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ABSTRACT 

Knowledge of the impact of smoking on healthcare costs is important for establishing the 
external effects of smoking and for evaluating policies intended to modify this behavior. 
Conventional analysis of this association is difficult because of omitted variable bias, reverse 
causality, and measurement error. We approached these challenges using a Mendelian 
Randomization study design, in which genetic variants associated with smoking behaviors were 
used as instrumental variables. We undertook genome wide association studies to identify 
genetic variants associated with smoking initiation and a composite index of lifetime smoking 
on up to 300,045 individuals in the UK Biobank cohort. These variants were used in two-stage 
least square models and a variety of sensitivity analyses. All results were concordant in 
indicating a substantial impact of each smoking exposure on annual inpatient hospital costs Our 
results indicate a substantial impact of smoking on hospital costs. Genetic liability to initiate 
smoking – ever versus never having smoked – was estimated to increase mean per-patient 
annual hospital costs by £477 (95% confidence interval (CI): £187 to £766). A one unit change in 
genetic liability a composite index reflecting the cumulative health impacts of smoking was 
estimated to increase these costs by £204 (95% CI: £105 to £303). Models conditioning on the 
causal effect of risk tolerance were not robust to weak instruments for this exposure. Our 
findings have implications for the scale of external effects that smokers impose on others, and 
on the probable cost-effectiveness of smoking interventions. 
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1 Introduction 

Over one billion people smoked tobacco products – mostly cigarettes – in 2015 [1]. Despite 
declines in prevalence in many industrialized countries [1-3], smoking continues to be 
associated with substantial morbidity and mortality [4, 5]. Smoking is arguably the most 
damaging of all voluntary health behaviors [6, 7] and is associated with a variety of adverse 
economic and socioeconomic outcomes [8]. Here we study the causal association of smoking 
with one such economic outcome: healthcare costs.  
 
The association between smoking and healthcare costs is important [7]. Accurate estimates of 
the healthcare expenditure attributable to smoking are necessary to calculate the external 
effects associated with smoking, and these externalities inform and underpin many government 
interventions intended to prevent smoking [9-12]. Causal evidence on the effect of smoking on 
healthcare costs is also necessary for the robust evaluation of specific interventions that aim to 
prevent smoking and to treat its downstream consequences. Decision-making by individual 
smokers may be improved with better information about the non-health consequences of 
smoking [13].  
 
However, establishing the causal effect of cigarette smoking on healthcare costs is challenging 
[7, 14]. Observed associations of smoking with healthcare costs may arise because smoking is 
indeed a cause of healthcare costs, because smoking is itself partly determined by healthcare 
costs, or because smoking is associated with causes or consequences of processes that 
influence healthcare costs. In general, it is not clear if the factors that may predispose an 
individual to smoke are themselves independent determinants of healthcare costs. For 
example, smoking tends to cluster with other behaviors known or suspected to affect 
healthcare costs, including high body mass index (BMI), poor diet, alcohol consumption and low 
physical activity [15-19]. Smoking is also heavily socially patterned, and lower socio-economic 
status groups are more likely to initiate and continue smoking [20, 21]. These groups may have 
access to fewer resources to ameliorate the consequences of incident disease and its 
progression [22] [23, 24].  
 
Smoking is also more prevalent amongst groups defined by health status. For example, smoking 
is more common amongst individuals with depression and schizophrenia [25, 26] [27, 28]. 
These associations may affect all or some of smoking initiation, smoking intensity, and smoking 
cessation. For example, smoking influences disease incidence (such as lung cancer) which in 
turn may prompt cessation. Smoking may reflect elements of self-medication [29] or a desire to 
control one’s weight [30]. Smoking may therefore be both a cause and consequence of health 
status and other circumstances [14, 31].  
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Analysis of the effects of smoking may also be complicated by measurement error, including 
from inaccurate recollection of smoking history. More subtly, even if declarations of smoking 
habits are accurate, self-reported smoking patterns (“two packs a day for fifteen years”) may 
not fully capture the consequences of smoking on health. Instead, the cumulative physiological 
insult of lifetime smoking (reflecting both duration and intensity) on respiratory and other 
functions may be a better measure for this exposure. 
 
Measured associations of smoking with healthcare cost may also partly reflect wider attitudes 
to risk tolerance, including impulsivity and behavioral disinhibition. In the Grossman model of 
health capital accumulation [32], differences between individuals in attitudes to risky behaviors 
such as smoking may reflect differences in risk attitudes. While empirical support for between-
individual differences of this type in line with the Grossman model is sparse [33], it does point 
to the empirical challenges of distinguishing between smoking and risk tolerance in causal 
analyses.  
 
