8𝜎!-𝐼9𝑤!
𝑤!%𝑤!

= 𝑑!. (11) 

Combining equations 5, 10 and 11: 
𝐸8𝛾R!-|𝜇!9 = 𝜇!- CD𝑤!DC

-
+ 𝑑! + 𝑛&$ + 𝑎. (12) 

 
The BHR regression equation is obtained by taking an average value of 𝜇!-  and 𝑑! across genes. Let 𝜏 =
𝐸(𝜇!-) and 𝑑 = 𝐸(𝑑!). The BHR regression equation is: 

𝐸(𝛾R-) = 𝜏D|𝑤|D
- + 𝑑 + 𝑛&$ + 𝑎. (13) 

The first term is used to estimate the burden heritability, and the other terms are the regression intercept. 
 
Minor-allele biased population stratification 
A potential source of bias for BHR is minor-allele biased population stratification. Specifically, let 𝛼! be the 
random vector of normalized stratification effects for minor alleles in gene 𝑔; we generally assume that 

𝐸8𝛼!𝛼!%9 = 𝑎𝐼	 (14) 
where a is the non-gene-specific inflation parameter. Under this assumption, the contribution of stratification to 
the BHR equation is: 

𝐸 _
8𝑤!%𝛼!9

-

𝑤!%𝑤!
` = 𝑎. (15) 

 
However, minor alleles may have nonzero mean effect sizes due to stratification, such that  

𝐸8𝛼!𝛼!%9 = 𝑎𝐼 + 𝑚!𝑚!
% 	 (16) 
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where 𝑚! = 𝑚𝑤! is the mean effect due to stratification. This type of stratification could plausibly arise when a 
small fraction of individuals in the study come from a certain subpopulation, such that variants specific to that 
subpopulation are observed at low frequencies. It could also occur when one subpopulation is bottlenecked, 
causing its frequency spectrum to shift. In this scenario, the contribution of stratification effects is: 

𝐸 _
8𝑤!%𝛼!9

-

𝑤!%𝑤!
` = 𝑎 +𝑚- CD𝑤!DC

-
	 (17) 

and the BHR slope will be inflated by 𝑚-.  
 
Minor-allele biased stratification would cause the mean minor-allele effect size to be nonzero genome wide, 
possibly motivating a genome-wide mean centering approach. For pLoF variants, however, it is biologically 
plausible that their causal effect sizes have nonzero mean (especially for traits such as autism and 
schizophrenia38–40. To distinguish between these possibilities, we calculate the genome-wide mean minor allele 
effect size for pLoF and synonymous variants separately. Let 𝑤!567"5(𝑠𝑦𝑛) be the concatenated vector of 
synonymous burden weights across the genome; we compute the genome-wide mean synonymous minor 
allele effect, 𝜇̂!567"5(𝑠𝑦𝑛), as: 

𝜇̂!567"5(syn) = CD𝑤!567"5(syn)DC
&-
𝑤8+,19+(syn)%𝛽f. (18) 

 
We compare this estimate with the corresponding value for pLoF variants; minor allele-biased stratification is 
expected to produce nonzero 𝜇̂!567"5 for both, while minor allele-biased causal effects are expected to 
produce nonzero 𝜇̂!567"5(pLoF) only. In the summary statistics we analyzed, there was no evidence of minor 
allele-biased stratification (see Supplementary Figure 2). If minor allele-biased stratification is detected, it can 
be corrected by subtracting 𝜇!567"5𝑤:%𝑤: CD𝑤:DC

&$
= 𝜇!567"5 CD𝑤:DC from 𝛾R:. 

 
Independence assumption and selection-related bias 

BHR assumes that 𝐸(𝜇!-) is not correlated with CD𝑤!DC
-
. In general in a regression analysis, if the slope depends 

on the independent variable, it leads to bias. Here, the most plausible reason for non-independence is that 
genes under selective constraint have smaller burden scores and larger mean effect sizes; this would produce 
downward bias in the heritability estimates. 
 
We use two approaches to mitigate this potential bias. First, we bin genes by their observed vs. expected 
number of pLoF variants in gnomAD (a measure of selective constraint) [Karczewski et al.]. With this approach, 
we only require the weaker assumption that 𝐸(𝜇!-) is uncorrelated with CD𝑤!DC

-
	within bins. We use five bins of 

approximately equal size. This approach is analogous to the use of LD-related annotations by Gazal et al. to 
address bias due to LD-dependent architecture in stratified LD score regression (S-LDSC)21.  
 
