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ABSTRACT 

Phelan-McDermid syndrome (PMS) is a rare neurodevelopmental disorder caused at least in part 
by haploinsufficiency of the SHANK3 gene, due to sequence variants in SHANK3 or subtelomeric 
22q13.3 deletions. Phenotypic differences have been reported between PMS participants carrying 
small ‘Class I’ mutations and large ‘Class II’ mutations, however the molecular perturbations 
underlying these divergent phenotypes remain obscure. Using peripheral blood transcriptome and 
serum metabolome profiling, we examined the molecular perturbations in the peripheral 
circulation associated with a full spectrum of PMS genotypes spanning Class I (n=37) and Class 
II mutations (n=39). Transcriptomic data revealed 52 genes with blood expression profiles that 
tightly scale with 22q.13.3 deletion size. Further, we uncover 208 under-expressed genes in PMS 
participants with Class II mutations, which were unchanged in Class I mutations. These genes 
were not linked to 22q13.3 and were strongly enriched for glycosphingolipid metabolism, NCAM1 
interactions and cytotoxic natural killer (NK) immune cell signatures. In silico predictions 
estimated a reduction in CD56+ CD16- NK cell proportions in Class II mutations, which was 
validated by mass cytometry time of flight. Global metabolomics profiling identified 24 
metabolites that were significantly altered with PMS participants with Class II mutations, and 
confirmed a general reduction in sphingolipid metabolism. Collectively, these results provide new 
evidence linking PMS participants carrying Class II mutations with decreased expression of 
cytotoxic cell signatures, reduced relative proportions of NK cells, and lower sphingolipid 
metabolism. These findings highlight alternative avenues for therapeutic development and offer 
new mechanistic insights supporting genotype-to-phenotype associations in PMS. 
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BACKGROUND 
 
Phelan-McDermid syndrome (PMS) is one of the most penetrant and common single-locus causes 
of autism spectrum disorder (ASD) and accounts for ca. 1% of ASD diagnoses1-3. PMS is caused 
by heterozygous 22q13.3 deletions or SHANK3 sequence variants leading to haploinsufficiency of 
the SHANK3 gene2-6. Participants with PMS present with a constellation of clinical and 
neurobehavioral phenotypes, including neonatal hypotonia, global developmental delay, 
intellectual disability (ID), severely delayed or absent speech, and/or frequent ASD6-8. Additional 
features can also include seizures, motor skill deficits, and structural brain abnormalities8. 
Heterogeneity in the clinical presentation of PMS is not fully explained by sequence variants or 
deletions limited to the SHANK3 locus, emphasizing the importance of understanding the broader 
genetic landscape of PMS. 
 
The majority of reported cases of PMS are caused by large 22q13.3 deletions, which encompass 
additional genes and can extend up to 9.2 Mb6-9. Given the variable nature of the deletions, it is 
useful to classify PMS genotypes as either Class I mutations (including SHANK3 sequence 
variants or deletions in SHANK3 only or SHANK3 with ARSA and/or ACR and RABL2B), or Class 
II mutations (all other deletions)8. The largest genotype-phenotype association analysis indicates 
that PMS participants with Class II mutations display increased rates of early developmental 
delays, intellectual disability, minimally verbal status, and various medical features8. Notably, 
individuals with Class I mutations attained more advanced developmental milestones, which were 
reached at a younger age compared to those with Class II mutations, and were more likely to 
exhibit higher language and communication skills8. These results are largely consistent with 
smaller independent reports6,7,10, and together emphasize that the frequency and severity of PMS 
phenotypes is likely caused by haploinsufficiency of multiple additional candidate genes. A next 
practical step would be to identify consistent molecular changes resulting from these specific 
genetic alterations in individuals with PMS.  

SHANK3 is a scaffolding protein of the postsynaptic density of glutamatergic synapses11-13; 
additional disrupted genes within larger Class II mutations have been implicated in processes 
related to stress and inflammation, mitochondrial function, neuronal differentiation, and cellular 
metabolism14-17. Molecular profiling of tissues derived from PMS participants, albeit scarce, 
confirm these functional categories and support the notion of unique molecular programs 
underlying distinct clinical subtypes. For example, increased severity of PMS phenotypes and 
larger 22q13.3 deletions have been associated with alterations in mitochondrial complex I and IV 
activity15, changes in peripheral blood epi-signatures enriched for neuronal development and 
intracellular signaling16, and metabolomic changes implicated in metabolic stress and response to 
cytokines regulating inflammation16-17, all poised to influence neurodevelopment. Notably, even 
transcriptomics of peripheral blood and postmortem brain tissue from participants with idiopathic 
ASD implicate changes related to inflammation, cellular proliferation/metabolism and immune 
dysfunction18-20, supporting the notion that ongoing dysregulation of the immune system echoes 
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alterations in the central nervous system (CNS). Despite these advances, studies examining the 
molecular changes underlying specific genetic alterations in PMS commonly employ modest 
sample sizes, implement variable assessment methods for measuring clinical phenotypes, and 
apply differing thresholds for defining large and small deletions, making it challenging to elucidate 
the full spectrum of genes and pathways associated with genes disrupted on 22q13.3.  

Given the success of blood transcriptome profiling to identify novel mechanisms and high-
confidence targets for several rare CNS disorders21-24, including idiopathic ASD20 more broadly, 
we hypothesized that unbiased peripheral blood transcriptomic and metabolomic profiling across 
a large spectrum of genotypes would shed light on the molecular changes underlying specific 
genetic alterations in PMS.  

The objective of the current study was to examine the molecular perturbations in the peripheral 
circulation associated with a full spectrum of PMS genotypes. A total of 76 PMS probands were 
included in the current study. Peripheral blood transcriptomic data were generated across 68 PMS 
participants, including Class I mutations (n=33) and Class II mutations (n=35), as well as an age 
and sex matched control group (n=24). Additionally, global metabolomic data were generated 
across a partially overlapping subset of 25 PMS participants, comprised of Class I mutations 
(n=11), Class II mutations (n=14), and an age and sex matched control group (n=29). Using a 
combination of genotypic, transcriptomic and metabolomics data, we sought to: i) elucidate key 
genes, pathways and cell types altered in PMS participants with Class I and Class II mutations; ii) 
explore molecular relationships between gene expression patterns and clinical features of PMS; 
and iii) identify core sets of differentially abundant metabolites in PMS participants with Class I 
and Class II mutations. We identify a molecular footprint of Class II mutations, which informs 
pathobiological mechanisms in PMS and suggest approaches for interventions. 

