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Locations	of	people	moving	about	their	lives	are	now	commonly	tracked	through	smartphones	and	
wearable	devices	that	access	the	Global	Positioning	System	(GPS).	Immediate	measures	include	the	
estimated	locations	that	identify	visited	map	points	and	the	travel	paths	between	them.	Here	we	
introduce	 DPLocate,	 an	 open-source	 GPS	 data	 analysis	 pipeline	 designed	 to	 derive	 measures	
that	abstract	away	 from	 the	 original	 locations	 (and	 hence	 the	 identity	 of	 the	 individuals)	 and	
capture	 dynamics	 related	 to	 social,	 vocational,	 sleep,	 and	 clinical	 behaviors.	We	divide	 derived	
measures	 into	 primary	 and	 secondary.	 Primarily	 derived	 measures	 stay	 close	 to	 the	 original	
location	data	and	extract	deidentified	metrics,	including	distance	traveled,	time	spent	at	the	main	
locations,	 and	 estimates	 of	 travel	 activity	 (entropy).	 Secondary	 derived	measures	 estimate	 life	
patterns	 that	 are	 captured	 incidentally	by	 extracting	 returns	 to	 the	Points	 of	 Interest	 (POIs)	 in	
behaviorally-relevant	 time-bands.	For	 example,	 measures	 of	 behavioral	 dynamics	 and	 social	
interactions	can	be	gleaned	by	estimating	the	time	spent	in	POIs	across	day,	evening,	night,	and	
late-night	time-bands.	The	utility	of	these	derived	measures	for	research	is	illustrated	in	college	
students	 and	 for	 clinical	 monitoring	 in	 individuals	 living	 with	 psychiatric	 disorders.	 Captured	
dynamics	 included	behavioral	 transitions	at	 the	onset	of	 the	Covid-19	 lockdown.	 Limitations	of	
derived	data	are	discussed,	including	the	necessity	to	protect	derived	data	from	identification	and	
possible	ways	in	which	the	derived	data	might	be	misinterpreted.	
	

The	widespread	availability	of	smartphones	and	wearable	devices	accessing	the	Global	Positioning	
System	(GPS)	offers	the	opportunity	to	track	individuals	as	they	go	about	their	lives.	Recent	studies	suggest	
that	 the	monitoring	and	 classification	of	 individuals’	 locations	during	daily	 routines	provide	accessible	
measures	of	human	behavior.	In	addition	to	extracting	estimates	of	mobility,	entropy,	and	trajectories	from	
continuously	recorded	data	[1,2],	significant	points	of	interest	(POIs)	enable	researchers	to	investigate	the	
relocation	patterns	as	a	window	into	an	individual’s	life	[3-6].	Therefore,	there	is	an	ongoing	need	for	open-
source,	 secure	 pipelines	 to	 analyze	GPS	 data	 and	 extract	 behavioral	 patterns	 on-site	without	 exposing	
identifiable	location	coordinates.	

Existing	 algorithms	 to	 analyze	 GPS	 data	mostly	 rely	 on	 a	 combination	 of	 temporal,	 spatial,	 and	
conceptual	features	to	extract	the	behavioral	components	[7].	Meanwhile,	the	technical	and	idiosyncratic	
characteristics	of	analyzing	GPS	data	make	it	an	evolving	field	of	interest	for	investigators.	Some	of	those	
characteristics	include:	(1)	the	identifiability	of	the	GPS	coordinates	makes	sharing	or	even	viewing	the	
raw	data	challenging	[8];	(2)	GPS	signal	loss	occurs	due	to	intermittent	satellite	signals,	operation	system	
block,	and	manual	settings	to	avoid	battery	drainage	[9];	and	(3)	the	inaccuracy	of	the	recorded	GPS	using	
different	applications	can	bias	clustering	and	behavioral	inferences.	

In	this	paper,	extending	from	[10],	an	open-source	GPS	analysis	pipeline	called	Deep	Phenotyping	
of	Location	(DPLocate)	 is	 introduced.	DPLocate	securely	reads	encrypted	GPS	data	and	estimates	daily,	
weekly,	and	Time-Band	restricted	patterns	to	infer	sleep,	work	and	social	behaviors	in	addition	to	major	
life	events	[11].	A	digital	phenotyping	research	platform,	Beiwe	[12],	installed	on	smartphones,	provided	
data	for	evaluation	of	the	DPLocate	pipeline,	though	the	pipeline	is	general	and	can	build	from	any	platform	
that	 extracts	 temporally-extended	 raw	 GPS	 data.	 Within	 DPLocate,	 epoch-based	 temporal	 filtering	
accounts	for	the	intermittency	of	the	GPS	signal	by	focusing	on	temporally	adjacent	data	point	sequences,	
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called	 Epochs,	 as	 data	 units	 instead	 of	 single	 data	 points	 and,	 consequently,	 mitigates	 the	 accuracy	
challenge	by	removing	outliers	and	Epochs	with	insufficient	data	points.	After	applying	a	density-based	
spatial	clustering	algorithm	to	the	Epochs	to	detect	POIs,	Markov	Model	diagrams	are	utilized	to	represent	
the	probability	of	 transitioning	 from	one	POI	 to	another	during	behavioral-relevant	Time-Bands.	Time-
Bands	separate	Day,	Evening,	Night,	and	LateNight	time	periods.	These	Time-Bands	were	chosen	to	roughly	
correspond	to	periods	during	which	individuals	work	or	attend	school,	socialize,	and	sleep.	

The	DPLocate	pipeline’s	output	for	each	participant	includes	an	abstracted	GPS	map	with	clustering	
results,	a	color-coded	daily	behavioral	map	displaying	visited	POIs,	and	Markov	Model	transition	diagrams	
between	POIs	during	each	Time-Band.	These	graphical	outputs	provide	a	unique	behavioral	view	of	the	
individual	that	can	be	compared	with	other	participants.	As		proof-of-concept	for	DPLocate,	the	behavioral	
patterns	of	individuals	in	two	cohorts	were	tracked,	along	with	self-reported	mood	measures.		
	

Materials	and	Methods	
	

Participants		
Two	separate	samples	of	individuals	contributed	data:		
Study	1:	Undergraduate	Study.	Four	undergraduate	participants	(age:	mean	(SD)	19.8	(0.5),	range:	

19-20	years	old;	all	females)	were	recruited	from	a	local	private	institution.	The	study	duration	consisted	
of	one	academic	semester,	including	buffers	into	winter	and	summer	breaks	on	either	side	to	account	for	
natural	transition	periods	(maximum	28	weeks).	Participants	were	compensated	as	follows:	per	hour	for	
the	 in-lab	 and	 online	 personality	 testing	 sessions,	 a	 milestone	 bonus	 for	 completing	 the	 study,	 and	 a	
monthly	bonus	to	encourage	continued	participation.	Participants	were	required	to	be	enrolled	full-time	
in	 classes	 and	 own	 a	 smartphone	 compatible	 with	 the	 study	 smartphone	 application,	 Beiwe	 [12].	
Participants	were	not	excluded	 for	current	or	past	psychiatric	 treatment	or	 if	 they	began	 treatment	or	
medication	for	mental	health	issues	during	the	course	of	the	study.	All	study	procedures	were	approved	by	
the	Institutional	Review	Board	of	Harvard	University.	

Study	2:	Hospital	 Study.	Five	 individuals	 (age:	mean	 (SD)	30.6	 (10.0),	 range:	24-48	years	old;	1	
female)	were	recruited	from	an	ongoing	cohort	following	the	clinical	progression	of	severe	mental	illness	
at	a	local	hospital.	The	clinical	examples	in	the	previous	actigraphy-based	sleep	study	were	selected	from	
the	same	cohort	[10].	Individuals	were	diagnosed	with	psychotic	disorders	(bipolar,	n=2;	schizophrenia,	
n=3)	using	the	structured	clinical	interview	for	DSM-IV	[13].	Participant	enrollment	for	this	study	targeted	
obtaining	>1	year	of	data	for	each	participant	(duration:	mean	(SD)	357.8	(97.9)	days,	range	219-495	days),	
which	included	a	nearly	continuous	collection	of	smartphone	data	from	each	participant.	Participants	were	
compensated	for	complying	with	the	data	collection,	as	well	as	for	monthly	in-person	study	visits	during	
which	 clinical	 assessments	were	 recorded	 to	 quantify	 disease	progression	using	 clinical	 gold	 standard	
measures.	 Milestone	 bonuses	 were	 also	 provided	 to	 encourage	 continued	 participation.	 All	 study	
procedures	were	approved	by	the	Institutional	Review	Board	of	Partners	Healthcare.	
	

GPS	Data	Acquisition	
Participants	installed	a	research	smartphone	application,	Beiwe	[12,14],	designed	to	actively	and	

passively	collect	data.	Beiwe	has	been	utilized	in	several	clinical	[12,15]	and	behavioral	studies	[10,14,16-
18]	 with	 different	 settings,	 and	 the	 design	 has	 been	 improved	 based	 on	 user	 preference	 and	 study	
requirements.	In	addition	to	active	self-reported	data	collection,	Beiwe	also	passively	collects	data	from	
participants’	smartphones.	In	order	to	put	less	strain	on	participants’	phone	batteries,	GPS	sampling	was	
set	to	collect	for	2	minutes	every	10	minutes.	However,	the	actual	(obtained)	sampling	is	not	static	and	can	
vary	based	on	the	participant's	movement	or	availability	of	the	GPS	signal.	As	a	result,	some	data	points	
are	 recorded	 for	 a	 shorter	 time	 and	with	 fewer	 or	more	 gaps	 in	 between.	The	 goal	 of	 this	 paper	 is	 to	
introduce	 the	DPLocate	pipeline,	 to	 investigate	 the	behavior	 and	 life	dynamics	of	 individuals	based	on	
analyzing	their	GPS	data	collected	intermittently	by	smartphone.	The	modules	of	the	pipeline	are	explained	
below	and	shown	in	the	block	diagram	in	Figure	1.	
	

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 10, 2022. ; https://doi.org/10.1101/2022.07.05.22277276doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.05.22277276
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
------------------------------------------------------------	

Insert	Figure	1	About	Here	
------------------------------------------------------------	

	

Secure	Handling	of	the	Data		
Secure	handling	of	GPS	data	is	critical	[19-21]	because	the	GPS	data	files	contain	location	positions	

with	 their	 recorded	 times,	 exposing	 identifiable	 information	 such	 as	 home,	 work,	 and	 even	 partner’s	
addresses.	Therefore,	to	protect	the	data,	all	raw	data	are	stored	as	encrypted	files.	Moreover,	a	systematic	
practice	is	maintained	to	securely	delete	any	decrypted	files	generated	by	the	pipeline	in	a	fraction	of	a	
second	post-decryption;	 the	decrypted	data	are	kept	only	 in	 the	Random-Access-Memory	(RAM)	of	 the	
system	during	the	entire	procedure	without	being	stored	anywhere.	The	result	of	each	milestone	is	saved	
as	 an	 encrypted	 file	 under	 the	 same	 protected	 directory	 for	 the	 individual.	 Within	 our	 local	
implementation,	 the	 DPLocate	 pipeline	 runs	 behind	 institutional	 firewalls	 designed	 to	 secure	 human	
research	data,	where	encrypted	files	are	also	stored.	
	