Second, we incorporate null burden statistics that effectively fix the BHR intercept and ameliorate bias in its 
slope. (Even in the absence of bias, this approach is useful to increase power). We define random null burden 
weights vectors 𝑣!, whose burden weights are randomly sign flipped compared with 𝑤! (but identical in 
magnitude). Burden statistics computed using null burden weights are equally affected by noise, confounding, 
and overdispersion effects, but they contain very little burden signal. 
 
In detail, let 𝑣! = 𝑤! ∘ [±1,… ,±1] be the null burden weights for gene g. The null burden effect size is:  

𝛿! =
𝑣!%𝛽!

>𝑣!%𝑣!
. (19) 
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If the mean minor-allele effect is 𝜇!, the mean of 𝛿! is: 

𝐸8𝛿!9 =
𝜇!𝑣!%𝑤!

>𝑣!%𝑣
. (20) 

The regression equation for the null burden statistics is 

𝐸8𝛿f!-9 = 𝐸(𝜇!-)
8𝑣!%𝑤!9

-

𝑣!%𝑣!
+ 𝑑 + 𝑛&$ + 𝑎. (21) 

The null burden scores, 8𝑣!%𝑤!9
- 𝑣!%𝑣!p , are much smaller than the original burden scores, as the random sign 

flipping causes 𝑣!%𝑤! to be small; therefore, the intercept of the regression is effectively constrained to be 
approximately equal to the mean null burden statistic. 
 
Any number of these null burden statistics can be incorporated into the regression. We use five null burden 
statistics per gene, which is enough that including a larger number has little effect (Supplementary Figure 8).  
 
Large-effect genes as fixed effects 
Large-effect genes introduce noise in BHR. We identified genes with a significant association at a Bonferroni-
significant exome-wide significance threshold (i.e., 0.05 / number of genes by a 𝜒- test). We excluded these 
genes from the regression and instead included them as fixed effects, adding their squared burden effect size 
estimates to the heritability directly. This approach is appropriate because the effect size estimates of 
significant genes are less likely to reflect confounding, and it greatly reduces the standard error of the 
regression estimator. The estimated heritability explained by each gene was ℎ-(𝑔) = 𝛾R!- − (𝑛&$ + 𝑎R), where 
(𝑛&$ + 𝑎R) is the BHR intercept.  
 
 
Standard errors calculation 
We estimated standard errors in the regression using a block jackknife, as previously described10. We used 
100 contiguous blocks of genes with around 170 genes per block. Significant genes are excluded from the 
block jackknife procedure, and uncertainty in their effect size estimates is incorporated using the delta method. 
The delta method is also used to calculate the standard error for the the fraction of burden heritability mediated 
by significant genes, the enrichment of burden heritability in particular annotations, and the genetic correlation. 
 
In detail, let 𝜃 be a vector of parameters with covariance matrix Σ. For a function 𝑔(𝜃), the sampling variance is 
approximately: 

𝑣𝑎𝑟8𝑔(𝜃)9 ≈ ∇𝑔	Σ	∇g;. (22) 
We apply this formula as follows: 

• Standard error of the fraction of burden heritability in a particular gene set. Let ℎ<7<=>-  be the total 
burden heritability estimated by BHR, and ℎ?- be the burden heritability in annotation 𝑘 estimated 
by BHR. The fraction of burden heritability in annotation 𝑘 is: 

𝑔(𝜃) = 𝑔 v
ℎ?-

ℎ<7<=>- w =
ℎ?-

ℎ<7<=>- . (23) 

 
The covariance matrix of 𝜃, Σ, is computed via block jackknife.  

