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 2 

ABSTRACT 1 

Family history is the standard indirect measure of inherited susceptibility in clinical care, while 2 

polygenic risk scores (PRS) have more recently demonstrated potential for more directly capturing 3 

genetic risk in many diseases. No studies have systematically compared how these overlap and 4 

complement each other across common diseases. Within FinnGen (N=306,418), we leverage family 5 

relationships, up to 50 years of nationwide registries, and genome-wide genotyping to examine the 6 

interplay of family history and genome-wide PRSs. We explore the dynamic for three types of family 7 

history across 24 common diseases: first- and second-degree family history, and parental causes of 8 

death. Covering a large proportion of the burden of non-communicable diseases in adults, we show 9 

that family history and PRS are independent and not interchangeable measures, but instead provide 10 

complementary information of inherited disease susceptibility. The PRSs explained on average 10% 11 

of the effect of first-degree family history, and first-degree family history 3% of PRSs, and PRS 12 

effects were independent of both early- and late-onset family history. The PRS stratified the risk 13 

similarly in individuals with and without family history. In most diseases, including coronary artery 14 

disease, glaucoma, and type 2 diabetes, a positive family history with a high PRS was associated with 15 

a considerably elevated risk, whereas a low PRS compensated completely for the risk implied by 16 

positive family history. This study provides a catalogue of risk estimates for both family history of 17 

disease and PRSs, and highlights opportunities for a more comprehensive way of assessing inherited 18 

disease risk across common diseases. 19 

 20 
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INTRODUCTION 1 

Family history (FH) is a risk factor in most common, non-communicable diseases.1 With multiple 2 

advantages including low cost and non-invasiveness, it captures both genetic and non-genetic familial 3 

risk and is therefore widely applied for risk stratification and health promotion. Common clinical 4 

applications include assessment of FH of breast cancer for targeted screening, earlier initiation of 5 

cardiovascular disease prevention, and evaluating the likelihood of rheumatic disease in patients with 6 

inflammatory arthritis.2-4 Despite the advantages, assessment of FH also has important limitations in 7 

capturing inherited disease risk. Many individuals with common diseases have no FH, or may not 8 

know the diseases their relatives have, and the same level of familial risk is assigned to all relatives 9 

of similar degree. The accuracy of FH is fairly low owing to factors such as recall bias, and sensitivity 10 

to wording in queries may lead to misinterpretation of risk.5,6 With average family sizes declining in 11 

many developed countries,7 FH will also provide increasingly less information for a comprehensive 12 

assessment of familial risk. 13 

The algorithmic developments and rapid growth in genome-wide genetic testing provides a 14 

more personalized approach for measuring genetic susceptibility through polygenic risk scores 15 

(PRS).8,9 PRSs employ information from large-scale genetic screens comparing allele frequencies in 16 

thousands of disease cases and healthy controls and have identified numerous genetic loci for virtually 17 

all common diseases.10 To estimate polygenic risks, the common genetic variation and the effects on 18 

the disease risks are integrated into a single metric, the PRS. The effectiveness of PRSs in risk 19 

stratification has been demonstrated for many diseases, with predictive value demonstrated alongside 20 

established clinical risk assessment tools.11 Similarly, PRSs modify risk among carriers of high-risk 21 

variants and identify high-risk individuals for whom existing prediction tools are suboptimal.11-16 22 

 Given the initial expense of implementing PRS estimation in a clinical setting relative to the 23 

seemingly simple questions pertaining to family history, systematic evaluation of the independent 24 

added benefit of PRS across common diseases is essential. Studies on individual diseases have 25 

observed fairly independent effects of PRS and first-degree FH, 11,15,17-27 but no studies have 26 

systematically compared the relative contributions and overlap of PRS and FH across different types 27 

of familial risk, across varying genetic architectures, and across a wide range of diseases. Moreover, 28 

only few studies have used genome-wide PRSs, although these contemporary PRSs containing a large 29 
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 4 

number of variants have demonstrated improved performance beyond PRSs with less variants due to 1 

high polygenicity in common diseases.13,28-30 Here we study the interplay of first and second-degree 2 