Epoch-based	Preprocessing	
The	DPLocate	pipeline	aims	to	extract	patterns	of	behaviors	and	markers	from	the	semi-continuous	

passive	data.	For	GPS	data	analysis,	several	studies	[22-24]	suggest	that	the	POIs,	the	places	most	visited	
by	the	individual,	are	key	anchors	to	analyze	location-related	behaviors.	Accordingly,	instead	of	tracking	
the	participants’	trajectories,	the	main	target	of	this	pipeline	is	a	discrete	representation	of	the	individuals’	
daily	mobility	patterns	based	on	detected	POIs.	Some	studies	incorporate	their	POI	detection	algorithm	
with	the	data	acquisition	procedure	[23].	Other	studies	use	semantic	and	adaptive	methods	to	adjust	the	
sampling	rate	[25],	and	still	others	detect	the	POIs	based	on	the	mobility	speed	[26-28].	Here	we	deployed	
a	data-driven	clustering	approach	of	the	raw	data,	which	was	collected	on	a	semi-continuous	basis	limited	
to	the	technical	availability	of	the	GPS	signal	and	the	phones’	battery	life.	The	pipeline’s	approach	to	the	
spontaneity	 and	 discontinuity	 of	 GPS	 data	 [29-30]	 is	 to	 apply	 several	 filtering	 techniques	 at	 the	
preprocessing	stage	to	increase	the	confidence	level	of	location	detection	using	Epoch-based	analysis.		

An	Epoch	is	defined	as	a	collection	of	1	to	100	data	points	that	are	obtained	continuously	and	are	at	
least	45	seconds	apart	from	the	neighboring	Epochs.	In	rare	cases	where	Epochs	longer	than	5	minutes	are	
detected,	they	are	broken	into	smaller	Epochs	less	than	2	minutes	long.	A	table	of	the	parameters	of	the	
preprocessed	 data	 is	 formed	 with	 the	 information	 of	 each	 Epoch	 in	 every	 row	 that	 are	 used	 in	
preprocessing	step	(Table	I).	As	reported	in	the	literature	[3,31,32]	and	confirmed	by	our	collected	data,	
the	smartphones	sometimes	lose	the	GPS	satellite	signal	and	rely	on	the	less	accurate	cell-tower	estimated	
coordinates,	which	yields	jitter	in	the	recorded	data	[4].	Therefore,	only	the	Epochs	with	more	than	10	data	
points	(num_loc)	are	included	so	that	coherence	of	data	points	could	be	checked	using	statistical	analysis.	
Additional	filtering	is	then	applied	to	recalculate	the	center	of	the	Epoch	(mean_loc_lat,	mean_loc_lon)	by	
excluding	 extreme	 points	 outside	 a	 3	 standard	 deviation	 distance	 from	 the	 Epoch’s	 original	 center	
(num_loc_3sd).	The	Epoch-based	analysis	acts	as	a	filter	to	remove	artifacts	and	unclear	transition	points	
in	 the	GPS	signal.	Each	Epoch,	regardless	of	 its	number	of	raw	data	points,	 is	counted	as	a	single	point	
represented	by	its	geographical	center	(mean_loc_lat_filt,	mean_loc_lon_filt)	for	later	analyses.	
	

Point	of	Interest	(POI)	Detection	Algorithm		
After	preprocessing	the	GPS	data	using	the	Epoch-based	filtering,	the	goal	of	the	DPLocate	pipeline	

is	to	detect	the	visited	POIs.	Extensive	research	has	been	conducted	to	design	and	utilize	various	versions	
of	POI	detection	algorithms	for	different	applications	[3,22].	Multiple	approaches	base	their	clustering	on	
the	spatial	distribution	of	the	collected	data	[33,34].	Accordingly,	DPLocate	deploys	a	spatial	density-based	
clustering	algorithm,	which	is	a	modified	version	of	the	Density-Based	Clustering	Algorithm	with	Noise	
(DBSCAN)	[35,36],	to	find	the	80	most	visited	locations	of	the	individual	during	the	data	collection	period.	
Subsequently,	the	algorithm	then	refines	the	locations	to	the	80	locations	with	the	maximum	number	of	
Epochs	in	their	50	meters	neighborhood	weighted	by	their	proximity	to	the	center.	After	converting	the	
geographical	coordinates	 into	an	x-y	spatial	map,	 the	score	 for	each	 location	 is	calculated	based	on	the	
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4 
equation	shown	in	Figure	1	(i.e.,	the	sum	of	the	inverse	exponential	distance	of	all	points	in	the	50	meters	
neighborhood).	POIs	are	chosen	sequentially	by	excluding	the	data	points	in	the	50	meters	neighborhood	
of	the	already	selected	POIs.		

To	ensure	the	adequate	separation	of	the	neighboring	areas	for	all	POIs,	in	the	first	round	we	select	
the	150	most	scored	points;	in	the	second	round,	a	separation	factor	of	85%	is	applied	between	clusters.	
The	points	with	more	than	15%	(one	minus	85%)	data	in	common	with	each	other	are	combined	to	make	
one	point.	The	80	highest	scored	points	are	then	selected	as	the	POIs	of	the	individual.	An	example	of	these	
detected	POIs,	 represented	by	 their	 centers	 and	50	meters	neighboring	 circles,	 are	demonstrated	on	a	
geographical	map	to	show	their	distribution	and	distance	from	each	other	(Figure	2).	

	

------------------------------------------------------------	
Insert	Table	1	and	Figure	2	About	Here	

------------------------------------------------------------	
	

Assigning	Epochs	to	the	POIs		
After	 identifying	 the	 POIs,	 the	 next	 step	 assigns	 each	 Epoch	 to	 one	 of	 the	 selected	 POIs.	 Since	

DPLocate	is	designed	to	investigate	the	behavioral	dynamics	of	the	individual	rather	than	to	pinpoint	their	
exact	locations,	the	coverage	area	of	each	POI	is	defined	as	a	circle	centered	at	the	POI	with	a	radius	of	120	
meters	bounded	by	the	neighboring	POIs.	If	the	point	is	in	the	coverage	area	of	one	or	more	POIs,	the	Epoch	
is	assigned	 to	 the	closest	POI.	Visualization	of	 the	assigned	Epochs	 is	a	valuable	 tool	 to	 investigate	 the	
individuals’	 behavior	 before	 any	 attempt	 to	 extract	mathematical	models.	 Consequently,	 based	 on	 the	
Epoch’s	time	and	the	assigned	POIs,	a	color-coded	daily	map,	as	shown	in	Figure	3A,	is	produced	for	each	
individual	with	 the	 x-axis	 demonstrating	 the	 relative	 day	 numbers	 (started	 at	 the	 consent	 day	 in	 our	
studies)	and	the	y-axis	showing	the	daily	hours	from	12AM	to	12AM.	The	x-axes	in	the	daily	maps	in	this	
paper	 are	 shuffled	 to	 further	 protect	 the	 identity	 of	 the	 individuals.	 In	 these	 daily	 maps,	 dark	 gray	
represents	the	estimated	Home	location,	the	most	visited	POI.	In	the	case	where	the	Epoch	is	not	in	the	
coverage	area	of	any	POI,	it	is	considered	as	unknown	location	shown	with	light	gray	color;	otherwise,	the	
allocated	Epochs	are	colored	based	on	the	clustered	POI	colors	on	the	geographical	map.	In	the	final	step,	
the	 assigned	 colors	 are	 extended	 to	12	minutes	before	 and	 after	 the	Epochs’	 times,	 limited	 to	half	 the	
distance	from	the	neighboring	Epochs	(Figure	3B).	
	

------------------------------------------------------------	
Insert	Figures	3	and	4	About	Here	

------------------------------------------------------------	
	

Markov	Model	
	 The	color-coded	daily	map	of	locations	is	a	powerful,	intuitive	presentation	of	the	individual’s	daily	
routines	during	 life	episodes	such	as	school,	work,	and	weekends.	Several	prior	studies	have	sought	 to	
extract	mathematical	models	such	as	enhanced	versions	of	Markov	[37-39],	Bayesian	[40],	and	Dynamic	
Network	[41]	models	in	order	to	predict	the	next	location	of	the	individual	based	on	the	previous	locations.	
In	DPLocate,	however,	the	focus	is	on	extracting	and	modeling	the	daily	patterns	and	recognizing	various	
behavioral	phenotypes	rather	than	an	accurate	prediction	of	the	individuals’	upcoming	change	in	location.	
Therefore,	 Markov	 Model	 diagrams	 are	 deployed	 with	 some	 data	 modifications	 and	 adjustments	 to	
demonstrate	 the	stationary	repeating	patterns.	As	a	preprocessing	procedure,	 the	POIs	 farther	 than	25	
kilometers	 from	Home,	 and	 POIs	 that	 happen	 only	 once	 during	 the	 study	 are	 removed	 from	 the	map.	
Further,	 the	 pipeline	 correlates	 staying	 at	 the	 Home	 location	 during	 each	 day	 with	 other	 days,	 and	
calculates	 a	 similarity	 parameter	 using	 a	 moving	 window	 to	 detect	 and	 remove	 the	 days	 with	 rare	
structure,	such	as	nights	that	occur	at	the	end	of	the	semester	or	travel	days	in	our	studies	(Figure	4A).	As	
a	final	preprocessing	step,	interpolation	is	used	to	fill	in	the	brief	missing	periods	with	the	nearest	location,	
excluding	any	hours	with	 fully	missing	data	 (Figure	4B).	These	preprocessing	 steps	 focus	on	 the	more	
stationary	behaviors	of	the	individual	at	the	expense	of	losing	some	rare	behavioral	events.	However,	the	
users	can	choose	not	to	exclude	those	rare	events	by	minor	modifications	to	the	code.	An	example	of	the	
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5 
daily	map	with	the	missing	days	removed	and	the	x-axis	modified	based	on	the	existing	days	to	illustrate	
the	behavioral	pattern	is	presented	in	Figure	5.	
	

------------------------------------------------------------	
Insert	Figures	5	and	6	About	Here	

------------------------------------------------------------	
	

Another	 assumption	 incorporated	 into	 the	 pipeline	 to	 estimate	 the	 Markov	 Model	 transition	
diagram	is	partitioning	the	day	into	four	Time-Bands,	including	Day	(9AM	to	5PM),	Evening	(6PM	to	10PM),	
Night	(10PM	to	2AM),	and	LateNight	(2AM	to	6AM)	for	each	individual	as	shown	in	Figure	6A.	Time-Band	
epochs	are	based	on	the	usual	activity	time	of	typical	individuals	but	are	not	tailored	to	account	for	atypical	
life	patterns	(e.g.	a	night	worker).	The	gaps	between	5PM	to	6PM	or	6AM	to	9AM	are	left	intentionally	to	
keep	the	Time-Band	epochs	associated	with	the	regular	activity	time	of	typical	 individuals.	Applying	all	
these	adjustments,	the	Markov	model	represents	the	probability	of	moving	from	one	POI	to	another	in	the	
next	15	minutes	during	a	specific	Time-Band.	The	transition	probability	matrix	for	the	Markov	model	is	
calculated	separately	for	each	individual	without	using	the	group	data	to	build	the	transition	model	[42,36].	
Based	on	 the	calculated	probabilities,	 transition	diagrams	as	shown	 in	Figure	6B	are	depicted	 for	each	
Time-Band,	 where	 the	 POIs	 are	 the	 nodes	 with	 corresponding	 colors,	 and	 the	 thickness	 of	 the	 edges	
represents	 the	 probability	 of	 changing	 location	 to	 another	 POI.	 The	 thickness	 of	 self-repeating	 edges	
reflects	the	relative	staying	time	at	that	POI	during	the	Time-Band.	