METHODS 
 
Ascertainment of PMS participants and collection of clinical phenotypes 
 
Informed consent was obtained from participants’ caregivers for study participation, as previously 
described8. The cohort included 76 PMS participants (38 female, 38 male) between the ages of one 
and 42 years (8.9 ± 6.5). Forty-six participants were enrolled in studies at the Seaver Autism Center 
for Research and Treatment at the Icahn School of Medicine at Mount Sinai. An additional 30 
participants were enrolled by partner sites through the Rare Disease Clinical Research Network 
Developmental Synaptopathies Consortium (DSC), as part of a PMS phenotyping and natural 
history study. For each participant, a comprehensive battery of standardized assessments, semi-
structured interviews, and caregiver report questionnaires was used to examine medical 
comorbidities, intellectual and adaptive functioning, expressive and receptive language, ASD 
symptomatology, and behavioral comorbidities, as previously described8. Studies were approved 
by the Institutional Review Board (IRB) for the protection of human subjects at Mount Sinai 
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(Study IDs: 98–0436, 10-0527, 12-1718) and Boston Children’s Hospital (Study ID: P00013300), 
which serves as the central IRB for the DSC. 
 
Peripheral blood RNA isolation, library preparation and quantification of gene expression 
 
Peripheral blood was collected in PAXgene Blood RNA tubes (Qiagen, Valencia, CA, USA) for 
68 PMS participants. Peripheral blood was also collected from 24 unaffected control subjects (12 
female, 12 male) between the ages of one and 24 years (9.5 ± 4.9), 21 of which were unaffected 
familial siblings. Total RNA was extracted and purified in accordance with the PAXgene Blood 
RNA Kit instructions (Qiagen, Valencia, CA, USA). Globin mRNA was depleted from samples 
using the GLOBINclear Human Kit (Life Technologies, Carlsbad, CA, USA). The quantity of 
purified RNA was measured on a Nanodrop 2000 Spectrophotomerter (Thermo Scientific; 61.4 ± 
24.1 ng µl−1) and RNA integrity numbers (RIN) measured with the Agilent 2100 Bioanalyzer 
(Agilent, Santa Clara, CA, USA; 8.0 ± 0.3). The Illumina TruSeq Total RNA kit (Illumina, San 
Diego, CA, USA) was used for library preparation accordingly to manufacturer instructions 
without any modifications. Indexed RNA libraries were pooled and sequenced using long paired-
end chemistry (2x150 bp) at an average read depth of ~11M reads per sample using the Illumina 
HiSeq2500. All high-quality trimmed reads were mapped to UCSC Homo sapiens reference 
genome (build hg37) using default STAR v2.5.3 parameters24. Samtools was used to convert 
bamfiles to samfiles and featureCounts25 was used to quantify gene expression levels for each 
individual sample using default paired-end parameters.  
 
RNA-seq data quality control 
 
Raw count data measured 56,632 genes across 92 participants. Unspecific filtering removed lowly 
expressed genes that did not meet the requirement of a minimum of 1 count per million (cpm) in 
at least 15 subjects (~16% of subjects). A total of 16,285 genes were retained and defined as stably 
expressed in peripheral blood. These genes were subjected to limma VOOM normalization26 and 
inspected for outlying samples using unsupervised hierarchical clustering of subjects (based on 
Pearson coefficient and average distance metric) and principal component analysis to identify 
potential outliers outside two standard deviations from these averages. No such outliers were 
identified in the current dataset. 
 
Gene-based annotations for loss of function intolerance  
 
We collected probability of loss of function (LoF) intolerance (pLI) scores from the gnomAD 
project (https://gnomad.broadinstitute.org/). pLI scores indicate whether a gene is intolerant for 
either heterozygous or homozygous LoF variants, and was used to classify disrupted genes on 
22q13.3 as either definitely LoF intolerant (pLI ≥ 0.9), possible LoF intolerant (0.5 ≥ pLI < 0.9) or 
definitely LoF tolerant (pLI ≤ 0.1).  
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Differential gene expression and association testing 
 
A moderated t-test implemented through the limma package26 was used to assess differential gene 
expression between unaffected controls and three different groupings of PMS participants: 1) all 
PMS participants; 2) Class I mutations only; and 3) Class II mutations only. We also 4) tested for 
differences between participants with Class II mutations and Class I mutations. These analyses 
tested PMS genotypes as the primary main outcome. Subsequently, we performed a secondary 
exploratory analysis examining relationships between gene expression and 19 clinical phenotypes 
within PMS participants only. Each clinical phenotype was tested separately and any participant 
with missing data would be dropped from the analysis, respectively. All analysis described here 
covaried for the possible influence of sex and age on gene expression differences. Significance 
threshold was set to a Benjamini-Hochberg (BH) multiple test corrected P-value <0.05 to control 
the false discovery rate (FDR), unless specified otherwise.  
 
Functional annotation of differentially expressed genes 
 
Correlation adjusted mean rank (CAMERA) gene set enrichment was performed using the 
resulting sets of summary statistics26,27. CAMERA performs a competitive gene set rank test to 
assess whether the genes in a given gene-set are highly ranked in terms of differential expression 
relative to genes that are not in the gene-set. For example, the test ranks gene expression 
differences in PMS participants with Class II mutations relative to unaffected controls to test 
whether gene-sets are over-represented towards the extreme ends of this ranked list. After 
adjusting the variance of the resulting gene-set test statistic by a variance inflation factor that 
depends on the gene-wise correlation (which we set to default parameters, 0.01) and the size of the 
set, a p-value is returned and adjusted for multiple testing. We used this function to test two aims: 
First, we examined each resulting set of PMS-associated changes in gene expression for 
enrichment of biological processes and pathways using a well-curated collection of REACTOME 
pathways and Gene Ontology Molecular Factors (GO:MF). We specifically focused on functional 
annotation of differentially expressed genes i) across all PMS participants, ii) participants with 
Class I mutations only; iii) participants with Class II mutations only; and iv) changes between 
Class I and Class II mutations.  
 
Cell type-specific gene set enrichment analysis using scRNA-seq data 
 
Three single-cell RNA-sequencing (scRNA-seq) experiments were downloaded and incorporated 
in the current study: the first dataset comprised of 10,975 PBMCs (v2 Chemistry) and the second 
dataset comprised of 33,227 PBMCs (v2 Chemistry), both were downloaded from the list of 
publically available 10X Genomic Inc. datasets; the third data set was comprised of 67,272 PBMCs 
and was obtained from Zheng et al., 201728. For each dataset, we used pre-computed filtered, 
normalized, and scaled data together with pre-existing cell type classifications as originally 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 10, 2022. ; https://doi.org/10.1101/2022.07.06.22277334doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.06.22277334
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 7 

described and deposited for each data set. Thus, no additional data processing was performed as 
each experiment was pre-processed and quality controlled. Next, cell type marker genes were 
curated across all three experiments using the FindAllMarkers function in the Seruat R package29 
with the following specifications: min.pct = 0.25, logfc threshold = 0.01, FDR p-value < 0.05. 
These resulting lists of cell type markers were compiled into cell type-specific gene sets and used 
as input to perform CAMERA gene-set enrichment analysis (as described above) to determine if 
a rank ordered list of PMS-related differentially expressed genes contained an over-representation 
of cell type-specific genes towards either extreme ends. A separate independent cell-type 
enrichment analysis was performed using the three datasets. Rather than testing for the distribution 
of cell type-specific marker genes along a ranked list of PMS-related genes, we directly queried 
the expression of a given list of PMS-related genes within and across all individual single cells 
using singular value decomposition. Thus, the expression of each PMS-related gene set was 
aggregated into one singular eigengene value, which was plotted within and across all single cells 
as a global representative of gene expression for a given gene set of interest.  
 