FH, parental causes of death, and genome-wide PRSs for 24 diseases using FinnGen (N=306,418), 3 

showing that FH and PRSs are largely independent and provide complementary information in risk 4 

assessment. 5 

 6 

MATERIAL AND METHODS 7 

Participants and diseases 8 

This observational study uses FinnGen study Data Freeze 7, a collection of 306,418 adults (age ≥18) 9 

from epidemiological cohorts, disease-based cohorts, and hospital biobanks (Supplementary Table 10 

1). We used three binary definitions for FH: 1) any type of first-degree FH (FH1st morbidity or 11 

mortality), 2) any type of second-degree FH (FH2nd), and 3) parental cause of death (FHP). Both for 12 

the index patients and their relatives (i.e.  how FH was obtained), cases were identified through 13 

nationwide healthcare registries. The 24 diseases were chosen based on availability of large published 14 

genome-wide association studies (GWAS) with full summary statistics available for genome-wide 15 

PRSs (Supplementary Table 2). Case definitions are in Supplementary Table 3. Registry follow-16 

up ended at Dec 31, 2019, with parental causes of death available until Dec 31, 2018. For FHP, we 17 

studied 15 out of the 24 diseases, identifying causes of death (immediate, contributing, and underlying 18 

causes of death). Details on genotypes, PRS generation and inference of relatedness is in 19 

Supplementary Methods. 20 

 21 

Polygenic risk scores 22 

For each of the 24 diseases, we constructed disease-specific PRSs in a systematic manner 23 

(Supplementary Table 2). The number of cases in the GWASs ranged from 3,769 (epilepsy) to 24 

567,460 (eGFR used for chronic kidney disease). PRS-CS was used for inferring posterior effect sizes 25 

for calculation of genome-wide PRSs31 with 1000 Genomes Project European sample (N = 503) as 26 

the external linkage disequilibrium (LD) reference panel.32 The PRS was analyzed primarily as a 27 

continuous variable, with selected analyses applying either a 1) binary definition of FH, with high 28 

PRS defined as a PRS in the top decile of the distribution, with the rest as the reference group, or 2) 29 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.06.22277333doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.06.22277333
http://creativecommons.org/licenses/by-nd/4.0/


 5 

PRS categories 0-10%, 10-20%, 20-40%, 40-60%, 60-80%, 80-90%, and 90-100%, with the 1 

reference group being 40-60%.  To assess the impact of high vs low PRS, the reference category was 2 

33rd to 90th percentiles, and low PRS was defined as the lowest tertile of the distribution, to allow for 3 

a sufficient number of cases with low PRS. 4 

 5 

Statistical analysis 6 

Associations between FH, PRS, and risk of disease was assessed with logistic regression, with models 7 

adjusted for sex, birth year, genotyping array, cohort, and the first ten genetic principal components 8 

of ancestry. The same adjustments were applied when calculating area under the receiver operator 9 

characteristic curve (AUC) estimates. AUC estimates with 95% CIs were calculated with R package 10 

pROC. Interactions between FH and the continuous PRS (scaled to zero mean and unit variance) was 11 

assessed by introducing their interaction term to the regression model, assessing statistical 12 

significance set at a p-value threshold of 0.0013 (Bonferroni-correction for 24+15 tests). Cumulative 13 

incidences by age 80 were estimated with Kaplan-Meier survival curves (R package survminer). 14 

Statistical analyses were performed using R, version 4.1.0. 15 

 16 

 17 

RESULTS  18 

FinnGen comprises 306,418 individuals (56.3% women; mean age 59.8 at the end of follow-up in 19 

2019, s.d. 17.3). For the 24 diseases, FH was defined as 1) first-degree family history, FH1st 20 