	

Code	availability	
The	 DPLocate	 pipeline	 software	 package	 is	 available	 [11]	 as	 an	 open-source	 package	 to	 be	

downloaded	and	used	by	the	research	community.	
	

Results	
	

Behavioral	Phenotyping	Based	on	LateNight	Behavioral	Time-Band	Activity	Model	
The	DPLocate	pipeline	(see	Methods,	Figure	1)	is	developed	to	investigate	the	relocating	behavior	

of	the	individuals	using	GPS	data.	The	main	outcome	of	this	pipeline	is	the	patterns	of	relocations	during	
Behavioral	Time-Bands.	A	 common	phenotype	 that	 emerged	was	 identifying	 individuals	with	only	one	
location	during	the	LateNight	Time-Band.	This	phenotype,	as	an	example	(P2),	is	presented	in	Figure	7,	
shows	the	all-gray	LateNight	Time-Band	map	with	a	single-node	Markov	Model	diagram.	An	observation	
in	this	example	is	that	the	individual	also	has	a	simple	Night	Time-Band	activity	pattern	regardless	of	their	
Day	Time-Band	activity	pattern.	Another	phenotype	that	emerges	is	some	individuals	display	2	or	more	
distinct	LateNight	 locations	without	 changing	place	during	 this	Time-Band.	A	 relevant	 example	 (P3)	 is	
presented	in	Figure	8.	The	Markov	Model	diagram	of	this	participant	is	represented	by	two	separate	nodes	
with	 rare	 transitions	between	 them	and	a	high	probability	of	 staying	at	 the	current	LateNight	 location	
overnight.	 The	 frequency	 and	 randomness	 of	 staying	 at	 the	 other-than-Home	 location	 support	 the	
possibility	the	individual	is	visiting	a	partner’s	place.	Another	observation	out	of	this	phenotype	is	that	the	
individual	spends	the	Night	Time-Band	at	the	same	place	where	they	will	stay	later	that	night.		
	

------------------------------------------------------------	
Insert	Figures	7	and	8	About	Here	

------------------------------------------------------------	
	

Another	phenotype	that	is	common	among	the	college	students	is	staying	at	various	locations	before	
going	back	Home	late	into	the	night.	An	example	(P1)	of	this	phenotype	was	presented	in	Figure	6	of	the	
Methods	section,	where	the	Markov	Model	diagram	shows	staying	late	at	different	 locations	other	than	
Home	before	eventually	going	back	Home	at	 the	end	of	 the	LateNight	Time-Band.	The	 locations	visited	
during	LateNight	Time-Band,	are	close	but	still	different	from	Home.	We	cannot	estimate	with	certainty	
when	all	of	 these	 individuals	are	sleeping	unless	we	have	the	wrist-band	accelerometer	data	that	were	
comprehensively	analyzed	in	[10].	However,	the	location	change	during	the	LateNight	Time-Band	suggests	
that	sleep	happens	much	later	into	the	night.	Later	analyses	(Figure	11)	show	that	if	the	LateNight	Time-
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6 
Band	 is	 shifted	 forward	 for	 two	 hours	 for	 this	 individual,	 one	 sees	 the	 same	 always-at-Home	 location	
pattern	as	seen	for	P2.	Moreover,	the	Night	Time-Band	of	this	individual	is	expectedly	busier	compared	to	
the	other	previous	examples.	In	addition	to	the	places	visited	during	the	LateNight	Time-Band,	around	10	
other	locations	are	visited	rather	frequently,	with	numerous	switching	among	them	during	the	Night	Time-
Band.	
	

Disturbed	Sleep	is	Detected	in	An	Individual	with	Severe	Mental	Illness	
	 DPLocate	produces	GPS-related	color-coded	daily	behavior	maps	that	reveal	idiosyncratic	sleep	and	
life	patterns	that	may	be	clinically	relevant.	For	example,	Figure	9	shows	a	behavioral	map	of	an	individual	
(P4)	with	a	disturbed	sleep	pattern.	The	color-coded	daily	map	during	the	LateNight	Time-Band	shows	
again	that	multiple	locations	have	been	visited	during	this	Time-Band.	The	striking	observation	about	this	
individual	is	the	occurrence	of	leaving	Home	in	the	middle	of	the	night,	visiting	several	places	of	interest	
and	returning	back	Home	after	15	minutes	to	1	hour	trips.	The	disturbed	sleep	also	includes	occasions	of	
leaving	 Home	 earlier	 during	 the	 Night	 Time-Band	 (after	 12AM)	 and	 not	 coming	 back	 Home	 until	 the	
LateNight	Time-Band	(before	3AM).	As	expected,	the	Markov	Model	diagram	of	this	participant	during	the	
LateNight	Time-Band	is	noticeably	busy	with	several	places	that	the	individual	switches	among,	as	well	as	
several	back-and-forth	movements	from	and	toward	Home.	Later	analyses	show	that,	unlike	the	previous	
example	(P1),	shifting	the	Time-Band	forward	does	not	find	an	always-at-Home	epoch	for	this	individual.		
	

------------------------------------------------------------	
Insert	Figure	9	About	Here	

------------------------------------------------------------	
	

Life	Event	Detection		
In	addition	to	sleep	pattern	phenotypes,	the	GPS	analysis	with	DPLocate	detects	remarkable	events	

during	individuals’	lives.	As	an	example,	the	case	(P5)	presented	in	Figure	10	shows	two	similar	events	
during	the	study	where	the	daily	routines	are	interrupted	each	time	for	about	a	week.	The	participant	stays	
at	the	same	location,	not	very	far	from	Home,	almost	all	day	and	night.	The	color-coded	daily	behavioral	
map	shows	that	some	other	points	which	are	close	to	the	same	location	have	been	visited	frequently	during	
other	days,	and	the	medical	records	confirm	that	the	individual	has	been	hospitalized	during	that	time.		

Another	event	that	takes	place	later	during	the	recorded	life	of	the	same	individual	likely	represents	
a	pattern	that	can	be	interpreted	as	beginning	and	advancing	a	new	relationship.	The	individual	starts	to	
stay	overnight	at	a	location	shown	in	light	green,	where	visits	to	the	same	location	during	the	Evening	and	
Night	 Time-Bands	 had	 been	 increasing	 for	 the	 prior	 two	weeks.	 Almost	 at	 the	 same	 time,	 the	 orange	
location	is	visited	frequently,	and	for	about	7	hours	during	the	Day	Time-Band	is	switched	with	the	pink	
POI,	which	might	 be	 a	marker	 of	work	or	daytime	 activity	 change	 as	 labeled	 in	 Figure	10A.	While	 the	
definite	reasons	for	these	changes	are	unknown,	the	pipeline	is	able	to	capture	these	changes	in	patterned	
behavior.	
	

------------------------------------------------------------	
Insert	Figure	10	About	Here	

------------------------------------------------------------	
	

LateNight	Time-Band	Adjustment	
The	Time-Band	defaults	are	chosen	based	on	a	typical	assumed	schedule.	However,	this	assumption	

does	not	always	lead	to	similar	behavioral	capture	for	all	individuals.	As	an	example,	the	Markov	Model	
diagrams	during	the	LateNight	Time-Band	for	five	participants	(P1-P5)	are	shown	in	Figure	11.	The	default	
LateNight	Time-Band	is	shifted	up	to	2	hours	backward	and	forward.	Although	the	default	assumption	is	
reasonable	for	most	of	the	participants,	the	model	for	the	late	sleeping	individual	(P1)	shows	that	if	we	
shift	forward	the	Time-Band	by	2	hours,	we	can	detect	the	time	that	the	individual	stays	at	Home	for	several	
hours	(single-node	Markov	Model	diagram)	and	might	be	associated	with	the	sleep	time	of	this	individual.	
Moreover,	 this	 table	 shows	 the	 sensitivity	 of	 the	 model	 to	 the	 LateNight	 time	 assumption	 for	 each	
individual.	As	an	example,	P3	and	P4	are	not	sensitive	to	adjusting	the	LateNight	Time-Band	and	show	
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7 
similar	patterns	of	two	locations	and	multiple	locations,	respectively.	The	analysis	on	P2	shows	that	the	
Time-Band	can	be	shifted	up	to	2	hours	later	but	not	earlier	for	this	individual,	while	the	LateNight	Time-
Band	for	P5	can	be	shifted	earlier	but	not	more	than	one	hour	later.	This	individual	appears	to	start	daily	
activities	sometime	between	7AM	and	8AM.	
	

------------------------------------------------------------	
Insert	Figure	11	About	Here	

------------------------------------------------------------	
	

Analysis	of	Weekly	Behavioral	Patterns	
Another	approach	to	increase	the	understanding	of	the	individuals’	behavior	based	on	location	is	to	

display	the	color-coded	behavioral	map	separately	for	each	day	of	the	week	with	24-hour	Time-Bands.	One	
example	presented	in	Figure	12A	shows	the	regular	weekly	pattern	of	a	student’s	(P6)	life.	For	example,	
the	 orange	 location	 on	 Monday	 and	Wednesday	 mornings	 likely	 indicates	 a	 two-day	 a	 week	 class	 or	
recurring	activity,	while	dark	blue	could	represent	a	more	general	location	that	could	include	classes,	gym	
or	dining	hall,	and	the	red	location	on	the	evenings	of	Wednesdays	and	Fridays	might	show	a	consistent	
socializing	location	or	a	different	class.	Another	interesting	observation	from	this	analysis	is	the	substantial	
difference	between	weekday	and	weekend	patterns,	consistent	with	prior	deep-phenotyping	analyses	[18].		

Another	example	is	the	weekly	behavioral	pattern	of	an	individual	living	with	severe	mental	illness	
(P7)	who	holds	a	part-time	job	(Figure	12B).	The	striking	observation	from	the	daily	behavioral	map	of	
this	individual,	which	is	more	revealing	from	the	weekly	pattern	analysis,	 is	that	this	participant	barely	
leaves	Home	(gray)	except	for	work	(orange).	The	maps	show	regular	afternoon	shifts	on	Wednesdays	and	
Thursdays,	 and	 long	 shifts	 on	 Saturdays,	 which	 are	 swapped	 later	 by	 short	 shifts	 on	 Mondays	 and	
Tuesdays.				
	