• Standard error of the fraction of burden heritability in a particular gene annotation under the 
mixed model. In the mixed effects model, genes with exome-wide significant associations are 
modelled as fixed effects. Let ℎ)2,*19-  be the total burden heritability estimated by the BHR 
random effects model excluding significant genes, and let ℎ?- be the burden heritability in 
annotation 𝑘 estimated by BHR, excluding significant genes. Let 𝛾R@AB denote the vector of 
burden effect sizes for exome-wide significant genes. Let 𝑀(𝑘) be the diagonal matrix with 
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dimension equal to the number of significant genes whose diagonal entries are 1 for genes in 
annotation 𝑘, and 0 otherwise. The fraction of burden heritability in annotation c is: 

𝑔(𝜃) = 𝑔y
𝛾R@AB
ℎ?-

ℎ)2,*19-
z =	

ℎ?- + 𝛾R@AB	𝑀(𝑘)𝛾R%@AB
ℎ)2,*19
- + 𝛾R@AB	𝛾R@AB

% . (24) 

 
The variances and covariance of ℎ?- and ℎ<7<=>-  are computed via a block jackknife. The variance of 𝛾R@AB is 
estimated as the intercept of the BHR random effects model, and their covariance is assumed to be zero with 
each other and with ℎ?- and ℎ<7<=>- . 

• Standard error of the burden genetic correlation under the mixed model. Let ℎ)2,*19	$-  and 
ℎ)2,*19	--  be the random-effects burden heritability of traits 1 and 2 respectively, excluding 
significant genes. Let 𝜌 be the burden genetic covariance between trait 1 and trait 2 excluding 
significant genes, computed with the cross-trait BHR model. Let 𝛾R@AB	$ denote the vector of 
burden effect sizes for significant genes (in per-s.d. units) for trait 1. Let 𝛾R@AB	- denote the vector 
of burden effect sizes for significant genes for trait 2. The burden genetic correlation under the 
mixed model is: 

 

𝑔

⎝

⎜⎜
⎛
ℎ)2,*19	$
-

ℎ)2,*19	--

𝜌)2,*19
𝛾R@AB	$
𝛾R@AB	- ⎠

⎟⎟
⎞
=	

𝜌)2,*19 + 𝛾R@AB	$
%𝛾R@AB	-

>8ℎ	)2,*19	$
- + 𝛾R@AB	$

%𝛾R@AB	$98ℎ)2,*19	-
- + 𝛾R@AB	-

%𝛾R@AB	-9
(25)	 

The variances and covariances of ℎ<7<=>,$- ,  ℎ<7<=>,-- , and 𝜌 are computed via a block jackknife. The estimated 
variances of 𝛾R@AB	$ and 𝛾R@AB	- are the BHR intercepts for traits 1 and 2 respectively, and the covariance 
between 𝛾R@AB	$ and 𝛾R@AB	- is the BHR cross-trait intercept. The exome-wide significant effects are assumed to 
have no covariance with ℎE-, ℎ<7<=>- , or 𝜌. The covariance between 𝑢 and 𝑣 is the intercept from the cross-trait 
BHR model.  
 
Stratified regression equation and heritability enrichment 
BHR can be used to model any number of gene-level annotations. Let 𝐴! be the row vector of annotation 
values for gene g. Similar to S-LDSC16 , we model the effect-size variance of gene g as a linear function of 𝐴!: 

𝐸8𝜇!-9 = 𝐴!𝜏	 (26) 
where 𝜏 is the regression slope. This choice is necessary in order for 𝜏 to be estimated using linear regression 
(other choices give rise to least-squares estimators without closed-form solutions). The gene-stratified 
regression equation becomes 

𝐸8𝛾R!-9 = CD𝑤!DC
-
𝐴!𝜏 + 𝑑 + 𝑛&$ + 𝑎 (27) 

where we assume that overdispersion and confounding effects do not vary across gene sets.  
 
We define the burden heritability enrichment of a gene set as the fraction of heritability divided by the fraction 
of burden scores. Let the cumulative burden score for gene set k be 

𝑤(𝑘) = I 𝐴!? CD𝑤!DC
-

8+,+F	!

	 (28) 

and let its estimated burden heritability be 

ℎ-(𝑘) = I 𝐴!? CD𝑤!DC
-
𝐴!𝜏

8+,+F	!

. (29) 
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Letting 𝑤(0), ℎ-(0)	denote the cumulative burden score and the burden heritability across all genes, the burden 
heritability enrichment of gene set k is: 

𝑒(𝑘) =
ℎ-(𝑘)𝑤(0)
ℎ-(0)	𝑤(𝑘) .

(30) 

 
This definition differs from the fraction of heritability divided by the fraction of genes; for example, constrained 
genes have smaller burden scores on average, so their burden heritability enrichment is greater than their 
fraction of heritability divided by their fraction of genes. 
 