(morbidity or mortality), 2) second-degree family history, FH2nd, and 3) parental cause of death, FHP. 21 

Each identifies the relatives’ diagnoses systematically through nationwide registries, including the 22 

hospital discharge registry (available from 1968-), causes of death registry (1964-), the Finnish 23 

Cancer Registry (1953-). FH1st and FH2nd leverage the genetic relatedness within FinnGen: out of 24 

306,418 individuals, we identified 39,444 with first-degree relative pairs based on the KING kinship 25 

coefficient33 (see methods for details; 60.3% women; mean age 53.0, s.d. 16.5; parent-offspring 26 

relationship in 19,261 individuals, full-sibling in 20,183). For breast cancer, we studied only women 27 

(15,281 individuals, mother-daughter relationship in 7,770; full sisters in 7,511) and for prostate 28 

cancer, only men (9,473 individuals; father-son relationship in 3,932; full brothers in 5,541). 29 
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 6 

Similarly, we identified 47,154 individuals with a second-degree relative in the dataset (63.2% 1 

women, mean age 47.5, s.d. 15.0; N=18,973 for breast cancer; N=12,355 for prostate cancer).  2 

Parental causes of death (FHP), were linked through causes of death registry available from 1964 to 3 

2019 and we excluded 78,436 whose both parents have died before 1964 or who had missing data on 4 

both parents (e.g. due to emigration), resulting in 227,982 individuals (mean age 53.6, s.d. 15.1; 5 

N=133,653 for breast cancer; N=94,329 for prostate cancer; 70,225 (30.1%) with one and 73,299 6 

(32.2%) with two dead parents). See Supplementary Figure 1 for study flow diagram. 7 

 8 

Family history and risk of disease 9 

First, we systematically evaluated the effects of FH on risk of disease. Figure 1 shows the prevalence 10 

of the diseases, and the prevalence and effect sizes for positive FH. The most common diseases were 11 

cardiometabolic diseases, followed by knee osteoarthritis and hypothyroidism. Positive FH1st was 12 

significantly associated with higher risk of disease in all 24 diseases except stroke. The effect sizes 13 

ranged from odds ratio (OR) 3.25 (95% confidence interval, CI, 2.41–4.37) in chronic kidney disease 14 

to OR 1.17 (0.98–1.39) in stroke (Supplementary Table 4). For FH2nd, 18/24 diseases showed 15 

evidence of an association, with their effect sizes ranging from OR 1.85 (1.19–2.89) in colorectal 16 

cancer to OR 1.17 (1.09–1.25) in hypertension (Supplementary Table 5).  Compared to FH1st, the 17 

effect sizes for FH2nd were on average 69.1% lower (s.d. 25.0%; calculated from log odds), i.e. a third 18 

of the effect of FH1st. For FHP, out of the 24 diseases, we studied 15 diseases that are well captured 19 

by causes of death and used information from all recorded causes of death (immediate, contributing, 20 

and underlying causes of death on the death certificate). For all 15 diseases, we observed an 21 

association between FHP and risk of disease, with effect sizes ranging from OR 2.82 (2.25–3.53) in 22 

seropositive rheumatoid arthritis to OR 1.12 (1.04-1.20) in stroke (Supplementary Table 6). 23 

Compared to FH1st, the effect sizes for FHP were on average 30.1% lower (s.d. 22.4%), i.e. two thirds 24 

of the effect of FH1st. 25 

 26 

Overlap of family history and polygenic risk 27 

Next, we compared the overlap between FH and PRSs. We constructed 24 genome-wide PRSs with 28 

uniform methodology using PRS-CS31, one for each disease (Supplementary Table 2). We first 29 
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 7 

compared the effects sizes per standard deviation (SD) increase for PRS, and FH1st (Figure 2, 1 