------------------------------------------------------------	
Insert	Figures	12	and	13	About	Here	

------------------------------------------------------------	
	

Mobility	Patterns	Versus	Mood	
	 Another	co-product	of	DPLocate,	in	addition	to	the	qualitative	daily	maps,	is	the	ability	to	extract	
meaningful	quantitative	daily	parameters	related	to	mobility.	Those	parameters	can	be	used	in	individuals	
to	evaluate	the	effect	of	change	in	their	daily	routines	as	a	clinical	or	life	event	measure.	Some	of	those	
parameters	presented	here	include	(1)	R	(Kilometers):	the	radius	of	a	circle	that	encompasses	all	Epochs	
visited	in	a	day,	(2)	H	(%):	the	percentage	of	the	time	the	participant	spends	at	the	day’s	dominant	location	
which	could	be	the	Home	POI	if	visited	on	that	day	or	otherwise,	the	most	visited	place	of	the	day,	(3)	P	
(#):	number	of	POIs	other	than	Home	that	the	individual	has	visited	during	the	day.	As	examples	of	their	
utility,	we	present	the	effect	of	shelter-in-place	due	to	the	Covid-19	pandemic	on	the	mobility	parameters	
as	well	as	mood	fluctuations	of	two	individuals	(P8,	P9)	living	with	psychiatric	illness.		

Figure	13	displays	the	results	for	P8.	Even	though	this	individual	does	not	have	a	full-time	job,	there	
are	multiple	places	(4-5	on	average)	other	than	Home	that	they	visit	often	for	more	than	an	hour	per	day	
before	the	Covid-19	pandemic	lockdown	(day	172	for	this	participant).	For	the	three	months	prior	to	the	
lockdown,	the	individual	visits	a	location	in	red	almost	regularly	every	morning	between	8AM	to	9AM.	The	
black	line	represents	a	moving	average	of	the	past	14-days	and	shows	that	an	average	of	80%	of	the	time	
is	spent	staying	at	home.	This	routine	is	compromised	after	the	lockdown,	with	more	than	95%	of	the	time	
spent	at	home	and	only	2-3	places	visited	per	day	each	for	brief	periods.		

The	effect	of	this	routine	change	is	paralleled	by	self-reports	of	increased	Loneliness	and	decreased	
Happiness.	 These	 emotions	 are	 part	 of	 a	 larger	 daily	 self-report	 survey	 submitted	 through	 the	 Beiwe	
platform	and	reflect	participant	responses	to	daily	questions	of	“Over	the	past	24	hours,	how	much	were	
you	feeling:	Happy	and	Lonely”	(separately).	Each	item	was	scored	on	a	Likert	scale	of	0	(Not	at	all)	to	4	
(Extremely).	The	14-day	backward	moving	window	reveals	the	increase	in	Loneliness	and	the	decrease	in	
Happiness,	at	least	for	the	first	two	months	after	the	onset	of	the	lockdown.		
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8 
Similar	results	are	shown	for	P9,	in	Figure	14.	This	individual	has	a	full-time	job	and	lives	in	three	

places	 as	 home	 (gray,	 red,	 and	 brown)	 during	 the	 1-year	 period	 of	 the	 study.	 The	 lockdown,	 which	
happened	around	day	320	for	this	participant,	is	associated	with	a	significant	drop	in	the	number	of	places	
visited	(P)	and	a	significant	increase	in	the	percentage	of	time	spent	at	home	(H).	This	routine	change	is	
also	associated	with	feelings	of	Loneliness.	
	

------------------------------------------------------------	
Insert	Figures	13	and	14	About	Here	

------------------------------------------------------------	
	
	

Discussion	
	

	 The	wide	adoption	of	smartphones	and	wearable	devices	has	led	to	growing	interest	in	pipelines	to	
extract	meaningful	 features	 from	GPS	data.	Here	we	 introduce	DPLocate,	 an	 open-source	GPS	 analysis	
pipeline	that	securely	analyzes	encrypted	raw	GPS	data.	DPLocate	uses	temporal	filtering	to	account	for	
intermittency	and	artifacts	caused	by	 the	 inaccuracy	and	 jittering	of	 the	GPS	signal	and	 then	deploys	a	
density-based	spatial	clustering	algorithm	to	identify	the	most	visited	POIs.	The	patterning	of	visits	to	and	
from	POIs,	in	turn,	provides	rich	information	about	behavior,	especially	when	analyzed	within	Time-Bands	
targeting	distinct	periods	of	the	day.	We	discuss	DPLocate	in	the	context	of	the	many	evolving	strategies	to	
acquire	and	analyze	GPS	data.	

Several	prior	studies	collected	GPS	data	by	asking	the	participants	to	carry	portable	GPS	devices,	
which	 are	 beneficial	 because	 such	 devices	 are	 optimized	 for	 continuous	 GPS	 tracking	 [4,30,34].	Many	
recent	 studies	 employ	 smartphones	 as	 the	 equipment	 to	 collect	 GPS	 data	 given	 their	 wide,	 existing	
utilization.	The	challenge	of	smartphones	is	that	the	GPS	signal,	in	practice,	is	intermittent.	To	mitigate	the	
effects	of	GPS	signal	gaps,	studies	have	additionally	exploited	the	Wifi	access	point	[3]	or	beacon-based	
data	 mining	 [43]	 to	 increase	 the	 precision	 of	 the	 location	 detection	 and	 overcome	 the	 spontaneous	
missingness	of	the	GPS	signal.	Other	studies	rely	only	on	the	signal	provided	by	the	GPS	and	deal	with	the	
data	 acquisition	difficulties	 using	 filtering	 and	 classification	 algorithms	 [44,45].	 The	DPLocate	 pipeline	
takes	such	an	approach	by	analyzing	the	raw	GPS	data	using	Epoch-based	temporal	 filtering	to	remove	
artifacts	and	attenuate	the	effect	of	missingness.	
	

DPLocate’s	Approach	to	Identifying	Points	of	Interest	
Multiple	approaches	have	been	put	forward	to	analyze	GPS	data	and	extract	relevant	features	based	

on	the	requirements	and	aims	of	different	studies.	Some	applications	focus	on	the	mobility	and	activity	of	
the	participants	with	analysis	of	their	trajectories	[46],	locomotion	modes	(walk,	drive,	ride),	or	direction	
of	movement	[40].	However,	since	the	focus	of	the	DPLocate	pipeline	is	to	investigate	the	behavior	and	life	
dynamic	of	individuals,	it	is	aligned	with	studies	that	target	individuals’	POIs	[22]	and	rank	them	based	on	
their	significance	[26],	frequency	of	visit	[31],	or	the	length	of	time	spent	at	the	locations	[47].	Clustering	
algorithms	have	 been	developed	 for	 the	 purpose	 of	 localizing	GPS	data	 that	 variably	 rely	 on	 temporal	
information	 (i.e.,	 the	 locations	 where	 the	 person	 stays	 more	 or	 has	 a	 lower	 speed	 [31,48]),	 spatial	
information	(i.e.,	the	most	visited	locations	[36,49]),	semantic	information	(i.e.,	home,	work,	shopping	and	
school	categories	[25]),	or	combinations	of	temporal,	spatial	and	semantic	information	[7,27].		

The	DPLocate	pipeline	is	built	on	spatial	clustering	after	a	temporal	filtering	process	is	employed	to	
remove	artifacts.	Temporal	clustering	was	not	used	to	avoid	bias	that	might	result	given	a	key	output	of	
DPLocate	is	the	behavior	of	participants	at	different	times	of	the	day.	Moreover,	the	pipeline	was	designed	
to	 be	 independent	 of	 semantic	 information	 (annotations	 of	 locations)	 to	 avoid	 reliance	 on	proprietary	
semantic	 databases	 and	 potential	 security	 risks	 due	 to	 sharing	 the	 coordinates	 with	 the	 third	 party	
(although	this	can	also	be	mitigated	by	storing	local	copies	of	coordinate	reference	databases).	For	spatial	
clustering,	 early	 efforts	 have	 deployed	 K-means	 [31],	 ordering	 index	 [50],	 and	 mixed	 distribution	
techniques	[51].	DPLocate	adopts	an	efficient	recent	strategy		[24,27,35,37]	by	employing	a	revised	version	
of	DBSCAN,	a	density-based	clustering	algorithm,	to	find	the	POIs.	Density-based	algorithms	benefit	from	
some	novel	modifications	such	as	dividing	the	space	into	specific	grids	or	defining	the	minimum	distance	
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9 
between	clusters	and	are	one	of	the	most	popular	clustering	algorithms	for	GPS	data	[49,52].	There	are	
also	other	less	utilized	yet	innovative	approaches	such	as	conditional	random	field	[40]	and	kernel-based	
[44]	algorithms	that	have	great	potential.	For	many	studies,	the	analyses	are	complete	after	finding	the	
significant	 POIs	 for	 the	 individual.	 However,	 this	 is	 the	 beginning	 point	 to	 model	 behavior	 and	 life	
dynamics.		
	

Behavioral	Dynamics	as	a	Phenotype	
Insights	 into	 behavioral	 dynamics	 emerge	 when	 analyses	 investigate	 patterns	 of	 movements	

between	POIs.	As	examples,	studies	have	used	POIs	to	measure	the	mobility	and	relocation	of	the	individual	
during	 a	 day	 as	 an	 activity	marker	 [53,54].	Accordingly,	 they	 extract	 various	 features	 such	 as	 location	
variance,	entropy,	homestay,	total	traveled	distance,	and	circadian	movement	to	quantify	the	GPS-related	
behavior	 of	 the	 individual	 during	 a	 day	 [1,39,55].	 Another	 interest	 is	 predicting	 the	 next	 location	 an	
individual	will	visit	based	on	the	previous	locations.	Various	versions	of	the	Markov	Model,	such	as	the	
mobility	Markov	Model	[37],	mixed	Markov	Model	[38],	and	n-step	Hidden	Markov	Model	[38]	have	been	
proposed	 and	 compared	 to	 alternatives	 such	 as	 hybrid	 dynamic	 mixed	 networks	 [41],	 tree-based	
hierarchical	graphs	[56],	Bayesian	Models	[57]	or	other	probabilistic	models	[42].		

DPLocate	specifically	uses	Markov	Model	to	generate	the	diagram	of	transitioning	between	different	
locations	 at	 different	 Time-Bands	 for	 multiple	 detected	 phenotypes.	 The	 Markov	 Model	 diagrams	 in	
DPLocate	are	employed,	as	in	Figure	11,	to	distinguish	between	phenotypes	rather	than	predict	the	next	
location.	The	participants	demonstrated	clear	differences	in	LateNight	activities,	as	explicitly	visualized	in	
the	Markov	Model	diagrams,	which	contained	single	location	stays	in	some	individuals	(e.g.,	P2),	dominant	
single	 locations	with	 some	variation	 (e.g.,	 P4),	 and	 clear,	patterned	variation	between	 two	 locations	 in	
others	(e.g.,	P3).	
	
The	Potential	for	Clinical	Inference	

	A	 critical	 goal	 of	 behavioral	 studies	 that	 use	 GPS	 data	 is	 to	make	 clinical	 inferences.	 Reported	
correlations	between	mobility	markers	extracted	from	GPS	data	and	depression	severity	[1,19,55,58]	and	
anxiety	symptoms	[5]	make	clear	the	potential	utility	of	GPS	data.	Other	studies	have	proposed	GPS	data	
mining	to	assess	the	mental	health	and	academic	performance	of	students	[2,59]	as	well	as	individuals	with	
bipolar	[58,60,61]	and	schizophrenic	[12,62,63]	illness.	Recent	studies	have	offered	candidate	biomarkers	
of	dementia	and	Alzheimer’s	Disease	in	older	adults	using	mobility	patterns	[64].		