Simulations 
We simulated gene burden statistics under realistic genetic architectures without LD. We simulated 18,000 
genes with between 1 and 1,000 possible variants per gene (drawn from a uniform distribution). We chose the 
mean effect size for each gene, 𝜇!, from a sparse mixture of normal distributions.  In simulations with 
overdispersion, we also included nonzero gene-specific effect-size variance parameters, 𝑑!. Then, we drew 
per-allele effect sizes for variants within each gene from gene-specific normal distributions: 

𝛽6! ∼ 𝑁8𝜇!1, 𝑑!𝐼9. (31) 
To model negative selection, we simulated effect sizes on 100 independent traits, and we defined a selection 
coefficient for each variant in proportion to its sum of squared effect sizes across traits. This choice follows the 
stabilizing pleiotropic selection model of Simone et al.41 The selection coefficients were scaled to a desired 
mean selection coefficient.  
 
We sampled allele frequencies from the neutral spectrum, such that the probability of observing an allele at 
allele count 𝑛: was proportional to 1/𝑛:, where 1 ≤ 𝑛: ≤ 𝑛. We approximated the effect of selection of the allele 
frequency spectrum by discarding variants whose sampled allele frequency was 6"

6
> 4𝑁𝑠, where 𝑠 was the 

selection coefficient and 𝑁 was 1e4. This approach allows millions of variants to be sampled efficiently.  
 
After sampling the allele frequencies 𝑝, we set the per-normalized-genotype effect sizes to 𝛽 ∝
𝛽6(2𝑝(1 − 𝑝))$/-, normalizing them so that the burden heritability of variants in the allele frequency bin under 
consideration matched the desired value.  
 
We computed the observed over expected number of variants in each gene by dividing the number of variants 
with frequency greater than zero by the number of variants (between 1 and 1000), computing o/e bins from 
these values. 
 
We sampled effect-size estimates for each variant from a normal distribution, which is appropriate for a 
continuous trait: 

𝛽f: ∼ 𝑁8𝛽: , 𝑛&$ + 𝑎9. (32) 
Simulation parameters for each simulation are provided in Supplementary Figure legends 1. For the “realistic” 
simulations, the fraction of causal genes with large, medium and small effects was 4e-4, 2e-3, 1e-2 
respectively, and their per-allele effect size variance before normalization was 5, 1, 1/5. The mean selection 
coefficient was 𝑁𝑠̅ = 10. The sample size was 5e5, the number of genes was 1.8e4, and the true burden 
heritability was either 0 or 0.005. The variance of the stratification effects was 1e-7, the mean minor-allele-
biased stratification effect was 1e-5, and there was no overdispersion. 
 
Observed-scale effect sizes for binary traits 
For binary traits, we used raw allele counts in cases in controls as the input to BHR, rather than effect-size 
estimates from a mixed model. We calculated the observed-scale effect size of SNP 𝑥 on the phenotype 𝑦 as: 

𝛽f = 𝑐𝑜𝑟𝑟(𝑦, 𝑥) 
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=
2 ∗ (MAF	in	cases − MAF) ∗ prevalence

.2 ∗ MAF ∗ (1 − MAF) ∗ prevalence ∗ (1 − prevalence)
	 . (33) 

 
We report heritability estimates on an observed scale unless noted otherwise. 
 
Genes analyzed 
 
We analyzed 17,318 genes, a subset of the 19,407 genes in Genebass5. We analyzed genes meeting all of the 
following criteria: autosomal; LoF observed/expected ratio present in gnomAD34; cell type specific t-statistic 
defined in Finuncane 2018 Nature Genetics; and at least one variant present in Genebass. 
 
Variant functional annotations 
 
We analyzed variants in four functional categories: predicted loss-of-function (pLoF), missense pathogenic, 
missense benign, and synonymous variants. pLoF variants were defined as in Genebass5, and included stop-
gained, essential splice and frameshift variants. Missense functional classes were defined using PolyPhen2: 
we defined missense pathogenic as a PolyPhen variant annotation of “probably damaging” or “possibly 
damaging” and missense benign as a PolyPhen variant annotation of “benign”. Synonymous variants were 
defined as in Genebass5 
 
Common-variant heritability estimates 
 
We used GWAS summary statistics from the UK Biobank to facilitate a direct comparison with the phenotypes 
from exome-sequencing analysis (see URLs). Across 22 core BHR traits, the GWAS had a median effective 
sample size of 344104 (see Supplementary Table 8). 
 