In silico cytometry estimates the proportions of peripheral blood immune cells 
 
The frequencies of circulating blood immune cells were estimated for each individual in each study 
using CIBERSORTx cell type de-convolution (https://cibersortx.stanford.edu/)30. CIBERSORTx 
relies on known cell subset specific marker genes and applies linear support vector regression, a 
machine learning approach highly robust compared to other methods with respect to noise, 
unknown mixture content and closely related cell types. As input, we used the LM22 signature 
matrix to distinguish nine main leukocytes subtypes: B cells (CD19+), T cells (CD3+), natural 
killer (NK) cells (CD56+), monocytes (CD14+), dendritic cells, mast cells, macrophages, 
eosinophils and neutrophils. The means of the resulting estimates were compared between PMS 
participants and unaffected controls and tested for significance using a Student’s t-test. 
 
Cytometry by time of flight (CyTOF): data acquisition, pre-processing, and analysis  
 
High dimensional immuno-phenotyping by CyTOF was performed on frozen stabilized peripheral 
blood mononuclear cells (PBMCs) from five PMS participants with Class II mutations and four 
age matched pediatric control participants. Thawed PBMCs were delivered to the Human Immune 
Monitoring Core at the Icahn School of Medicine at Mount Sinai in fresh RPMI media. Samples 
were washed in Cell Staining Buffer (CBS; Fluidigm, San Francisco, CA, USA) and re-suspended 
in fresh CSB. Fc Receptor blocking (Biolegend, San Diego, CA, USA), Rh103 viability staining 
(Fluidigm), and live-cell barcoding were all performed simultaneously at room temperature 
(citations). After a 30-minute incubation at room temperature, samples were washed twice in CSB, 
pooled, and stained with surface markers for 30 minutes at room temperature. Two CSB washes 
were performed. Samples were then fixed with 2.4% PFA and subsequently labeled with Iridium 
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and Osmium for 30 minutes at room temperature. Samples were washed twice in CSB and stored 
in CSB until acquisition. 
 
Prior to data acquisition, samples were washed in Cell Acquisition Solution (Fluidigm) and 
resuspended at a concentration of 1 million cells per ml in Cell Acquisition Solution containing a 
1:20 dilution of EQ Normalization beads (Fluidigm). The samples were then acquired on a Helios 
Mass Cytometer equipped with a wide-bore sample injector at an event rate of <400 events per 
second. After acquisition, repeat acquisitions of the same sample were concatenated and 
normalized using the Fluidigm software and uploaded to Cytobank for data analysis. 
 
Cells were first identified based on Ir-193 DNA intensity and CD45 expression; Ce140+ 
normalization beads, CD45-low/Ir-193-low debris and cross-sample and Gaussian ion-cloud 
multiplets were excluded from downstream analysis. After this data cleanup, manual gating was 
utilized to debarcode the multiplexed live-cell barcoded sample. The FCS files were split by 
debarcoded population to complete debarcoding and data clean-up. The cell counts and frequencies 
of the annotated cell subsets, excluding debris and known cell–cell multiplets, were exported for 
downstream statistical analyses. To identify changes in cellular populations we performed 
differential abundance analysis using a moderated t-test implemented through limma26. The 
annotated cell frequencies were used as input into a model fit using Class II mutations as the 
outcome variable.  
 
Global plasma metabolomics profiling and data pre-processing  
 
Plasma was isolated from 54 participants (n=29 unaffected controls; n=11 Class I mutations; n=14 
Class II mutations) by centrifugation of blood samples in EDTA tubes for 30 min at 1,500g. 
Notably, 17 PMS participants and 12 unaffected controls had paired peripheral blood 
transcriptomic data. Separated plasma aliquots of 0.5 ml were stored immediately at −80 °C until 
transport in dry ice for global metabolomic profiling using the analytical DiscoveryHD4 platform 
by Metabolon, as previously described31,32. Raw data were extracted and signature 
chromatographic peaks and relative ion concentrations for metabolites detected were identified for 
each sample. Spectrometry data were analyzed using the Quantify Individual Components in a 
Sample method32. Metabolite identification was performed by matching each metabolite aggregate 
to an annotated reference chemical library containing >4,000 metabolites with well-defined 
chemical profiles. Peaks were quantified using the area under the curve. Metabolite data were then 
normalized in terms of raw peak area counts and re-scaled to set the median equal to one. 
Subsequently, any missing values, which constituted ~8% of the entire data frame, were imputed 
with the minimum. Finally, we removed metabolites with low standard deviation (< 0.01) across 
the entire cohort, yielding 1,045 metabolites. 
 
Metabolomics statistical analyses 
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A moderated t-test from limma26 was used to assess differential abundance of metabolites between 
unaffected controls and three different groupings of PMS participants: 1) all PMS participants; 2) 
Class I mutations only; and 3) Class II mutations only. We also 4) tested for differences between 
participants with Class II mutations and Class I mutations. These analyses adjusted for the possible 
influence of sex and age on metabolite profiles and a significance threshold was set to a BH 
multiple test corrected P-value < 0.1 to control the FDR. Differentially abundant metabolites were 
subjected to pathway annotation using MetaboAnalyst5.0 (https://www.metaboanalyst.ca)33. We 
applied a joint pathway analysis to integrate our transcriptomic and metabolomic data and interpret 
them at a pathway level. To do so, the mass of each metabolite detected was queried against the 
Human Metabolome Database (HMDB)34. Once identified, a list of differentially expressed genes 
and differentially abundant metabolites identified by the HMDB was imported into 
MetaboAnalyst5.0 along with their direction of effect (log2 fold-changes). These results mapped 
to well-curated molecular pathways for over-representation analysis using hypergeometric tests, 
and P-values were adjusted using Holm–Bonferroni correction.  
 