In	the	present	work,	patterns	revealed	through	the	DPLocate	pipeline	detected	disrupted	sleep	as	
well	as	hospitalization	in	individuals	living	with	psychiatric	illness.	Although	investigating	the	association	
between	 the	clinical	 symptoms	and	 the	 location-related	 features	 is	beyond	 the	scope	of	 this	paper,	 the	
examples	presented	demonstrate	the	potential	application	of	the	pipeline	to	detect	changes	in	behavior	
over	extended	periods	of	time,	 including	examples	where	changes	in	GPS-derived	measures	of	mobility	
associate	with	change	in	self-reported	Loneliness	and	Happiness.	Figure	13	displays	a	particularly	clear	
example	where	dramatic	changes	in	mobility	occur	when	the	Covid-19	pandemic	lockdown	begins.	
	

Caveats	
The	 DPLocate	 pipeline	 provides	 a	 powerful	 tool	 to	 analyze	 intermittent	 GPS	 data	 and	 extract	

behavioral	 patterns	 of	 individuals	 based	 on	 their	 relocation.	However,	 the	 approach	has	 limitations.	 A	
common	 limitation	 of	 digital	 phenotyping	 tools,	 especially	 when	 analyzing	 GPS	 data,	 is	 sensitivity	 to	
missing	data.	GPS	 signal	 loss	 for	 extended	periods	during	 a	 day	 can	 cause	 the	pipeline	 to	miss	 visited	
locations	 and	 underestimate	 stay	 durations.	 However,	 DPLocate	 is	 by	 design	 robust	 to	 short	 term	
missingness	(<12	minutes)	which	is	more	common	in	GPS	data.	Another	limitation	of	the	pipeline	is	its	use	
of	 assumed	 Time-Bands	 to	 analyze	 the	 behavior	 of	 individuals.	 As	 was	 illustrated	 in	 Figure	 11,	 the	
meaningful	 Time-Bands	 associated	with	 daily	 routines	 such	 as	 sleep,	 work	 and	 socialization	 can	 vary	
across	 individuals.	Dynamic	Time-Band	adjustment	may	be	necessary	 to	most	 accurately	 interpret	 the	
daily	relocation	patterns	of	some	individuals.	
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Table	I:	The	Epoch’s	parameters’	descriptions	
---------------------------------------------------------------------------------------------------------------------	
Parameter	 	 Definition	
reftime	 reference	time:	Epoch’s	middle	point	since	6AM	on	the	day	of	consent	(milliseconds)	
day	 	 	 relative	day:	consent	(or	other	reference)	day	is	day	1.	
timeofday	 time	of	day:	middle	point’s	time	of	the	day	in	24-hour	notation	(hh:mm:ss)	
weekday	 	 integer	(1-7)	day	of	the	week	with	day	1	being	Saturday		
starttime	 	 start	of	the	Epoch	in	24-hour	notation	(hh:mm:ss)	
endtime	 	 end	of	the	Epoch	in	24-hour	notation	(hh:mm:ss)	
mean_time	 	 mean	of	the	Epoch’s	data	points’	times	in	24-hour	notation	(hh:mm:ss)	
dur_time	 	 duration	of	the	Epoch	(seconds)	
num_loc	 	 number	of	locations	in	the	Epoch	
mean_loc_lat	 mean	latitudes	of	the	locations	in	an	Epoch	(degrees)	[Epoch’s	center	latitude]	
mean_loc_lon	 mean	longitudes	of	the	locations	in	an	Epoch	(degrees)	[Epoch’s	center	longitude]	
tot_path_len	 	 total	path	length	navigated	during	the	Epoch	(meters)	
mean_dist	 	 mean	distance	from	the	Epoch’s	center	(meters)	
sd_dist	 	 standard	deviation	of	distance	from	the	Epoch’s	center	(meters)	
num_loc_3sd	 number	of	locations	farther	than	3	standard	deviations	distance	from	Epoch’s	center	
num_loc_5sd	 number	of	locations	farther	than	5	standard	deviation	distance	from	Epoch’s	center	
mean_loc_lat_filt	 mean	latitudes	of	the	locations	in	an	Epoch	with	filtering	the	points	farther	than	3SD	

(degrees)	[Epoch’s	filtered	center	latitude]	
mean_loc_lon_filt	 mean	longitudes	of	the	locations	in	an	Epoch	with	filtering	the	points	farther	than	3SD	

(degrees)	[Epoch’s	filtered	center	longitude]	
	 	

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 10, 2022. ; https://doi.org/10.1101/2022.07.05.22277276doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.05.22277276
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
References	

	
1.	 Saeb	S,	Zhang	M,	Karr	CJ,	et	al.	Mobile	phone	sensor	correlates	of	depressive	symptom	severity	in	

daily-life	behavior:	An	exploratory	study.	Journal	of	Medical	Internet	Research;	2015;	17	(7):	e175.	
doi:	10.2196/jmir.4273.	

2.	 Wang	R,	Chen	F,	Chen	Z,	et	al.	 StudentLife:	Assessing	mental	health,	 academic	performance	and	
behavioral	trends	of	college	students	using	smartphones.	Proceedings	of	the	2014	ACM	International	
Joint	 Conference	 on	 Pervasive	 and	 Ubiquitous	 Computing	 -	 UbiComp	 ’14	 Adjunct;	 2014:	 3-14.	 doi:	
10.1145/2632048.2632054.	

3.	 Montoliu	R,	Blom	J,	Gatica-Perez	D.	Discovering	places	of	interest	in	everyday	life	from	smartphone	
data.	Multimedia	Tools	and	Applications;	2013:	62	(1):	179-207.	doi:	10.1007/s11042-011-0982-z.	

4.	 Kerr	 J,	Duncan	S,	 Schipperjin	 J.	Using	global	positioning	 systems	 in	health	 research:	A	practical	
approach	to	data	collection	and	processing.	American	Journal	of	Preventive	Medicine;	2011:	41	(5):	
532-540.	doi:	10.1016/j.amepre.2011.07.017.	

5.	 Huang	Y,	Xiong	H,	Leach	K,	et	al.	Assessing	social	anxiety	using	GPS	trajectories	and	point-of-interest	
data.	 Proceedings	 of	 the	 2016	 ACM	 International	 Joint	 Conference	 on	 Pervasive	 and	 Ubiquitous	
Computing	-	UbiComp	’16;	2016:	898-903.	doi:	10.1145/2971648.2971761.	

6.	 Shams	B,	Haratizadeh	S.	GraphLoc:	A	graph	based	approach	for	automatic	detection	of	significant	
locations	 from	 GPS	 trajectory	 data.	 Journal	 of	 Spatial	 Science;	 2018:	 63	 (1):	 115-134.	 doi:	
10.1080/14498596.2017.1327374.	

7.	 Chen	 CC,	 Kuo	 CH,	 Peng	 WC.	 Mining	 spatial-temporal	 semantic	 trajectory	 patterns	 from	 raw	
trajectories.	2015	 IEEE	 International	Conference	on	Data	Mining	Workshop	 (ICDMW);	 2015:	1019-
1024.	doi:	10.1109/ICDMW.2015.55.	

8.	 Wang	 J,	 Kwan	 MP.	 Daily	 activity	 locations	 k-anonymity	 for	 the	 evaluation	 of	 disclosure	 risk	 of	
individual	 GPS	 datasets.	 International	 Journal	 of	 health	 Geographics;	 2020:	 19	 (1):	 7.	 doi:	
10.1186/s12942-020-00201-9.	

9.	 Barnett	I,	Onnela	JP.	Inferring	mobility	measures	from	GPS	traces	with	missing	data.	Biostatistics;	
2020:	21	(2):	e98-e112.	doi:	10.1093/biostatistics/kxy059.	

10.	 Rahimi-Eichi	H,	Coombs	III	G,	Vidal	Bustamante	CM,	et	al.	Open-source	longitudinal	sleep	analysis	
from	accelerometer	data	(DPSleep):	Algorithm	development	and	validation.	JMIR	Mhealth	Uhealth;	
2021:	9	(10):	e29849.	doi:	10.2196/29849.	

11.	 Rahimi-Eichi,	 HR,	 Buckner	 RL,	 Baker	 JT.	 Deep	 phenotyping	 of	 location	 (DPLocate)	 processing	
pipeline;	2022.	url:	https://github.com/dptools/dplocate.		

12.	 Torous	J,	Kiang	MV,	Lorme	J,	Onnela	JP.	New	tools	for	new	research	in	psychiatry:	A	scalable	and	
customizable	platform	to	empower	data	driven	smartphone	research.	JMIR	Mental	Health;	2016:	3	
(2).	doi:	10.2196/mental.5165.	

13.	 First	MB,	et	al.	User's	guide	for	the	structured	clinical	interview	for	DSM-IV	axis	I	disorders	SCID-I:	
Clinician	version.	American	Psychiatric	Press;	1997.	

14.	 Onnela	JP,	Rauch	SL.	Harnessing	smartphone-based	digital	phenotyping	to	enhance	behavioral	and	
mental	health.	Neuropsychopharmacology;	2016;	41	(7):	1691-1696.	doi:	10.1038/npp.2016.7.	

15.	 Barnett	 I,	 Torous	 J,	 Staples	 P,	 et	 al.	 Relapse	 prediction	 in	 schizophrenia	 through	 digital	
phenotyping:	 A	 pilot	 study.	 Neuropsychopharmacology;	 2018:	 43(8):	 1660-1666.	 doi:	
10.1038/s41386-018-0030-z.	

16.	 Onnela	JP,	Arbesman	S,	González	MC,	et	al.	Geographic	constraints	on	social	network	groups.	PLoS	
One;	2011:	6	(4).	doi:	10.1371/journal.pone.0016939.	

17.	 Barnett	 I,	 Khanna	 T,	 Onnela	 JP.	 Social	 and	 spatial	 clustering	 of	 people	 at	 humanity’s	 largest	
gathering.	PLoS	One;	2016:	11	(6).	doi:	10.1371/journal.pone.0156794.	

18.	 Vidal	Bustamante	CM,	Coombs	III	G,	Rahimi-Eichi	H,	et	al.	Fluctuations	in	behavior	and	affect	in	
college	students	measured	using	deep	phenotyping.	Sci	Rep;	2022:	12:	1932.	doi:	10.1038/s41598-
022-05331-7		

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 10, 2022. ; https://doi.org/10.1101/2022.07.05.22277276doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.05.22277276
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
19.	 Canzian	L,	Musolesi	M.	Trajectories	of	depression:	Unobtrusive	monitoring	of	depressive	states	by	

means	 of	 smartphone	 mobility	 traces	 analysis.	 Proceedings	 of	 the	 2015	 ACM	 International	 Joint	
Conference	 on	 Pervasive	 and	 Ubiquitous	 Computing	 -	 UbiComp	 ’15;	 2015:	 1293-1304.	 doi:	
10.1145/2750858.2805845.	