We used stratified LD Score Regression (S-LDSC)10,16 to generate common variant heritability and genetic 
correlation estimates. We elected to use LDSC for direct comparison of heritability estimates because it 
employs a similar random-effects model to BHR. We used LD scores from the 1000 Genomes project 10 and 
annotations from the baseline LD model21 (see URLs).  
 
In order to estimate the fraction of common-variant heritability explained by significant genes (Figure 3), we 
used HESS, which is able to estimate the local heritability explained by regions with significant associations or 
significant genes29. We used an LD reference panel from the 1000 Genomes Project10 and a genome partition 
composed of approximately LD-independent blocks from12. 
 
We used the Abstract Mediation Model (AMM31) to estimate the fraction of heritability mediated by gene sets. 
In brief, AMM estimates the fraction of heritability mediated by a gene set while accounting for uncertainty in 
SNP-gene mapping. Instead of relying on SNP-to-gene mapping using expression data like eQTLs, AMM first 
learns a genome-wide probabilistic SNP-to-gene mapping from the decay in heritability across gene proximity 
(i.e. 27% of heritability mediated by the closest gene). We applied AMM twice: to estimate the fraction of 
heritability mediated by BHR-significant genes (Figure 3D) and to estimate the enrichment of heritability 
mediated by constrained genes and gene sets defined by tissue and cell-type expression data (Figure 4A-C). 
We used a SNP-to-gene probability distributed learned from constrained genes in Weiner et al31, which are 
well-powered across a range of traits. 
 
Accounting for LD 
Rare variants, and to a lesser extent ultra-rare variants, may have within-gene LD. Within-gene LD is a 
problem for BHR because it causes sampling errors to be correlated among alleles. In particular, if minor 
alleles have net-positive within gene LD, then their sampling errors will have net-positive correlations, just as 
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true effects are expected to be correlated. This source of bias is potentially strong, as the sampling variance of 
the effect sizes is large. Net zero LD, which occurs when correlations are nonzero for particular alleles but zero 
on average, is less of a problem; it leads to decreased power, but not to bias. Outside-of-gene LD is also only 
a minor concern, as it is not expected to produce net positive correlations between different minor alleles in the 
same gene. 
 
Net-positive within gene LD can occur as an ascertainment related artefact of binning on the within-sample 
allele frequency. Suppose that minor alleles within a gene have a mixture of positive and negative LD, such 
that their net LD is zero: that is, 1%𝑅1 = 0, where 1 is the all ones vector and 𝑅 is the population correlation 
matrix. Suppose that we sample 𝑛 haplotypes 𝑋, compute their within-sample LD matrix 𝑅�, and bin them by 
their sample minor allele count. For a pair of variants i,j with correlation 𝑟H:, consider the probability that they 
are both observed exactly 𝑛H = 𝑛: times. This probability is low if 𝑟H: is zero or negative, even if their population 
allele frequencies are equal. It is much higher, however, if 𝑟H: ≈ 1, which would cause the sample allele 
frequencies of the two variants to be highly correlated. Conversely, when variants are observed at similar 
within-sample minor allele frequency, this ascertainment effect makes them more likely to be in positive LD.  
 
If the amount of within-gene LD is known, it can be incorporated into BHR. Let the within-gene-g LD matrix be 
𝑅! = 𝑛&$𝐸8𝑍!%𝑍!9. If causal per-allele effect sizes have mean 𝜇!, the mean of the marginal per-normalized-
genotype effect size vector 𝛽! is 𝐸8𝛽!|𝜇!9 = 𝑅!𝜇!𝑤!. The burden effect size is: 

𝛾! ≔
𝐸8𝑏!%𝑦9

>𝐸(𝑦%𝑦)	𝐸8𝑏!%𝑏!9
	 (34) 

=
𝑤!%𝛽!