Supplementary Table 4). The PRS was associated with elevated risk in all 24 diseases. The higher 2 

the PRS, the higher was the proportion of positive FH (Supplementary Figure 2). Effect sizes for 3 

the PRS ranged from OR 2.33 (95%CI 2.10–2.558) in prostate cancer to OR 1.12 (1.05-1.20) in 4 

epilepsy. Adjusting the PRS effect size with FH1st, the change in effect size was small (mean decrease 5 

as log odds -3.0%, s.d. 1.3%). Adjusting the effect of FH1st with PRS led to a mean decrease of -6 

10.3% (s.d. 6.0%), i.e. PRS explained of tenth of first-degree family history. No effect size decrease 7 

was observed for PRS adjusting with FH2nd (Supplementary Table 5). We observed similar results 8 

for FHP (Supplementary Table 6; effect size decrease adjusting PRS effects with FHP -0.7%, s.d. 9 

0.6%, vice versa -14.5%, s.d. 9.2%). Proportional decreases in log odds by disease for all definitions 10 

of FH are in Figure 3. FH generally explained a much smaller fraction of the effect of PRS than vice 11 

versa. A similar pattern was observed categorizing the PRS and comparing high PRS (>90th 12 

percentile) to the rest of the distribution (Supplementary Table 7, Supplementary Figure 3). A 13 

high PRS conferred on average similar effect sizes as FH1st. The effect sizes particularly in common 14 

cancers and cardiometabolic diseases were higher for the PRS, whereas the effect sizes for psychiatric 15 

diseases were higher for FH1st. 16 

As early-onset FH is considered a particularly important familial risk factor, we also assessed 17 

the impact of FHP divided into tertiles of age at death. The largest effect size was observed for FHP 18 

with the lowest age tertile, in line with early-onset FH being a stronger risk factor than late-onset FH. 19 

Adjusting the PRS with this FHP divided into age tertiles had no impact on the effect sizes of the 20 

PRSs. Adjusting this FHP by PRS resulted in the largest effect size decreases for the youngest age 21 

tertile, but the decreases were overall small. These show that the PRS was independent of both early- 22 

and late-onset FHP (Supplementary Table 8, Figure 4). 23 

With formal interaction testing, we did not identify any systematic interactions between FH 24 

and PRS (Supplementary Figure 4), which was further supported by observing similar PRS effect 25 

sizes in individuals with positive and negative FH1st (Figure 5). 26 

 27 

  28 
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 8 

Polygenic risk in individuals with a positive family history 1 

Next, having assessed the overlap between FH and the PRSs, we estimated how high and low PRS 2 

impact disease risk in individuals with positive FH1st. Looking at cumulative incidence of risk of 3 

disease with the PRS divided into three groups (high PRS >90%, average PRS 33-90%, and low PRS 4 

<33%), we observed that a low PRS systematically compensated for the impact of positive FH1st, and 5 

individuals with a combination of high PRS and positive FH1st had a particularly high risk  6 

(Figure 6).  Survival curves for a broader set of diseases, and survival curves stratifying individuals 7 

with no FH1st into similar PRS groups are in Supplementary Figures 5–6. 8 

 9 

Concordance of high polygenic risk in relatives 10 

Lastly, we assessed concordance – detection of a high PRS among first- and second-degree relatives, 11 

relevant for cascade screening in relatives of individuals with high PRS. We evaluated two questions: 12 

1) “What is the probability of having high PRS, if a relative has high PRS?” and 2) “How does this 13 

probability differ with relative’s disease status?”. For 1), on average 33.7% of the first-degree and 14 

19.8% of second-degree relatives had a similarly high PRS (Supplementary Figures 7–8). For 2), 15 

the concordance was somewhat higher with positive FH1st than with negative FH1st, with an average 16 

difference of 2.5% (range 0.0–7.9%). For FH2nd, no difference with disease status was observed 17 