20.	 Harari	GM,	Müller	R,	Aung	MS,	Rentfrow	PJ.	Smartphone	sensing	methods	for	studying	behavior	in	
everyday	 life.	 Current	 Opinion	 in	 Behavioral	 Sciences;	 2017:	 18:	 83-90.	 doi:	
10.1016/j.cobeha.2017.07.018.	

21.	 Brusilovskiy	 E,	 Klein	 LA,	 Salzer	 MS.	 Using	 global	 positioning	 systems	 to	 study	 health-related	
mobility	 and	 participation.	 Social	 Science	 &	 Medicine;	 2016:	 161:	 134.	 doi:	
10.1016/j.socscimed.2016.06.001.	

22.	 Jiang	S,	Alves	A,	Rodrigues	F,	et	al.	Mining	point-of-interest	data	from	social	networks	for	urban	
land	use	classification	and	disaggregation.	Computers,	Environment	and	Urban	Systems;	2015:	53	(1-
2):	36-46.	doi:	10.1016/j.compenvurbsys.2014.12.001.	

23.	 Bhattacharya	T,	Kulik	L,	Bailey	J.	Real	time	autonomous	point	of	interest	mining	through	ambient	
smartphone	 sensing.	 Proceedings	 of	 the	 13th	 International	 Conference	 on	 Mobile	 and	 Ubiquitous	
Systems:	 Computing,	 Networking	 and	 Services	 -	 MOBIQUITOUS	 ’16;	 2016:	 254-263.	 doi:	
10.1145/2994374.2994380.	

24.	 Luong	C,	Do	S,	Hoang	T,	Deokjai	D.	A	method	for	detecting	significant	places	from	GPS	trajectory	
data.	Journal	of	Advances	in	Information	Technology;	2015:	6	(1):	44.	doi:	10.12720/jait.6.1.44-48.	

25.	 Cao	X,	Cong	G,	Jensen,	CS.	Mining	significant	semantic	locations	from	GPS	data.	Proceedings	of	the	
VLDB	Endowment;	2010:	3	(1-2):	1009-1020.	doi:	10.14778/1920841.1920968.	

26.	 Bhattacharya	T,	Kulik	L,	Bailey	J.	Extracting	significant	places	from	mobile	user	GPS	trajectories:	A	
bearing	 change	 based	 approach.	 Proceedings	 of	 the	 20th	 International	 Conference	 on	 Advances	 in	
Geographic	Information	Systems	-	SIGSPATIAL	’12;	2012:	398.	doi:	10.1145/2424321.2424374.	

27.	 Ying	J,	Lee	WC,	Tseng	VS.	Mining	geographic-temporal-semantic	patterns	in	trajectories	for	location	
prediction.	ACM	Transactions	on	 Intelligent	Systems	and	Technology	 (TIST);	2013:	5	 (1):	1-33.	doi:	
10.1145/2542182.2542184.	

28.	 Andrienko	G,	Andrienko	N,	Fuchs	G,	et	al.	Extracting	semantics	of	individual	places	from	movement	
data	by	analyzing	temporal	patterns	of	visits.	Proceedings	of	the	first	ACM	SIGSPATIAL	International	
Workshop	on	Computational	Models	of	Place;	2013:	9-16.	doi:	10.1145/2534848.2534851.	

29.	 Goodall	C,	Syed	Z,	El-Sheimy	N.	Improving	INS/GPS	navigation	accuracy	through	compensation	of	
Kalman	 filter	 errors.	 IEEE	 64th	 Vehicular	 Technology	 Conference,	 VTC-2006	 Fall;	 2006:	 1-5.	 doi:	
10.1109/VTCF.2006.578.	

30.	 Paz-Soldan	VA,	Reiner	R,	Morrison	A,	et	al.	Strengths	and	weaknesses	of	global	positioning	system	
(GPS)	data-loggers	and	semi-structured	interviews	for	capturing	fine-scale	human	mobility:	Findings	
from	 Iquitos,	 Peru.	 PLoS	 Neglected	 Tropical	 Diseases;	 2014:	 8	 (6):	 e2888.	 doi:	
10.1371/journal.pntd.0002888.	

31.	 Ashbrook	 D,	 Starner	 T.	 Using	 GPS	 to	 learn	 significant	 locations	 and	 predict	 movement	 across	
multiple	users.	Personal	and	Ubiquitous	Computing;	2003:	7	(5):	275-286.	doi:	10.1007/s00779-003-
0240-0.	

32.	 Vazquez-Prokopec	 G,	 Bisanzio	 D,	 Stoddard	 S,	 et	 al.	 Using	 GPS	 technology	 to	 quantify	 human	
mobility,	dynamic	contacts	and	infectious	disease	dynamics	in	a	resource-poor	urban	environment.	
PLoS	One;	2013:	8	(4):	e58802.	doi:	10.1371/journal.pone.0058802.	

33.	 Xu	X,	Jäger	J,	Kriegel	HP.	A	fast	parallel	clustering	algorithm	for	large	spatial	databases.	Data	Mining	
and	Knowledge	Discovery;	1999:	3	(3):	263-290.	doi:	10.1023/A:1009884809343.	

34.	 Ye	 Y,	 Zheng	 Y,	 Chen	 Y,	 et	 al.	 Mining	 individual	 life	 pattern	 based	 on	 location	 history.	 Tenth	
International	Conference	on	Mobile	Data	Management:	Systems,	Services	and	Middleware.	MDM	 ’09;	
2009:	1-10.	doi:	10.1109/MDM.2009.11.	

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 10, 2022. ; https://doi.org/10.1101/2022.07.05.22277276doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.05.22277276
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
35.	 Ester	M,	Kriegel	HP,	Sander	J,	Xu	X.	A	density-based	algorithm	for	discovering	clusters	a	density-

based	 algorithm	 for	 discovering	 clusters	 in	 large	 spatial	 databases	with	 noise.	Proceedings	 of	 the	
Second	International	Conference	on	Knowledge	Discovery	and	Data	Mining;	1996:	226-231.	

36.	 Palma	 AT,	 Bogorny	 V,	 Kuijpers	 B,	 Alvares	 LO.	 A	 clustering-based	 approach	 for	 discovering	
interesting	places	in	trajectories.	Proceedings	of	the	2008	ACM	symposium	on	Applied	computing	-	SAC	
’08;	2008:	863.	doi:	10.1145/1363686.1363886.	

37.	 Gambs	S,	Killijian	MO,	del	Prado	Cortez	M.	Next	place	prediction	using	mobility	Markov	chains.	
Proceedings	of	the	First	Workshop	on	Measurement,	Privacy,	and	Mobility	-	MPM	’12;	2012:	1-6.	doi:	
10.1145/2181196.2181199.	

38.	 Asahara	A,	Maruyama	K,	Sato	A,	Seto	K.	Pedestrian-movement	prediction	based	on	mixed	Markov-
chain	 model.	 Proceedings	 of	 the	 19th	 ACM	 SIGSPATIAL	 International	 Conference	 on	 Advances	 in	
Geographic	Information	Systems;	2011:	25-33.	doi:	10.1145/2093973.2093979.	

39.	 Kelly	D,	Smyth	B,	Caulfield	B.	Uncovering	measurements	of	social	and	demographic	behavior	from	
smartphone	location	data.	IEEE	Transactions	on	Human-Machine	Systems;	2013:	43	(2):	188-198,	doi:	
10.1109/TSMC.2013.2238926.	

40.	 Liao	L,	Fox	D,	Kautz	H.	Extracting	places	and	activities	from	GPS	traces	using	hierarchical	conditional	
random	 fields.	 The	 International	 Journal	 of	 Robotics	 Research;	 2007:	 26	 (1):	 119-134.	 doi:	
10.1177/0278364907073775.	

41.	 Stumptner	R,	Freudenthaler	B,	Hönigl	J,	et	al.	Using	GPS	trajectories	to	create	a	dynamic	network	
of	 significant	 locations	 as	 an	 abstraction	 of	 road	 maps.	 Proceedings	 of	 the	 13th	 international	
conference	on	Computer	Aided	Systems	Theory	-	Volume	Part	I	(EUROCAST'11);	2011:	161-168.	doi:	
10.1007/978-3-642-27549-4_21	

42.	 Farrahi	 K,	 Gatica-Perez	 D.	 Discovering	 routines	 from	 large-scale	 human	 locations	 using	
probabilistic	topic	models.	ACM	Transactions	on	Intelligent	Systems	and	Technology	(TIST);	2011:	2	
(1):	1-27.	doi:	10.1145/1889681.1889684.	

43.	 Hightower	 J,	Consolvo	S,	LaMarca	A,	et	al.	Learning	and	recognizing	 the	places	we	go.	Ubicomp	
2005:	Ubiquitous	Computing,	Proceedings;	2005:	3660:	159-176.	doi:	10.1007/11551201_10.	

44.	 Thierry	B,	Chaix	B,	Kestens	Y.	Detecting	activity	locations	from	raw	GPS	data:	A	novel	kernel-based	
algorithm.	International	Journal	of	Health	Geographics;	2013:	12	(1):	14.	doi:	10.1186/1476-072X-12-
14.	

45.	 Ying	 JJC,	 Lee	 WC,	 Weng	 TC,	 Tseng	 VS.	 Semantic	 trajectory	 mining	 for	 location	 prediction.	
Proceedings	 of	 the	 19th	 ACM	 SIGSPATIAL	 International	 Conference	 on	 Advances	 in	 Geographic	
Information	Systems	-	GIS	’11;	2011:	34.	doi:	10.1145/2093973.2093980.	

46.	 Renso	C,	Baglioni	M,	Macedo	J,	et	al.	How	you	move	reveals	who	you	are:	Understanding	human	
behavior	by	analyzing	trajectory	data.	Knowledge	and	Information	Systems;	2013:	37	(2),	331-362.	
doi:	10.1007/s10115-012-0511-z.	

47.	 Boukhechba	M,	Bouzouane	A,	Bouchard	B,	et	al.	Online	recognition	of	people’s	activities	from	raw	
GPS	data:	Semantic	trajectory	data	analysis.	Proceedings	of	the	8th	ACM	International	Conference	on	
PErvasive	 Technologies	 Related	 to	 Assistive	 Environments	 -	 PETRA	 ’15;	 2015:	 1-8.	 doi:	
10.1145/2769493.2769498.	

48.	 Bayat	S,	Naglie	G,	Rapoport	MJ,	et	al.	Inferring	destinations	and	activity	types	of	older	adults	from	
GPS	 data:	 Algorithm	 development	 and	 validation.	 JMIR	 Aging;	 2020:	 3	 (2):	 e18008–e18008.	 doi:	
10.2196/18008.	

49.	 Xiu-Li	Z,	Wei-Xiang	X.	A	 clustering-based	approach	 for	discovering	 interesting	places	 in	 a	 single	
trajectory.	Second	International	Conference	on	Intelligent	Computation	Technology	and	Automation,	
ICICTA	’09;	2009:	3:	429-432.	doi:	10.1109/ICICTA.2009.569.	

50.	 Ankerst	M,	Breunig	M,	Kriegel	HP,	Sander	 J.	OPTICS:	Ordering	points	 to	 identify	 the	clustering	
structure.	ACM	SIGMOD	Record;	1999:	28	(2):	49-60.	doi:	10.1145/304181.304187.	