>𝑤!%𝑅!𝑤!
	 (35) 

and its mean is: 

𝐸8𝛾!|𝜇!9 = 𝜇!>𝑤!%𝑅!𝑤!. (36) 

 
Dropping subscripts, the regression equation becomes: 
 

𝐸(𝛾R-) = 𝜇-𝑤%𝑅𝑤 + 𝑑𝑝𝑞��� + 𝑛&$ + 𝑎. (37) 
 
The intercept is unchanged. Let 𝛽f be the vector of sample correlations; their residuals have covariance 

𝐸 �8𝛽f − 𝛽98𝛽f − 𝛽9
%
� = (𝑛&$ + 𝑎)𝑅	 (38) 

so 

𝐸((𝛾R − 𝛾)-) =
𝑤%𝐸 �8𝛽f − 𝛽98𝛽f − 𝛽9

%
�𝑤

𝑤%𝑅𝑤
 

= 𝑛&$ + 𝑎. (39) 
 
The overdispersion term behaves the same way. 
 
Equation 37 represents one principled approach to account for within-gene LD, but we were only able to 
access within-gene LD from UK Biobank for chromosomes 20-22. Instead of correcting for within-gene LD 
using equation 37, therefore, we calculated the amount of bias that is expected to be observed for each class 
of variants, assuming that the amount of net positive within-gene LD on chromosomes 20-22 are 
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representative of the rest of the genome. Under the null (𝛽 = 0), the expected burden statistic not accounting 
for LD is: 

𝐸(𝛾R-) =
𝑤%𝐸8𝛽f𝛽f%9𝑤

𝑤%𝑤
 

= (𝑛&$ + 𝑎)
𝑤%𝑅𝑤
𝑤%𝑤 . (40) 

 
For chromosomes 20-22, we calculated a correction term 

𝑠 =
1

no. genes
I

𝑤!%𝑅!𝑤!
𝑤!%𝑤!

− 1
8+,+F	!

	 (41) 

from synonymous variants in each allele frequency bin. The correction factor was noisy for some individual 
bins and there was no clear relationship between the allele frequency and the correction factor, so we 
computed a single precision-weighted mean 𝑠̅ = 4.6 (s.e.=0.5) across bins (see Supplementary Table 20). 
Then, we subtracted 𝑠̅ from the BHR regression slope in order to obtain LD corrected heritability estimates; the 
corrected estimate is equal to 

ℎI1))+I0+*
- = ℎ(,I1))+I0+*

- − 𝑠̅ICD𝑤!DC
-

!

. (42) 

The correction is largest for rare synonymous and missense variants; it is much smaller for ultra-rare variants 
(which have much smaller entries of 𝑤) and for pLoF variants (which are fewer in number) (see Supplementary 
Tables 6, 18). It is inconsequential for ultra-rare pLoFs and in analyses of ultra-rare pLOF variants outside of 
Figure 2b-c, we do not apply this correction to ultra-rare pLoF estimates. 
 
Burden heritability explained by exome-wide significant genes 
 
To compute the heritability explained by exome-wide significant genes, we used significant pLoF burden 
associations (Bonferroni-corrected p < 0.05) from Genebass, which were identified using SAIGE-gene14. We 
computed the ultra-rare pLoF burden statistics for these genes from the SAIGE variant-level effect size 
estimates (for binary traits, we used the case-control allele frequencies as described above).  
 
When the power to detect a significant gene is smaller than one, its effect size estimate is upwardly biased due 
to winner’s curse30. Similarly, the fraction of heritability explained by significant genes is upwardly biased, 
especially when most significant genes are close to the significance threshold. We implemented a partial 
correction for winner’s curse that only depends on the test statistic of each significant gene (and the threshold). 
In detail, let 𝑍:- be the 𝜒- test statistic for significant gene 𝑗, and let 𝑇 be the 𝜒- significance threshold (with 1 
degree of freedom). We compute the expected 𝜒- statistic for a gene with non-centrality equal to 𝑍: conditional 
on passing the threshold: 
 

𝑋:- = 𝐸(𝑋-|𝑋 > 𝑇), 𝑋 ∼ 𝑁8𝑍: , 19. (43) 
 
We evaluate the expectation by sampling and computed the winners-curse-corrected test statistic as 2𝑍:- − 𝑋:-.  
 
We tested this approach in simulations and determined that it corrects for about half of the observed winner’s 
curse across the whole range of genetic architectures and sample sizes (Supplementary Figure 3). It is less 
successful in the presence of strong population stratification, which causes excess false positives. In real data, 
a complication is that the significance test is computed from a statistic that includes not only the ultra-rare 
pLoFs but other variants as well, and this might overcorrection for some genes. 
 