(average 0.6%). 18 

 19 

 20 

DISCUSSION 21 

Covering a large proportion of the burden of non-communicable diseases in adults, we systematically 22 

compared the overlap of polygenic risk and different types of family history, showing that they 23 

provide independent and complementary information of inherited disease susceptibility in all 24 24 

studied diseases. PRS explained on average 10% of the effect of FH1st, but FH1st only 3% of the PRSs, 25 

and the PRSs were independent of both early- and late-onset family history. The PRS estimates 26 

stratified risk similarly in individuals with and without positive FH: a high PRS conferred a 27 

considerably elevated risk, whereas a low PRS compensated for the effect of FH. 28 
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 9 

To our knowledge, no previous studies have systematically compared how FH and PRS 1 

overlap and complement each other across common diseases. Our results are in line with previous 2 

disease-specific reports observing at most a modest attenuation in the effect of FH adjusting for PRS 3 

in cardiometabolic diseases, cancers, and depression.11,15,17-27 We extend these by a systematic 4 

comparison across 24 common diseases, using genome-wide PRSs generated with uniform 5 

methodology, by measuring FH uniformly through nationwide healthcare registries, and by 6 

leveraging genetic relatedness. Our results show that effects of FH and polygenic risk scores are 7 

independent, indicating that these measures complement each other for assessment of inherited 8 

disease risk. Compared to prevention guidelines that do not recommend use of PRS when FH is 9 

available,3 these results provide important novel data supporting the use of PRS for improving risk 10 

assessment of several diseases with major public health importance. 11 

The largely independent effects have several potential explanations. In addition to capturing 12 

shared DNA, FH measures non-genetic exposures and behaviors shared by families. In contrast, PRSs 13 

capture each person’s unique combinations of common, disease-associated genetic variants, 14 

including genetic risk variation not shared by the relatives. PRSs can be measured in any phase of 15 

life, whereas FH relies on disease events having actualized in relatives with utility in late-onset 16 

diseases. FH also assigns a similar risk for all relatives of the same degree, despite everyone carrying 17 

a unique set of genetic variants measurable through PRSs. Our observation of independent effects is 18 

also in line with earlier reports showing the importance of FH of breast and ovarian cancers in BRCA1 19 

and BRCA2 mutation carriers.34  20 

Genetic information is typically considered in clinical care only when evidence-based 21 

prevention strategies to attenuate risk are available.35 For instance, risk assessment of cancers has 22 

long tradition of comprehensive ascertainment of FH to identify familial clustering36 when targeted 23 

interventions and screening tools are available.2,37 Our results indicate that PRSs could be used to 24 

refine risk assessment of breast, prostate, and colorectal cancer, even when information about FH is 25 

available. In glaucoma, a high PRS and FH had equal and largely independent effects, but only FH is 26 

currently used for assessing risk of glaucoma in patients with ocular hypertension.38 The risk of 27 

coronary artery disease and type 2 diabetes can be decreased by lifestyle interventions and 28 

medications, and FH is commonly used for assessing their risk.3,39 For both diseases, we observed 29 
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 10 

larger effects for high PRS than for FH. Moreover, a high PRS may identify individuals more likely 1 

to benefit from preventive treatments: for coronary artery disease, a high PRS can result in higher 2 

relative efficacy of statins and disclosing PRS risk together with traditional risk factors can motivate 3 

lifestyle changes.40-42 In contrast, stroke PRSs and FH show lower effect sizes than other 4 

cardiovascular diseases, likely owing to the heterogeneity of the disease and differing etiological 5 

patterns of stroke subtypes.43,44 6 

This study has multiple strengths. FH was assessed systematically and comprehensively by 7 

using linkages to high-quality nationwide registries, including hospital discharges, causes-of-death, 8 

and medication reimbursement registries, overcoming several limitations of self-reported FH such as 9 

recall bias, sensitivity to wording, and inter-individual differences in knowledge about FH. 5,6,45 We 10 

report effects of FH for disorders challenging to capture precisely from self-reported data, such as 11 

alcohol use disorder and atrial fibrillation, and show effects for diseases less studied in the field of 12 