51.	 Liao	 L,	 Patterson	 DJ,	 Fox	 D,	 Kautz	 H.	 Learning	 and	 inferring	 transportation	 routines.	Artificial	
Intelligence;	2007:	171	(5):	311-331.	doi:	10.1016/j.artint.2007.01.006.	

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 10, 2022. ; https://doi.org/10.1101/2022.07.05.22277276doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.05.22277276
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
52.	 Guidotti	 R,	 Trasarti	 R,	 Nanni	M.	 TOSCA:	 Two-steps	 clustering	 algorithm	 for	 personal	 locations	

detection.	Proceedings	of	 the	23rd	SIGSPATIAL	 International	Conference	on	Advances	 in	Geographic	
Information	Systems,	SIGSPATIAL	’15;	2015:	03-06:	1-10.	doi:	10.1145/2820783.2820818.	

53.	 González	MC,	Hidalgo	CA,	Barabási	AL.	Understanding	individual	human	mobility	patterns.	Nature;	
2008:	453(7196):	779.	doi:	10.1038/nature06958.	

54.	 Han	XP,	Wang	XW,	Yan	XY,	Wang	BH.	Cascading	walks	model	for	human	mobility	patterns.	PLoS	
One;	2013	10(4):	e0124800.	doi:	10.1371/journal.pone.0124800	

55.	 Saeb	S,	Lattie	EG,	Schueller	SM,	et	al.	The	relationship	between	mobile	phone	location	sensor	data	
and	depressive	symptom	severity.	PeerJ;	2016:	4:	e2537.	doi:	10.7717/peerj.2537.	

56.	 Zheng	 Y,	 Zhang	 L,	 Xie	 X,	 Ma	WY.	 Mining	 interesting	 locations	 and	 travel	 sequences	 from	 GPS	
trajectories.	Proceedings	of	the	18th	international	conference	on	World	wide	web	-	WWW	’09;	2009:	
791.	doi:	10.1145/1526709.1526816.	

57.	 Liao	L,	Patterson	DJ,	Fox	D,	Kautz	H.	Building	personal	maps	from	GPS	data.	Annals	of	the	New	York	
Academy	of	Sciences;	2006:	1093	(1):	249-265.	doi:	10.1196/annals.1382.017.	

58.	 Gruenerbl	 A,	 Osmani	 V,	 Bahle	 G,	 et	 al.	 Using	 smart	 phone	mobility	 traces	 for	 the	 diagnosis	 of	
depressive	 and	 manic	 episodes	 in	 bipolar	 patients.	 Proceedings	 of	 the	 5th	 Augmented	 Human	
International	Conference	on	-	AH	’14;	2014:	1-8.	doi:	10.1145/2582051.2582089.	

59.	 Harari	GM,	Gosling	SD,	Wang	R,	et	al.	Patterns	of	behavior	change	in	students	over	an	academic	
term:	A	preliminary	study	of	activity	and	sociability	behaviors	using	smartphone	sensing	methods.	
Computers	in	Human	Behavior;	2017:	67	(C):	129-138.	doi:	10.1016/j.chb.2016.10.027.	

60.	 Sabatelli	M,	Osmani	V,	Mayora	O,	et	al.	Correlation	of	significant	places	with	self-reported	state	of	
bipolar	disorder	patients.	2014	EAI	4th	International	Conference	Wireless	Mobile	Communication	and	
Healthcare	(Mobihealth);	2014:	116-119.	doi:	10.1109/MOBIHEALTH.2014.7015923.	

61.	 Faurholt-Jepsen	 M,	 Bauer	 M,	 Kessing	 L.	 Smartphone-based	 objective	 monitoring	 in	 bipolar	
disorder:	status	and	considerations.	International	Journal	of	Bipolar	Disorders;	2018:	6	(1):	1-7.	doi:	
10.1186/s40345-017-0110-8.	

62.	 Ben-Zeev	D,	Brian	R,	Wang	R,	et	al.	CrossCheck:	 Integrating	self-report,	behavioral	sensing,	and	
smartphone	use	to	identify	digital	indicators	of	psychotic	relapse.	Psychiatric	Rehabilitation	Journal;	
2017:	40	(3):	266-275.	doi:	10.1037/prj0000243.	

63.	 Torous	JP,	Firth	JT,	Mueller	NT,	et	al.	Methodology	and	reporting	of	mobile	heath	and	smartphone	
application	 studies	 for	 schizophrenia.	Harvard	 Review	 of	 Psychiatry;	 2017:	 25	 (3):	 146-154.	 doi:	
10.1097/HRP.0000000000000133.	

64.	 Bayat	S,	Naglie	G,	Rapoport	MJ,	et	al.	A	GPS-based	framework	for	understanding	outdoor	mobility	
patterns	 of	 older	 adults	 with	 dementia:	 An	 exploratory	 study.	 Gerontology;	 2021:	 1-15.	 doi:	
10.1159/000515391	

	
Acknowledgements	

	

We	thank	Laura	Farfel,	Marisa	Marotta,	Erin	Phlegar,	Lauren	DiNicola,	Arpi	Youssoufian,	Elyssa	Barrick,	
Nora	Mueller,	Crystal	Blankenbaker,	and	 Joanna	Tao,	 for	 their	help	collecting	data.	Tim	O’Keefe,	Harris	
Hoke,	Lily	Jeong	and	Sarah	Guthrie	provided	valuable	assistance	in	neuroinformatics	support.	Kenzie	W.	
Carlson	helped	with	the	Beiwe	component	of	the	studies.	Work	was	funded	by	a	generous	gift	from	Kent	
and	Liz	Dauten,	NIMH	grants	P50MH106435	and	U01MH116925,	and	NIH	award	DP2MH103909.	
	

Conflicts	of	Interest	
	

J.P.O.	is	a	cofounder	and	board	member	of	Phebe,	a	commercial	entity	that	operates	in	digital	phenotyping.	
J.T.B.	has	received	consulting	fees	from	Verily	Life	Sciences,	as	well	as	consulting	fees	and	equity	options	
from	Mindstrong	Health,	Inc.	
	
	 	

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 10, 2022. ; https://doi.org/10.1101/2022.07.05.22277276doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.05.22277276
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
Figure	Legends	

	

Figure	 1.	 The	DPLocate	GPS	 processing	 pipeline.	The	 sequential	 steps	 to	 process	 the	 GPS	 data	 are	
illustrated	with	a	representative	example.	The	raw	and	intermediate	results	are	stored	in	an	encrypted	
format	to	ensure	secure	file	handling.	Epochs	of	temporally	adjacent	data	points	that	are	at	least	45	seconds	
apart	from	neighboring	Epochs	are	filtered	and	saved.	After	converting	the	latitude	and	longitude	angles	
to	a	standard	X-Y	surface,	density-based	spatial	clustering	is	applied	to	the	Epochs	to	find	points	of	interest	
(POIs).	Following	the	“Scores”	formula,	the	score	for	each	Epoch	is	the	summation	of	the	points	in	the	50	
meters	neighborhood	of	the	center,	calculated	based	on	their	closeness	to	the	center.	To	detect	POIs,	the	
locations	of	 the	80	highest	 scored	Epochs	are	 chosen	by	eliminating	 the	previous	Epochs	and	 their	50	
meters	neighborhood.	All	epochs	are	then	allocated	to	the	detected	POIs	and	color-coded	from	Near	to	Far	
referenced	to	the	estimated	Home	POI	resulting	in	the	initial	color-coded	Allocated	Epochs	Map	(A).	Then	
the	Allocated	Epochs	are	expanded	up	to	12	minutes	before	and	after	their	original	time,	 limited	to	the	
previous	and	next	Epochs,	 to	create	the	Daily	Map	 (B).	 In	 the	Daily	Map,	dark	gray	 is	Home	(the	most	
visited	POI),	light	gray	represents	the	Epochs	that	do	not	belong	to	any	POI,	white	is	missing	data,	and	the	
remaining	colors	represent	distinct	POIs.	Because	the	focus	of	the	DPLocate	pipeline	is	to	find	repeating	
patterns,	rare	(less	than	twice	occurring)	POIs,	relatively	far	POIs,	and	days	with	peculiar	structure	(based	
on	the	day-to-day	correlation	of	the	staying-at-Home	pattern)	are	removed	to	produce	the	Focused	Daily	
Map	(C).	The	time	of	the	day	is	classified	into	four	Behavioral	Time-Bands	(D):	Day	(9AM-5PM),	Evening	
(6PM-10PM),	 Night	 (10PM-2AM),	 and	 LateNight	 (2AM-6AM).	 Finally,	 a	Markov	Model	 diagram	 (E)	 is	
utilized	to	provide	a	visualization	of	the	relocation	behavior	of	the	participant	in	each	Time-Band.	
	

Figure	2.	An	Example	of	Spatially	Clustered	Epochs.	Mean	coordinates	of	the	Epochs	(small	blue	dots)	
are	 demonstrated	 on	 an	 X-Y	 surface	 for	 a	 representative	 example.	 The	 large	 colorful	 circles	 show	 the	
results	of	density-based	clustering	with	the	stars	at	the	center	of	the	circles	showing	the	POIs	and	the	areas	
of	the	circles	as	the	coverage	areas	of	the	POIs	(i.e.,	all	the	Epochs	in	the	circled	area	belong	to	the	POI	
cluster).	The	gray	circle	is	called	Home	as	the	most	visited	location.	The	actual	data	points	have	been	shifted	
and	relocated	in	this	figure	to	avoid	identifiability.	
	

Figure	3.	Color-Coded	Daily	Map.	After	the	POIs	are	identified	using	the	density-based	spatial	clustering	
algorithm,	 the	 sequential	Epochs	are	allocated	 to	 their	 closest	POIs	 if	 they	are	 in	 their	 coverage	areas.	
Example	maps	are	illustrated	for	a	representative	participant.	The	x-axis	is	shuffled	to	protect	the	identity	
of	 the	 individual.	 	Allocated	Epochs	Map	 (A).	 The	 epoch	 assignments	 are	 illustrated	 in	 a	 color-coded	
format	that	displays	one	whole	day	in	each	column	(y-axis)	and	the	sequential	days	along	the	x-axis.	Time	
is	depicted	as	24	hours	from	12AM	to	12AM	with	bottom-up	direction	on	the	y-axis.	Every	minute	that	has	
an	Epoch	of	GPS	data	is	displayed	with	the	corresponding	POI	color,	which	can	be	dark	gray	(Home)	or	
other	colors	based	on	the	distance	from	Home	(color-coded	Neat	to	Far).	The	minute	with	available	GPS	
data	but	not	allocated	to	any	POI	are	colored	in	light	gray,	and	the	white	indicates	no	available	data.	Daily	
Map	 (B).	 The	 epochs	 are	 expanded	 to	 12	minutes	 before	 and	 after,	 limited	 to	 the	 half	 distance	 of	 the	
neighboring	Epochs.	
	