RESULTS 
 
Clinical features of PMS participants with Class I and Class II mutations  

A total of 76 PMS probands were included in the current study. (Table 1). Across the full cohort, 
17 participants had sequence variants in SHANK3, including 13 frameshift, 2 nonsense, one splice 
site and one de novo missense variant (Figure S1). Participants were parsed into two groups: 1) 
Class I mutations: sequence variants or small deletions including only SHANK3 or SHANK3 in 
combination with ARSA and/or ACR and RABL2B; and 2) Class II mutations: all larger deletions 
that did not qualify as Class I mutations. Participants with Class II mutations exhibit significantly 
lower full-scale, verbal and nonverbal IQ/DQ relative to Class I mutations (p=0.045, p=0.023, 
p=0.019, respectively), consistent with existing evidence for genotype-phenotype associations in 
PMS8. Notably, Class II mutations also display significantly reduced motor skills on the Vineland-
2 Adaptive Behavior Scale (VABS Motor), but were also younger when compared to participants 
with Class I mutations (p=0.006, p=0.02, respectively). A subset of PMS participants in the current 
study underwent peripheral blood transcriptome profiling (n=68) and/or serum metabolomic 
profiling (n=25) (Table S1), which were the focus of the subsequent analyses.  

Class II mutations, but not Class I mutations, alter transcriptional profiles in peripheral 
blood 

Peripheral blood transcriptomic data were generated across 68 PMS participants, including Class 
I sequence variants and mutations (n=33) and Class II mutations (n=35), as well as an age and sex 
matched control group (n=24), which largely consisted of unaffected siblings (~91%). Given the 
breadth of genes affected by large Class II mutations on the terminal end of the long arm of 
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chromosome 22 (22q13.3) (Figure S2A), we queried which of these genes are stably expressed in 
peripheral blood. Of 128 genes affected by large Class II mutations, 52 genes were stably 
expressed and detected in peripheral blood (~40%), including genes ARSA, RABL2B, and BRD1, 
which were affected by the majority of Class II mutations (Figure 1A). Unsupervised hierarchical 
clustering applied to these 52 blood-expressed genes on 22q13.3 accurately distinguished 85% of 
Class II mutations (30/35) from all other participants, on the basis of reduced expression levels of 
these genes. (Figure 1B). Participants with Class I mutations and unaffected controls clustered 
together and displayed higher expression levels on average for this subset of 22q13.3 genes. To 
determine which of the disrupted genes on 22q13.3 are intolerant to heterozygous and homozygous 
loss of function (LoF), we computed probability of LoF intolerance (pLI) scores. Using this metric, 
we classified eight of the 52 blood expressed genes as ‘possibly LoF intolerant’ (0.5 ≥ pLI < 0.9) 
and eight additional genes as ‘definitely LoF intolerant’ (pLI ≥ 0.9), including genes TRABD, 
PIM3, TBC1D22A, ZBED4, PLXNB2, BRD1, GRAMD4 and CELSR1 (Figure S2B). Notably, all 
52 genes are broadly expressed across 30 distinct human tissues from the GTEx project (Figure 
S2C), suggesting their disruption may affect diverse biological systems across a range of tissues.  

Transcriptome-wide differences in gene expression were modelled for i) all PMS participants, ii) 
Class I mutations, and iii) Class II mutations, each relative to unaffected controls. We also 
modelled for iv) differences between Class II mutations and Class I mutations. Overall, the largest 
effect was observed between participants with Class II mutations and unaffected controls, 
uncovering 208 under-expressed genes and 42 over-expressed genes associated with Class II 
mutations (FDR < 5%) (Figure 2A, Table S2). Similarly, differences between Class II and Class 
I mutations revealed 89 under-expressed genes and 2 over-expressed associated with Class II 
mutations, ~84% of these genes were also differentially expressed in Class II mutations compared 
to unaffected controls (Figure S3). There were no significant changes observed between Class I 
mutations compared to unaffected controls. Likewise, few genes were significantly differentially 
expressed when comparing all PMS participants (Class I and Class II mutations) to unaffected 
controls (n=23 genes). These results indicate that gene expression profiles are similar between 
participants with Class I mutations and unaffected controls, whereas participants with Class II 
mutations are associated with unique peripheral blood transcriptional signatures.  

Of the significantly under-expressed genes associated with Class II mutations, 31 genes were 
located on 22q13.3 while the remaining (~82%) were not linked to this genomic region (Figure 
2B). We identified genes chloride intracellular channel 5 (CLIC5) and keratin type I cytoskeletal 
23 (KRT23) to be among the most significant under-expressed genes in Class II mutations not 
located on 22q13.3. We also identified RIC3 acetylcholine receptor chaperone (RIC3) and 
paternally expressed 3 (PEG3) to be among the most significant over-expressed genes in Class II 
mutations. A competitive gene-set ranking approach was used to functionally annotate Class II-
related genes, revealing over-expressed genes enriched for processes related to nonsense mediated 
decay (FDR p=9.3×10-16), protein translation (FDR p=4.0×10-14) and cell cycle check points (FDR 
p=0.003), while under-expressed genes enriched for extracellular matrix organization (FDR 
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p=0.0001), NCAM1 (also known as CD56) interactions (FDR p=0.004), voltage gated calcium 
channel activity (FDR p=0.006), and glycosphingolipid metabolism (FDR p=0.03) (Figure 2C-
D), among other processes (Table S2). To ensure confidence of our results, we performed 
technical validation of three genes of interest by RT-qPCR, which confirmed significant under-
expression of BRD1 and CLIC4, as well as significant over-expression of RIC3 in Class II 
participants relative to Class I mutations and unaffected controls (Figure 2E). 

To support these functional enrichment observations, we tested whether the candidate dysregulated 
genes indeed interact with each other at the protein level. A significant overrepresentation of direct 
protein-protein interactions (PPI) was identified among differentially expressed genes in PMS 
participants with Class II mutations (p<1.0e-16, observed edges=228, expected edges=112) 
(Figure S4). As expected, disrupted genes on 22q13.3 displayed a higher average number of 
interactions (average node degree=2.32) relative to under-expressed and over-expressed genes in 
PMS participants with Class II mutations (average node degree=1.77 and 0.50, respectively). The 
peripheral blood PPI network derived from participants Class II mutations was again enriched for 
components related to NCAM1 signaling and cytotoxic immune cell signatures, and featured 
several under-expressed hub genes, including NCAM1, perforin 1 (PRF1), and interleukin 2 
receptor subunit beta (IL2RB), as well as genes T-Box transcription factor 21 (TBX21) and 
sphingosine-1-phosphate receptor 5 (S1PR5), which are critical for the maturation and recruitment 
of CD56+ natural killer (NK) cells into the periphery35,36.  