PRSs including glaucoma and hypothyroidism. Moreover, we looked at the effect of a dichotomized 13 

PRS for comparison purposes and applying PRSs on the continuous scale would provide further risk 14 

stratification as unlike FH, extremes of PRSs can also be used to identify individuals at particularly 15 

high or low risk. FinnGen’s wide age range is a key strength of the study, allowing systematic 16 

comparison of polygenic risk and FH across 24 diseases. Our results are also supported by 17 

quantitative genetic theory.46,47 Average concordances of a high PRS among first- and second-degree 18 

relatives was 33.7% and 19.8%, in line with estimates on cardiometabolic diseases in UK Biobank,48 19 

and in agreement theoretically derived concordance estimates of 32.4% and 19.3%.47 Moreover, the 20 

study provides catalogue of risk estimates for both FH of disease and PRSs in a large-scale biobank 21 

study. 22 

The study was limited to individuals of  European ancestry among whom current PRSs have 23 

the highest utility.49 Although our recording of FH1st and FH2nd was primarily based on only one 24 

relative, FHP contained both parents, and FH estimates are well in line with earlier reports from 25 

epidemiological cohorts and large registry studies (Supplementary Table 9). Although the various 26 

registries are efficient in capturing cases, milder disease forms such as mild osteoarthritis or atopic 27 

dermatitis may remain uncaptured. Similarly, common conditions such as depression or alcohol use 28 

disorder are often underreported unless severe or contributing to somatic pathologies. With over half 29 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.06.22277333doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.06.22277333
http://creativecommons.org/licenses/by-nd/4.0/


 11 

of the study participants in the dataset ascertained from hospital biobanks or disease cohorts, the data 1 

is somewhat enriched in cases, resulting in cumulative incidences may not be fully generalizable to 2 

the population. 3 

In conclusion, we studied the interplay of family history and genome-wide PRSs, 4 

systematically comparing effects across 24 common diseases. The effects of family history and PRS 5 

were largely independent, and the pattern was observed across the diseases. We demonstrate that 6 

polygenic risk and family history are not interchangeable measures of genetic susceptibility. Instead, 7 

they provide complementary information, bringing opportunities for a more comprehensive way of 8 

assessing inherited risk. A PRS can be calculated early of life to serve as risk indicator in individuals 9 

without family history of disease, while providing effective risk stratification also among individuals 10 

with positive family history. 11 

 12 
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Figure 1. Disease prevalence and prevalence and effect sizes of positive family history. Panel A: disease prevalence in individuals for whom we studied risk of 1 
first-degree family history Panel B: Prevalence of first-degree family history (left column), second-degree family history (middle column), and parental cause of 2 
death (right column). Panel C: Effect size of first-degree family history (left column), second-degree family history (middle column), and parental cause of death 3 
(right column) with respective diseases. For parental causes of death, we studied 15 out of the 24 diseases. 4 

 5 
Sample size in panel A: total N = 39,444, N = 15,281 for breast cancer, N = 9,473 for prostate cancer. Sample sizes in panels B-C: first-degree family history as in panel A, second-degree family history total N = 47,154, 6 
N = 18,973 for breast cancer, N = 12,355 for prostate cancer, and parental causes total N = 227,982, N = 133,653 for breast cancer; N = 94,329 for prostate cancer.  Odds ratios (OR) were obtained from logistic regression 7 
models adjusted for sex (except for breast and prostate cancer), birth year, genotyping array, cohort, and the first ten genetic principal components of ancestry.8 
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Figure 2. Cross-adjustment effects for first-degree family history (FH1st), and respective polygenic risk scores (PRS). The impact of adjusting the PRS effect with first-1 
degree FH1st (panel A) and vice versa (panel B). The diamonds represent the unadjusted effects and the squares the adjusted effects. The PRS explained on average 2 
10% of the effect of FH1st, but FH1st only 3% of the PRSs. The PRS effect is shown per one SD increase. 3 
 4 