Figure	4	Removing	Far	and	Rare	Locations.	This	figure	and	the	next	illustrate	the	process	of	preparing	
the	Daily	Map	to	model	the	repeating	behavior	using	the	Markov	Model.	We	remove	the	far	POIs,	which	are	
farther	than	25	kilometers	in	this	case;	rare	POIs,	which	are	occurring	less	than	twice	during	the	study;	and	
rare	 structures,	 identified	 based	 on	 the	 day-to-day	 correlation	 of	 staying	 at	Home	 (A).	 The	 remaining	
allocated	POIs	are	then	extended	to	their	nearest	neighbors	to	cover	the	times	where	there	is	missing	GPS	
signal	yielding	the	(B).		
	

Figure	 5.	 Focused	Daily	Map.	 The	 color-coded	map	 after	 removing	 the	 rare-far	 POIs	 is	 replotted	 by	
removing	the	days	with	no	data.	As	a	result,	the	number	of	integrated	days	in	this	figure	is	smaller	than	the	
number	of	study	days.	
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Figure	6.	Behavioral	Time-Bands	and	Markov	Models	for	an	Individual	with	Multiple	LateNight	Visit	
Locations.	The	hours	of	the	day	are	divided	into	four	Time-Bands	Day(9AM-5PM),	Evening	(6PM-10PM),	
Night	(10PM-2AM),	and	LateNight	(2AM-6AM)	chosen	based	on	a	typical	schedule.	The	Focused	Daily	Map	
is	illustrated	separated	into	the	four	Behavioral	Time-Bands	(A).	The	gaps	between	5PM	to	6PM	or	6AM	to	
9AM	 are	 intentional	 to	 separate	 Time-Band	 epochs.	 Then,	 Markov	 Model	 diagrams	 (B)	 are	 used	 to	
demonstrate	the	transitions	between	POIs.	Each	panel	shows	the	Markov	Model	diagram	with	the	POIs	as	
colorful	 nodes,	 and	 the	probability	 of	 transition	between	POIs	 as	 the	 thickness	of	 the	blue	 edges.	This	
example	illustrates	an	individual	with	a	busy	Night	and	LateNight	schedule,	with	multiple	stays	away	from	
the	Home	location	until	past	2AM.	Even	though	Home	is	the	dominant	location,	there	are	six	different	POIs	
in	the	LateNight	diagram,	all	of	which	eventually	lead	to	Home.		
	

Figure	7.	Behavioral	Time-Bands	and	Markov	Models	for	an	Individual	with	a	Single	LateNight	Visit	
Location.	Similar	to	Figure	6,	the	Behavioral	Time-Bands	(A)	and	Markov	Model	diagrams	(B)	are	shown	
for	an	individual	with	a	single	LateNight	visit	location.	This	individual	shows	the	pattern	of	staying	Home	
between	2AM	and	6AM	every	night.	The	Markov	Model	diagram	only	has	one	node	(Home)	with	a	certainty	
of	always	staying	Home.	Similarly,	the	Night	Time-Band	and	its	associated	Markov	Model	for	this	individual	
reflect	a	mostly	stay-at-Home	pattern	with	relatively	few	visited	places.	
	

Figure	8.	Behavioral	Time-Bands	and	Markov	Models	 for	an	Individual	with	Two	LateNight	Visit	
Locations.	Similar	to	Figure	6,	the	Behavioral	Time-Bands	(A)	and	Markov	Model	diagrams	(B)	are	shown	
for	an	individual	with	dual	LateNight	visit	 locations.	The	LateNight	 locations	of	the	 individual	alternate	
between	Home	(gray)	and	another	location	(blue).	With	few	exceptions,	the	individual	rarely	transitions	
between	 the	 two	 locations	 in	 the	 same	night.	 The	Markov	Model	 diagram	of	 the	 LateNight	Time-Band	
represents	this	behavior	as	two	thick	circles	with	a	weak	connection.	Moreover,	the	Night	and	even	part	of	
the	Evening	Time-Band,	each	have	two	dominant	nodes	 in	their	Markov	Model	diagrams,	reflecting	the	
separation	between	the	visited	locations.				
Figure	 9.	 Behavioral	 Time-Bands	 and	 Markov	 Models	 for	 an	 Individual	 with	 Disrupted	 Sleep.	
Behavioral	Time-Bands	(A)	and	Markov	Model	diagrams	(B)	of	an	individual	with	a	disrupted	LateNight	
schedule	 are	 depicted.	 The	 thickness	 of	 the	 days	 (columns)	 is	 reduced	 compared	 to	 prior	 diagrams,	
reflecting	the	extended	duration	of	the	recorded	data.	The	Daily	Map	shows	sporadically	occurring	time	
outside	the	Home	location	during	the	LateNight	Time-Band	where	the	individual	leaves	Home	sometime	
after	2AM,	stays	at	different	POI	location	for	about	an	hour	or	more,	and	then	goes	back	Home.	The	busy	
Markov	 Model	 diagram	 for	 LateNight	 and	 Night	 Time-Bands	 capture	 this	 behavior,	 which	 may	 be	 an	
indicator	of	disrupted	sleep	for	this	individual	living	with	mental	illness.	
	

Figure	10.	Detecting	Major	Life	Events	From	Behavioral	Time-Bands.	The	Behavioral	Time-Bands	(A)	
and	Markov	Model	diagrams	(B)	are	displayed	for	an	individual	diagnosed	with	a	psychiatric	disorder	to	
illustrate	 the	detection	of	major	 life	 events.	The	 time	 intervals	 are	modified	 from	 the	original	 to	 avoid	
identifiability.	 The	 first	 prominent	 events	 are	 two	 occasions	 of	 staying	 at	 a	 specific	 location	 (blue)	
throughout	all	four	Behavioral	Time-Bands,	which	is	coincident	with	their	in-patient	hospitalization.	The	
individual	visits	the	same	location	during	the	Day	or	Evening	Time-Bands	on	the	other	days.	Another	major	
event	occurs	when	the	individual	starts	a	relationship	which	is	associated	with	the	light	green	location.	As	
labeled	in	the	figure,	the	participant	starts	visiting	the	place	during	the	Day	and	Evening	Time-Bands,	and	
then	 later	 during	 the	Night	 and	 LateNight	 Time-Bands.	 Almost	 at	 the	 same	 time,	 the	 location	 that	 the	
participant	spends	time	during	the	Day	Time-Band	also	changes	from	the	orange	to	pink	location	which	is	
consistent	with	a	job	change.	All	these	events	were	confirmed	after	detection	with	the	individual	during	
the	later	visits	and	reports.	
	

Figure	11.	Effects	of	Temporally	Shifting	the	LateNight	Behavioral	Time-Band.	The	Markov	Model	
diagrams	of	the	LateNight	Time-Band	for	the	previously	presented	participants	are	presented	again	as	P1	
to	 P5,	 respectively,	 with	 adjusting	 the	 default	 time	 of	 the	 LateNight	 Time-Band	 to	 begin	 from	 12AM	
(leftmost	 column)	 to	4AM	(rightmost	 column).	The	effect	of	 temporal	 shifting	of	 the	Time-Band	varies	
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across	the	participants	and	is	a	reminder	that	analysis	assumption	can	impact	the	resulting	models.	The	
default	 2AM-6AM	 Time-Band	 bounds	 for	 LateNight	 appears	 a	 reasonable	 assumption	 but	 can	 capture	
residual	evening	activities	(e.g.,	P1).	Participants	with	markedly	different	sleep-wake	cycles,	such	as	shift	
workers,	would	likely	be	misunderstood	without	adjustment	of	the	default	Behavioral	Time-Bands.	
	

Figure	12.	Locations	Visited	Show	Informative	Weekly	Patterns.	Maps	are	presented	for	separate	days	
of	the	week	to	investigate	the	weekly	schedules	of	an	academic	student	(A)	and	an	individual	living	with	
mental	illness	(B).	Each	panel	shows	one	day	across	many	weeks	to	visualize	structured	patterns	that	are	
tied	 to	 the	day	of	 the	week.	The	weekly	schedule	of	 the	student	(A)	depicts	regular	visits	 to	an	orange	
location	 on	Monday	 and	Wednesday	mornings	 and	 a	 red	 location	 on	Wednesday	 evenings	 that	 likely	
represent	classes	or	a	recurring	activity.	The	weekend	days	show	irregular	patterns.	The	weekly	schedule	
of	a	participant	living	with	severe	mental	illness	reveals	a	distinct	pattern	(B).	The	individual	rarely	leaves	
Home	except	 for	going	 to	a	work	 location	shown	 in	orange.	The	orange	(work)	pattern	reveals	regular	
afternoon	 shifts	 on	Wednesdays	 and	Thursdays,	 and	 short	 shifts	 on	Mondays	 and	Tuesdays	which	are	
swapped	by	longer	shifts	on	Saturdays	midway	through	the	sampling	period.	There	is	a	regular	Thursday	
evening	location	after	work	in	dark	blue	that	represents	a	recurring	therapy	session.	
	

Figure	 13.	 Mobility	 Pattern	 Reveals	 a	 Relation	 to	 Mood:	 Case	 1.	 The	Daily	 Map	 pattern	 (A)	 of	 a	
participant	with	severe	mental	illness	is	presented	for	220	days	along	with	extracted	daily	GPS	parameters	
(B)	and	self-reported	Happiness	and	Loneliness	scores	(C).	The	daily	GPS-extracted	parameters	are:	(1)	
the	 radius	 of	 the	 circle	 that	 encompasses	 all	 visited	 Epochs	 during	 the	 day	 (R)	 in	 Kilometers,	 (2)	 the	
percentage	of	staying	at	home	during	the	day	(H)	in	percent,	and	(3)	the	number	of	POIs	other	than	Home	
visited	during	the	day	(P).	The	14-day	backward	moving	average	is	depicted	as	black	lines	on	H	and	P.	(C)	
Daily	 self-reported	 Happiness	 and	 Loneliness	 are	 presented	with	 a	 14-day	 backward	moving	 average	
depicted	as	black	lines.	The	average	trend	shows	that	even	though	the	individual	does	not	spend	a	lot	of	
time	 outside	 of	 their	 Home,	 the	 significant	 outside	 time	 reduces	 substantially	 around	 day	 170	 which	
coincides	with	 the	 Covid19	 pandemic	 lockdown.	 This	 change	 is	 associated	with	 a	marked	 increase	 in	
Loneliness	and	a	less	dramatic	decrease	in	Happiness.	
	

Figure	14.	Mobility	Pattern	Reveals	a	Relation	to	Mood:	Case	2.	Similar	to	Figure	13,	the	Daily	Map	
pattern	(A),	extracted	daily	GPS	parameters	(B),	and	self-reported	Happiness	and	Loneliness	scores	are	
presented	for	365	days	for	another	participant	with	severe	mental	illness.	This	individual	has	a	regular	job,	
moves	twice	during	the	year	without	changing	job	locations	and	travels	about	five	times.	After	day	335,	the	
participant	does	not	physically	go	to	work	due	to	the	Covid19	pandemic	lockdown	and	almost	always	stays	
at	 home.	 Self-reported	 Loneliness	 significantly	 increases,	 and	Happiness	 decreases	 after	 the	 lockdown	
while	mood	is	recovered	when	a	travel	event	(shown	in	yellow)	occurs	after	day	360.	
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