Predicting reduced NK cell-specific expression and cellular proportions in Class II mutations 

A multi-step approach explored the cellular origins of the differentially expressed genes in Class 
II mutations. First, we collected genes that are significantly and highly expressed across seven 
main immune cell types leveraging an existing scRNA-seq experiment (see Methods). Using the 
same gene-set ranking approach as above, we performed cell type enrichment analysis and 
identified a significant enrichment of CD56+ NK cell genes among under-expressed genes in Class 
II mutations (FDR p=6.8×10-10) (Figure 2F). Notably, we also observed an enrichment for CD56+ 
NK cell genes among nominally significant under-expressed genes in participants Class I 
mutations (FDR p=1.5×10-5) (Figure S5A-B). Second, we performed the reverse approach by 
querying the expression of the 208 under-expressed genes in Class II mutations within thousands 
of single peripheral blood mononuclear cells across three independent experiments (see Methods). 
These analyses confirm that under-expressed genes associated Class II mutations are consistently 
and highly expressed in CD56+ NK cells (Figure S6). Third, we performed cell type 
deconvolution analysis of the bulk peripheral blood transcriptome data using an independent cell 
type-specific reference marker list, and confirmed a significant reduction in the proportion of 
estimated CD56+ NK cells in Class II mutations compared to unaffected controls (p=0.007) 
(Figure 2G). Notably, a general reduction in the proportion of CD56+ NK cells was also observed 
among Class I mutations, albeit non-significant (p=0.104). Fourth, we re-computed our differential 
gene expression analyses for i) all PMS participants and ii) Class II mutations relative to unaffected 
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controls covarying for CD56+ NK cellular proportions. Adjusting for CD56+ NK cells had the 
largest effect on differential gene expression, and removed ~69% of differentially expressed genes 
in Class II mutations relative to unaffected controls (Figure S5C). Fifth, we identified 25 genes, 
including S1PR5, that were highly expressed in CD56+ NK cells via scRNA-seq that were also 
significantly under-expressed among Class II mutations and performed unsupervised hierarchical 
clustering, which accurately classified 82% (29/35) of participants with Class II deletion from 
remaining samples (Figure S5D). Finally, given the critical role of S1PR5 to recruit NK cells into 
the peripheral circulation and to bind lipid signaling molecule sphingosine 1-phosphate (S1P)35,36, 
we asked which of the disrupted genes on 22q13.3 might play a role in regulating S1PR5 
expression and/or sphingolipid metabolism. While the vast majority the 52 blood expressed genes 
on 22q13.3 were highly correlated with S1PR5, we found that the expression of ceramide kinase 
(CERK), and parsing Class II mutations according to those with the disruption of CERK relative 
to the remainder of Class II mutations, was moderately predictive of S1PR5 expression levels 
(Figure S7). This observation was strengthened by the direct PPIs observed between CERK and 
SIPR5 (Figure S4).  

Mass cytometry validates reduced peripheral CD56+ NK cells and egress to the periphery 
in Class II mutations 
 
To validate these predictions, we performed cytometry by time-of-flight (CyTOF)-based 
immunophenotyping on a subset of PMS participants with Class II mutations (n=5) and an age and 
sex matched control group (n=4). While both controls and Class II mutations had similar 
distributions of major immune cell subsets in peripheral blood, the frequencies of finer immune 
cell types were significantly altered (Figure 2H). Specifically, we observed a significant increase 
in the proportions of CD3+ CD4- CD8- (double-negative) T cells and a significant reduction in 
the proportions of CD56+ CD16- NK cells in Class II mutations (p=0.001, p=0.03, respectively) 
(Figure 2H), validating our in silico predictions. Collectively, these results indicate that Class II 
mutations are associated with unique peripheral blood transcriptional changes, which might be 
explained by alterations in the underlying cellular composition of CD56+ NK cells and/or related 
cell-specific gene expression programs.   
 
Secondary exploratory analysis reveals transcriptomic predictors of ABC-SW 

A secondary exploratory analysis examined relationships between collected clinical phenotypes 
and peripheral blood gene expression across all 68 PMS participants. While few significant 
associations (n=3) were observed at a FDR < 5%, relaxing our statistical assumption of 
significance to a FDR < 10% uncovered 1,017 genes, which were predominately associated with 
differences in Aberrant Behavior Checklist Social Withdrawal subscale37 (ABC-SW) scores 
(n=1,013 genes) (Figure S8A-B, Table S3). Genes positively associated with ABC-SW were 
significantly enriched for RNA binding, splicing and protein translation, while negatively 
associated genes were implicated in transcription coregulatory activity, chromatin organization, 
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and histone modifications (Figure S8C, Table S3). Genes negatively associated with ABC-SW 
were also significantly enriched for genes that implicate genetic risk for intellectual disability, 
ASD, developmental delay, and educational attainment, as well as differentially expressed genes 
in postmortem brain tissue from individuals with ASD (Figure S8D-E). Notably, ABC-SW-
related genes were not enriched for an immune cell type signature nor were associated with 
differences in estimated cell type proportions (Figure S8A). 

Class II mutations, but not Class I mutations, reduce sphingolipid metabolism 

Global metabolomic data were generated across a subset of 54 participants, comprised of Class I 
mutations (n=11), Class II mutations (n=14), and an age and sex matched control group (n=29), 
half of which were familial related unaffected siblings (~51%). Global metabolomic profiling 
identified 1,045 high confidence metabolites across all 54 participants, which were largely made 
of lipids (37%), amino acids (19%), xenobiotics (13%), an unknown category (15%) and six other 
less frequent super pathways (Figure 3A). We modelled for differential changes in metabolite 
abundance in PMS participants as described above, and identified 10 metabolites significantly 
associated with all PMS participants, 9 metabolites associated with Class I mutations, and 24 
metabolites associated with Class II mutations relative to unaffected controls (Figure 3A Table 
S4). Notably, the pattern of metabolomic effect sizes observed for Class II mutations was 
consistent with transcriptome-wide effect sizes (Figure 3B, Figure 2B), in that the majority of 
metabolites were less abundant in participants with Class II mutations. Of the 24 altered 
metabolites associated with Class II mutations, 21 were less abundant relative to unaffected 
controls, including 10 metabolites catalogued as part the of the sphingomyelin lipid family (Figure 
S9). These findings also provide validation the observed transcriptomic alterations of reduced 
expression of genes enriched for glycosphingolipid metabolism (Figure 2). Unsupervised 
hierarchical clustering of these 24 metabolites distinguished 85% (12/14) of participants with Class 
II mutations from the remaining samples (Figure 4C). Finally, we performed an integrated 
analysis of differentially expressed genes and differentially abundant metabolites to elucidate their 
combined effect on key metabolomic pathways in participants with Class II mutations. This 
analysis confirmed significant changes in sphingolipid metabolism followed by alterations in 
arginine and proline metabolism and linoleic acid metabolism (Figure 4D, Table S4).  