 5 
 6 
Total N = 39,444, N = 15,281 for breast cancer, N = 9,473 for prostate cancer. Odds ratios (OR) were obtained from logistic regression models adjusted for sex (except for breast and prostate cancer), birth year, 7 
genotyping array, cohort, and the first ten genetic principal components of ancestry.8 
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Figure 3. Proportional decreases in log odds by disease for first-degree family history FH1st (panels A-B), for 1 
second-degree family history FH2nd (panels C-D), and parental causes of death FHP (panels E-F). The left column 2 
(panels A, C, E) represents decreases in effect size of high polygenic risk score (PRS; defined as top 10% of the 3 
distribution) adjusting for family history. The right column (panels B, D, F) represents decreases in effect size of 4 
family history adjusting for high PRS. The y axis represents the decrease in the effect size, calculated by dividing 5 
the log odds from the adjusted logistic regression model with the log odds from the non-adjusted model. For 6 
instance, in panel A, the y axis represents the following quantity: (log odds of PRS adjusting for FH1st) / (log odds 7 
of PRS without adjusting for FH1st). 8 

 9 
The reference category for PRS was the rest of the distribution (individuals below the 90th percentile). In panel D, the proportion of Alzheimer’s 10 
disease was set at 1.00 as we did not observe any association for second-degree family history of Alzheimer’s disease. 11 
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Figure 4. Polygenic risk is independent of both early- and late-onset family history. As early-onset family history is considered a particularly important familial risk 1 
factor, we also assessed the impact of FHP divided into tertiles of age at death. Panel A: Adjusting the effect of polygenic risk score (PRS; per SD) by parental causes 2 
of death (FHP) divided into tertiles of age at death had no impact on the effect sizes of the PRSs. Panel B: Adjusting the effects FHP by tertiles of age at death by PRS 3 
resulted in the largest effect size decreases for the youngest age tertile, however, for most diseases the difference by age tertile was small. The diamonds represent the 4 
unadjusted effects and the squares the adjusted effects. In panel B, the effect sizes from with lowest to highest age at death are displayed from left to right, and the 5 
reference group for each disease is individuals with negative FHP. 6 
 7 

 8 
 9 
Sample size: total N = 227,982; N = 133,653 for breast cancer; N = 94,329 for prostate cancer. Odds ratios (OR) were obtained from logistic regression models adjusted for sex (except for breast 10 
and prostate cancer), birth year, genotyping array, cohort, and the first ten genetic principal components of ancestry.  Age limits for tertiles of FHP, and the number of individuals with parental 11 
cause of death in each tertile are reported in Supplementary Table 7.12 
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Figure 5. Effect sizes of polygenic risk scores stratified by first-degree family history (FH1st), assessed for the 10 most prevalent diseases. 1 
 2 
 3 
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Figure 6.  The impact of polygenic risk on disease risk in individuals with positive family history. The survival curves show cumulative incidences for individuals with 1 
positive first-degree family (FH1st), stratified by level of polygenic risk score (PRS). High PRS was defined as top decile of the PRS distribution and low PRS as the 2 
bottom tertile of the PRS distribution. The figure shows results for the five diseases with the largest effect sizes for PRS, and for breast and prostate cancer. Survival 3 
curves for a broader set of diseases, and survival curves stratifying individuals with no FH1st into similar PRS groups are in Supplementary Figures 5–6. 4 
 5 

 6 
 7 
Total N = 39,444, N = 15,281 for breast cancer, N = 9,473 for prostate cancer. Analyses were performed for diseases with an OR >2 for high PRS in Figure 2 (15/24 diseases), and over 10 cases 8 
in each subgroup, excluding Alzheimer’s disease due to its average onset late in life. 9 
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