Genes sets 
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We analyzed two existing collections of cell type- or tissue-specific gene sets. First, we analyzed tissue-
specific gene sets comprising the top 10% of genes differentially expressed in focal tissue vs. other tissues 
from GTEx v7 bulk RNA-seq17. Second, we analyzed cell type-specific gene sets constructed from single-cell 
RNAseq data18. In brief, genes were ranked based on expression in a given cell type relative to expression of 
the gene in different cell types in the same tissue. Based on the ranking, each gene-cell type pair was 
assigned a 𝜒- statistic, the statistics were min-max normalized to the range [0,1], and genes with normalized 
values of 1 were assigned to the gene set. 
 
Burden genetic correlation 
 
Between two traits, the burden genetic covariance is defined as: 

𝜌'()*+, = I CD𝑤!DC
-
𝐸8𝜇$!𝜇-!9

!565J	!

	 (44) 

where 𝜇$!,	𝜇-! are the mean minor-allele effect size for gene g and traits 1 and 2 respectively. The burden 
genetic correlation is: 

𝑟KLMN56 =
𝜌'()*+,

>ℎ'()*+,- (trait	1)	ℎ'()*+,- (trait	2)
. (45)

 

 
To estimate the burden genetic covariance, the cross-trait BHR regression equation is: 

𝐸(𝛾R$𝛾R-) = 𝜏D|𝑤|D
-
	+ intercept,

intercept = 	𝜌
𝑛J
𝑛$𝑛-

+ 𝑎$- + 𝑑$-. (46)
 

The regression slope is 𝜏 = 𝐸(𝜇$𝜇-), and we stratify the regression across gene sets in the same manner as 
the single-trait case. In the intercept (similar to cross-trait LDSC12), 𝜌 is the phenotypic correlation, 𝑛J is the 
number of samples that are shared between the two studies, 𝑛$	and 𝑛- are the number of individuals in each 
study, 𝑎$- is the covariance of the stratification effects on the two traits, and 𝑑$- is the covariance of the 
overdispersion effects on the two traits.  
 
When the two traits have different sets of variants because there are different individuals for each study, D|𝑤|D- 
is replaced by D|𝑤$|DD|𝑤-|D, where 𝑤? is the burden weights vector for trait k. The same approach is used when 
computing the correlation between missense and pLOF effects. 
 
With the estimated regression slope 𝜏, the estimated genetic covariance is: 
 

𝜌R'()*+, = I 𝐴!𝜏	 𝑤!$  𝑤!- 
8+,+F	!

(47) 

 
and the genetic correlation is estimated using equation 45. 
 
 
SCHEMA and BipEx Datasets 
We used publicly available variant-level counts data from the SCHEMA6 and BipEx7 as input data (URLs). We 
restricted the SCHEMA analyses to the two study strata with largest sample size: EUR (Exomes, Nextera) and 
EUR (Exomes, Non-Nextera) (see supplementary information of Singh et al, 2022). For the BipEx dataset, we 
used the “Bipolar Disorder” group counts. Following Singh et al, 2022, we restricted to variants with minor 
allele count (MAC) less than 5, and performed separate analyses for pLoF, damaging missense (MPC > 2), 
and synonymous variants. For each cohort, burden statistics were calculated from allele counts using Equation 
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33, and burden scores were computed from sample allele frequencies. Then, we used BHR to compute burden 
heritabilities, enrichments, and genetic correlations separately for the two SCHEMA cohorts. We used this 
approach to avoid confounding due to differences in the sequencing technology and the sample prevalence 
between the cohorts. 
 
To produce a single estimate for the schizophrenia heritability, we performed a precision-weighted meta-
analysis across the two cohorts. We used BHR to compute the total burden heritability, as well as the burden 
heritability for constrained genes (the top 5th of genes by observed/expected LoF counts from gnomAD). 
Within each stratum, we computed the variances for these two estimates, as well as their covariance, using a 
block jackknife. We used the per-stratum heritability estimates and covariance matrices to perform a precision-
weighted meta-analysis. We also computed the jackknife covariance matrix of the heritability estimates for 
each constraint bin, and used this matrix with the delta method to calculate the standard error for the 
enrichment of heritability in constrained genes.  
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