DISCUSSION 
 

While increased frequency and severity of PMS phenotypes are associated with larger deletions, 
the molecular perturbations that result from specific genetic alteration remain poorly understood. 
The current study presents the largest set of PMS genotypes associated with peripheral blood gene 
expression and global serum metabolites conducted to date, and highlights several candidate genes, 
pathways, metabolites and cell types uniquely linked to PMS cases with Class II mutations, despite 
the disruption of SHANK3 in all participants. This suggests that SHANK3 alone is not responsible 
for the molecular alterations observed in the peripheral circulation. Specifically, these findings 
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reveal that PMS participants with Class II mutations display decreased expression of key cytotoxic 
immune cell signatures and related processes, reductions in the proportions of cytotoxic cell types, 
and reduced sphingolipid metabolism. Below we discuss the biological and clinical implications 
of our results.  
 
Of the disrupted genes in the 22q13.3 region, 52 genes (~40%) were detected in peripheral blood, 
reduced in expression patterns, and largely predictive of deletion size, classifying 30/35 PMS 
participants with Class II mutations from all other participants by unsupervised hierarchical 
clustering (Figure 1). Many of these disrupted, under-expressed genes are individually linked to 
independent rare disorders and are known to partake in diverse cellular signaling systems, 
including inflammatory responses (e.g. MAPK11)38, glycosylation (e.g. ALG12)39, mitochondrial 
translation (e.g. TRMU)40, kinase activity (e.g. PARVB, PARVG, CERK, PIM3)41-43, tubulin ligase 
activity (e.g. TTLL12, TTL1)44, histone acetyltransferase activity (e.g. BRD1)45,46, and sphingolipid 
metabolism (e.g. ARSA, CERK)47,48 among others. For example, under-expression of modulator of 
VRAC current 1 (MLC1) and peroxisome proliferator activated receptor alpha (PPARA) were also 
observed in Class II mutations, and these genes are linked to megalencephalic 
leukoencephalopathy with subcortical cysts disease and are known to interact with several ion 
channels/transporters and accessory proteins49,50. While these genes were also expressed across a 
broad collection of other human tissues (Figure S2), our results highlight the utility of peripheral 
blood transcriptome profiling as an accessible, alternative diagnostic read out to validate genotypic 
variation on 22q13.3 for PMS and several other monogenic disorders with a locus on 22q13.3. 

Beyond alterations of disrupted genes on 22q13.3, the most significant transcriptomic changes 
were for those under-expressed genes in PMS participants with Class II mutations, related to 
CD56+ NK cell signatures. Analysis by CyTOF confirmed a reduction in CD56+ CD16- cells in 
Class II mutations, which are less cytotoxic than CD56+ CD16+ cells but produce greater amounts 
of cytokines in response to environmental cues. Under-expression of sphingosine-1-phosphate 
receptor 5 (S1PR5) was among one of many NK cell-related genes that was under-expressed in 
Class II mutations (Figure 2, Figure S4-5), and this gene is well-known to promote recirculation 
and recruitment of CD56+ NK cells into the periphery35,36,51. NK cells express S1PR5, and in mice 
deficient in this receptor, NK cell distribution was altered, with reduced NK cell numbers in blood 
and spleen and increased numbers in the lymph node and bone marrow52,53. We also observed 
decreased expression of T-Box Transcription Factor 21 (TBX21) in PMS participants with Class 
II mutations, which is required for the final maturation of NK cells54 and is also known to induce 
S1PR535,36, supporting a mechanism whereby reduced TBX21 lends to lower expression of S1PR5 
and ultimately reduced CD56+ NK cell proportions (Figure 2G), which may increase 
susceptibility to viral infections in these individuals. While the rate of viral infections has not been 
deeply studied in PMS, the largest PMS phenotypic study to date describes that 38% of PMS 
participants with Class I mutations (29/76) and 51% of those with Class II mutations (44/87) report 
recurrent infections8, supportive of a smaller independent study where larger deletion sizes were 
associated with increased frequency of recurrent infections10. Notably, there are at least 46 single 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 10, 2022. ; https://doi.org/10.1101/2022.07.06.22277334doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.06.22277334
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 15 

gene primary immunodeficiencies that feature NK cell deficiencies55, defined as either the absence 
of NK cells and their functions or the presences of defective NK cells within peripheral blood 
lymphocytes. While various therapeutics have been applied to treat individuals with NK cell 
deficiencies, most approaches have focused on treating susceptibility to viral infections via the 
application of prophylactic antiviral drugs. Nevertheless, anecdotal cases have described apparent 
success using acyclovir, ganciclovir and cytokine therapies56-60, such as IFN-α, to induce NK cell 
cytotoxic functions. However, these approaches require further investigation and consideration is 
currently done on a case-by-case basis. 

In an effort to resolve which of the disrupted genes in the extended 22q13.3 region might have the 
most direct effect on cytotoxic cell recruitment and/or sphingolipid metabolism, we predicted that 
the disrupted gene ceramide kinase (CERK), may also play a role (Figure S6). CERK is required 
for the phosphorylation of ceramide, which is the centerpiece of the sphingolipid metabolism and 
generates ceramide 1-phosphate (C1P)48,61. Both CERK and C1P have been implicated in cellular 
proliferation, apoptosis and inflammation62,63. Our findings from serum metabolomic profiling 
support these results by directly implicating reductions of sphingolipid metabolism in PMS 
participants with Class II mutations (Figure 3). In addition to phosphorylation by CERK, ceramide 
can be hydrolysed to sphingosine, which is phosphorylated to sphingosine-1-phosphate (S1P) by 
sphingosine kinases47,48,61. Both C1P and S1P are bioactive molecules critical for immune function 
and inflammation47,48,61-63, but also play an important role in neurotransmitter release and synaptic 
transmission in the brain64. Whereas ceramide and sphingosine are associated with cellular growth 
arrest and apoptosis, S1P is associated with cellular survival and suppression of apoptosis61-64. To 
this end, we anticipate that reduced sphingolipid metabolism in PMS participants with Class II 
mutations is associated with down-regulation of ceramide biosynthesis and/or S1P synthesis. 
Notably, S1P signaling via S1PR5 is particularly important for regulating NK cell migration and 
cytotoxicity and gradients of S1P drive NK cell chemotaxis35,36,65,66, essential for the mobilization 
of NK cells to inflamed organs, supporting our transcriptomic results. Taken together, our data 
provide preliminary evidence for a mechanistic model linking large 22q13.3 deletions to 
reductions in NK cell related gene expression signatures (TBX21, S1PR5, NCAM1 and partners) 
and CD56+ cellular proportions in the periphery, as well as reductions in sphingolipid metabolism, 
which would otherwise lend to the recruitment and survival of these cells in the peripheral 
circulation. Notably, alterations of lipid metabolism, including S1P, have been reported in serum 
and postmortem brain tissues from individuals with ASD67,68, suggesting that impairment of lipid 
metabolism pathways may contribute to the pathology of ASD more broadly. Several therapeutic 
agents have been developed to modulate sphingolipid metabolism, including stress-signalling 
molecules tumour necrosis factor (TNF)-α and interleukin-1β (IL-1β), to induce activation of 
sphingomyelinases69,70, which can also increase ceramide and subsequent ceramide-dependent 
responses (i.e. cell death and/or arrest). 

Our secondary exploratory analysis also identified several genes that are both positively and 
negatively associated with variations in ABC-SW across all PMS cases (FDR < 10%) (Figure S7). 
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Notably, genes negatively associated with ABC-SW were implicated in transcription coregulatory 
activity, chromatin organization, histone modifications, and were significantly enriched for genes 
that implicate genetic risk for neurodevelopmental disorders. Thus, individuals with high ABC-
SW scores display reduced levels expression for these genes. Given the interest in the ABC-SW 
as a clinical outcome assessment of treatment efficacy in clinical trials of PMS71,72, peripheral 
biomarkers that scale ABC-SW severity may serve as a valuable resource to monitor treatment 
responses and outcomes in PMS and other disorders that present with social withdrawal 
phenotypes. However, further follow-up of these genes and their dynamic expression profiles 
following administration of such therapeutic agents is warranted.  

Our study does present some limitations. First, in the current report, a clinician-made assessment 
was used to characterize ‘recurrent infections’ in PMS participants, defined as more than two 
pneumonia or sinus infections per year. Under this measure, ~54% of PMS participants with Class 
II mutations (13/25) and ~50% of those with Class I mutations (11/22) report recurrent infections 
(Table 1). This broad definition does not encompass viral infections, nor specifically delineate the 
types of observed infections, severities, annual frequencies nor medication(s) described; thus, 
limiting our ability to causally link 22q13.3 deletion sizes and the reported transcriptomic and 
metabolomic alterations with specific immune phenotypes. Nevertheless, in addition to immune 
function, NK cells and NCAM1 are also present in the human brain and are implicated in several 
brain-related mechanisms, including neuronal migration, synaptic plasticity and clearance of α-
syn aggregates through the lysosomal pathway73-75. Thus, more work is needed to fully dissect the 
relationship between the molecular and clinical expressivity observed in PMS. Second, the subset 
of individuals with serum metabolomics profiling (ntotal=54) was predominately independent from 
those with peripheral blood transcriptomic data (ntotal=92), with 29 overlapping individuals. While 
this variation can increase synergy and confidence of the reported alterations across transcriptomic 
and metabolomics datasets, increasing the availability of paired data will better power discovery 
and interpretation of the reported cytotoxic cell signatures and sphingolipid metabolomics changes 
in PMS. Finally, while sphingolipids are well known mediators of cell fate, they may also change 
in response to drug treatment, and such alterations might also reflect differential responses to 
existing treatment regimens.  

CONCLUSION 

Taken together, we show that participants with Class II mutations present significant peripheral 
transcriptomic and metabolomics alterations implicating reductions in cytotoxic immune cell 
signatures, CD56+ CD16- cell proportions, and sphingolipid metabolism, which may contribute 
to a more the severe and variable phenotype in PMS. More broadly, this work demonstrates the 
utility of studying molecules in the peripheral blood of individuals with PMS, which is a readily 
available specimen type in clinical practice. It is worth noting that this combination of data is not 
expected to successfully shed light on disrupted genes and pathways if the affected region(s) is not 
expressed in the analyzed tissue or if the effects of the causal variants do not affect the expression 
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of the gene. Therefore, expert evaluation is required when prioritizing candidate genes using RNA-
seq data. We can expect that combining information from multiple ‘omics’ sources will only 
further improve diagnosis and define molecular subtypes of PMS and other rare disease cases in 
the future. 
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LIST OF ABBREVIATIONS 

PMS: Phelan-McDermid syndrome 
ASD: Autism spectrum disorder 
SHANK3: SH3 And Multiple Ankyrin Repeat Domains 3 
Class I mutations: sequence variants or small deletions on 22q13.3, including SHANK3 only or 
SHANK3 with ARSA and/or ACR and RABL2B 
Class II mutations: larger 22q13.3 deletions relative to Class I mutations 
DSC: Developmental Synaptopathies Consortium 
ABC-SW: ABC-social withdrawal 
NK cells: Natural killer cells 
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Table 1. Clinical features of Class II and Class I mutations in the current study.  

 Entire cohort of 76 PMS probands Transcriptome subset 
(68 probands) 

Metabolome subset 
(25 probands) 

 Class II (n=39) Class I (n=37) P-value Effect size P-value Effect size P-value Effect size 
Sex, M/F 16/23 22/15 0.169 -0.180 1.000 0.010 0.877 -0.120 
Caucasian/Other 33/6 (84%) 33/4 (89%) 0.802 -0.070 1.000 -0.010 0.565 0.250 
Hispanic/Other 4/35 (11%) 4/33 (12%) 1.000 -0.010 0.215 -0.180 0.363 -0.250 
Age (months) 85.821 ± 47.781 129.432 ± 97.734 0.026 -0.579 0.039 -0.564 0.317 -0.180 
Verbal IQ/DQ 22.354 ± 17.494 33.617 ± 24.181 0.045 -0.546 0.034 -0.645 0.305 -0.490 
Nonverbal IQ/DQ 28.688 ± 17.237 39.973 ± 21.916 0.023 -0.583 0.017 -0.699 0.222 -0.383 
Full scale IQ/DQ 24.739 ± 16.003 34.218 ± 19.943 0.019 -0.535 0.016 -0.623 0.272 -0.437 
ADOS Total 15.912 ± 6.122 15.821 ± 8.094 0.854 0.013 0.891 0.085 0.717 0.745 
ADOS SA 12.941 ± 5.116 11.882 ± 6.741 0.676 0.180 0.464 0.276 0.802 0.880 
ADOS RRB 3 ± 1.969 3.939 ± 2.318 0.066 -0.444 0.063 -0.463 0.431 -0.475 
ADI Communication 12.697 ± 4.355 12.065 ± 4.761 0.425 0.141 0.425 0.070 0.410 1.401 
ADI Social 19.529 ± 6.872 17.031 ± 8.656 0.313 0.326 0.359 0.308 0.094 1.880 
ADI RRB 4.771 ± 2.426 4.594 ± 3.12 0.743 0.065 0.822 0.050 0.451 1.241 
VABS Communication 50.564 ± 15.441 52.722 ± 19.823 0.531 -0.124 0.268 -0.333 0.795 -0.949 
VABS DLS 51.821 ± 13.483 53.278 ± 16.77 0.702 -0.098 0.505 -0.154 0.897 -0.725 
VABS Social 56.513 ± 12.941 60.75 ± 17.977 0.313 -0.276 0.230 -0.361 0.938 -0.756 
VABS Motor 55.324 ± 11.954 63.188 ± 10.187 0.006 -0.714 0.004 -0.774 0.051 -0.117 
VABS Comp 51.308 ± 12.404 55.306 ± 16.603 0.190 -0.278 0.171 -0.327 0.203 -0.503 
ABC Irritability 10.114 ± 9.536 8.286 ± 11.184 0.158 0.179 0.117 0.312 0.560 0.707 
ABC Social Withdrawal 10.943 ± 9.142 9.029 ± 7.86 0.485 0.228 0.328 0.270 0.950 0.992 
ABC Stereotypic Behavior 4.857 ± 4.846 5.371 ± 6.193 0.887 -0.094 0.714 0.096 0.269 0.239 
ABC Hyperactivity 19.265 ± 12.425 19 ± 13.083 0.876 0.021 0.979 -0.027 0.829 -0.741 
ABC Inappropriate Speech 1.457 ± 2.091 3.371 ± 5.719 0.113 -0.451 0.259 -0.343 0.055 -0.071 
Recurrent infections, Y/N 13/24 (54%) 11/22 (50%) 1.000 0.012 1.000 0.010 1.000 0.010 
Continuous measures were analyzed using a Mann Whitney-U test and effect sizes computed using Cohen’s D. Discrete measures were analyzed 
using a Chi-Squared Test and effect sizes computed using the phi coefficient. Abbreviations: Aberrant Behavior Checklist (ABC); Autism 
Diagnostic Interview (ADI); Autism Diagnostic Observation Schedule (ADOS); Daily Living Skills (DLS); Developmental Quotient (DQ); 
Intellectual Quotient (IQ); Restrictive and Repetitive Behavior (RRB); Social Affect (SA); Vineland Adaptive Behavior Scales (VABS). 
Recurrent infections were clinician graded and defined as more than two pneumonia or sinus infections per year. 
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FIGURES AND LEGENDS  

 
Figure 1. The landscape of Class I and Class II mutations in PMS. (A) Lollipop plot of genes 
affected by Class I mutations and Class II mutations across the terminal end of the long arm of 
chromosome 22 (22q13.3) in the 68 PMS probands included in the study. Genes are displayed as 
either expressed (blue; n=52 genes) in peripheral blood or not (orange; n=76 genes) and ranked by 
the number of probands harboring the affected gene (y-axis). SHANK3 is highlighted in pink. (B) 
Unsupervised hierarchal clustering and heatmap (blue=low; red=high) depiction of the 52 genes 
on 22q13.3 that are expressed in peripheral blood affected by Class I and Class II mutations. 
Clustering distinguishes probands with Class II mutations from those with Class I mutations and 
unaffected controls. Genes were rank ordered by the number of PMS participants with the affected 
gene (y-axis; rare to more frequent). 
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Figure 2. Altered peripheral blood gene expression profiles in Class II mutations. (A) The 
total number of differentially expressed genes (DEGs; y-axis) for each comparison (x-axis). Each 
analysis adjusted for sex and age as covariates. (B) Volcano plot of Class II DEGs relative to 
unaffected controls depicting log2 fold-change (log2FC; x-axis) and -log10 FDR adjusted p-value 
(y-axis). The horizontal line indicates FDR < 5%. Genes in yellow are the 52 genes expressed in 
blood that are affected by large Class II mutations in PMS. Genes in blue are all other down-
regulated genes and those in pink are all other up-regulated genes. (C) Four representative pathway 
enrichment scores (y-axis) of Class II DEGs according to ranked t-statistics, high (pink) to low 
(blue) (x-axis). All enrichment results can be found in Table S2. (D) The resulting FDR adjusted 
p-value enrichment for all differential comparisons reveals shared and unique gene set enrichment 
among Class II and Class I mutations. (E) RT-qPCR validation of three target genes across four 
technical replicates per group: BRD1 (a down-regulated gene on chr 22); RIC3 (an up-regulated 
gene on chr 11); and CLIC5 (a down-regulated gene on chr 6). A Student’s t-test was used to test 
delta CT values significant differences. (F) CAMERA cell type enrichment of under-expressed 
DEGs (x-axis) according to seven immune cell types (y-axis) reveals strong enrichment of CD56+ 
genes. (G) CIBERSORTx cell type predictions reveal a significant reduction in the frequency 
CD56+ cells among Class II mutations. (H) CyTOF validates estimated cell type proportions on a 
subset of controls and participants with Class II mutations. Scaled frequencies across all 
participants for major and minor immune cell populations are presented in heatmap form (right). 
Boxplots of the two immune populations with significant differences (p<0.05, linear model) 
associated with Class II mutations (left).  
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Figure 3. Plasma metabolomic profiling and alterations in participants with Class II 
mutations. (A) Top inset: Plasma was collected from 54 participants and subjected to unbiased 
metabolomic profiling, which generated 1045 high-confidence metabolites for subsequent 
analysis. The majority of detected metabolites classified as either lipids (37%), amino acids (19%), 
xenobiotics (13%), unknown (15%) or six other less frequent categories. Bottom inset: Differential 
abundance of metabolites was tested and the number of significant metabolites for each 
comparison are displayed. (B) Volcano plot of class II differentially abundant metabolites (DAMs) 
relative to unaffected controls depicting log fold-change (logFC; x-axis) and –log10 FDR adjusted 
p-value. The dotted horizontal line indicates a cut-off of FDR < 0.1. Metabolites are uniquely 
shaped according to ten super pathway categories and colored by more (red) or less (blue) abundant 
in participants with Class II mutations. Ten sphingomyelin metabolites are outlined in pink 
borders. (C) Unsupervised clustering of 24 metabolites significantly altered by Class II mutations 
correctly classify 85% (n=12) of Class II mutations from the remaining samples. Heatmap depicts 
high (red) and low (blue) relative scaled abundance for each metabolite. (D) Pathway analysis of 
metabolites altered in Class II mutations reveals significant pathway enrichment (y-axis; -log10 p-
value) for spingolipid metabolism and three other metabolism pathways relative to pathway impact 
(x-axis). Pathway impact is a combination of the centrality and pathway enrichment results 
computed by adding the importance measures of each of matched metabolite and dividing by the 
sum of the importance measures of all metabolites in each pathway. 
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