These difficulties with robust causal inference comprise the classic issues of omitted variable 
bias, simultaneity and measurement error [7]. We used Mendelian Randomization to address 
these issues.  Using Mendelian Randomization, and subject to the assumptions of instrumental 
variable analysis, causal effects of smoking on healthcare cost can be robustly identified by 
perturbations to genetic variants associated with liability to smoke cigarettes. Since this genetic 
variation is fixed at conception, it cannot be affected by reverse causation. By virtue of the 
quasi-random allocation of genetic variation at conception, it will be independent of many 
confounding variables that might otherwise affect the association between smoking and 
healthcare cost. We attempted to account for measurement error by using a newly developed 
index of lifetime smoking that reflects the impact of both smoking duration (encompassing 
initiation and cessation) and smoking intensity on mortality and health. 
 

2 Genetic variants as instrumental variables 

We very briefly review the requirements for valid instrumental variable analysis in the context 
of Mendelian Randomization. Many introductions are available [34-37] and a more extended 
discussion accompanied by directed acyclic graphs is provided in supplementary material.   
 
An allele refers to the specific genetic code at particular location or locus in the genome. 
Individuals have two alleles at each location, one inherited from each parent according to 
Mendel’s first law (the random segregation of alleles) and second law (independent assortment 
of alleles for different traits) of inheritance. Single nucleotide polymorphisms (SNPs) are 
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examples of genetic variation subject to Mendel’s first and second laws. SNPs are single 
changes to the nucleotides that make up the genomic code. Some SNPs are known to be 
associated with disease, traits, or specific behaviors. These associations are usually obtained 
using genome-wide association studies (GWASs). A variety of different SNPs have been found to 
robustly associate with various smoking phenotypes. 
 
For example, the CHRNA5–A3–B4 genomic locus contains the rs16969968 SNP, which is 
associated with the heaviness of smoking. Individuals with two copies of the less common allele 
(the “AA” genotype) of this SNP increase the amount of smoke inhaled when nicotine content 
in cigarettes is increased, whereas individuals with two copies of the more common or major 
allele do not exhibit this compensatory behavior [14]. Each copy of this allele amounts to 
approximately one additional cigarette per day in smokers [38]. The CHRNA5–A3–B4 locus was 
identified in various GWAS of different diseases relating to smoking including chronic 
obstructive pulmonary disease and it is associated both with an earlier diagnosis and an 
increased risk of lung cancer [39]. It is now apparent that smoking is responsible for the 
association of this locus with smoking-related diseases.  
 
These associations of SNPs with disease, and their conditionally random allocation at concept, 
establish the potential for this form of genetic variation to be used as instrumental variables in 
causal analysis. Briefly, variants should affect the exposure of interest, and have no effects on 
the outcome (healthcare costs in this case) that are not mediated via its influence on the 
exposure. The latter assumption embodies two further assumptions – first that the variant does 
not influence confounders the exposure and the outcome (sometimes referred to as correlated 
pleiotropy), and second that the variant influences the outcome only via the exposure and not 
through channels that are independent of the exposure (sometimes referred to as uncorrelated 
pleiotropy).  
 
Correlated pleiotropy may arise when a SNP affects more than one trait through a shared 
heritable factor and may lead to false positives when assessing the association between the 
genetic instruments we use for smoking and risk phenotypes; that is, the appearance of a 
causal relationship when none may exist in truth. For example, a SNP may influence healthcare 
costs by its influence on smoking but also via its influence on risk attitudes.  
 
Uncorrelated pleiotropy will arise if SNPs are correlated with other SNPs that themselves 
influence the outcome independently of the exposure of interest. This correlation arises as a 
consequence of linkage disequilibrium, which typically occurs when variants located in close 
physical proximity on the genome are inherited together [40]. SNPs may also influence more 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 6, 2022. ; https://doi.org/10.1101/2022.07.05.22277228doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.05.22277228
http://creativecommons.org/licenses/by/4.0/


 

5 
 

Public 

than one outcome phenotype through independent pathways, and this will also give rise to this 
type of pleiotropy.  
 
We expand on these potential violations of the instrumental variable assumptions in 
supplementary material. We describe below in the Methods section how we assessed and 
accounted for their presence.  
 

3 Methods 

3.1 Conventional multivariable analysis 

We implemented conventional multivariable linear regression as well as Mendelian 
Randomization. The conventional linear regression models related healthcare cost to both 
smoking status exposures, controlling in each case for age, sex, and Biobank recruitment 
centre. We implemented this minimally-adjusted model as a basis for comparison with the 
instrumental variable models.  
 

3.2 Instrumental variable analysis  

Instrumental variables were calculated using versions of the Wald ratio. In Mendelian 
Randomization, the Wald ratio is calculated as the ratio of the association between the SNP(s) 
and outcome to the association between the SNPs and the exposure [41]. Denoting the SNP-
exposure association as 𝛽௘௫௣, and the SNP-outcome association as 𝛽௢௨௧, the Wald ratio for the 
causal instrumental variable estimate is  
 

𝛽ூ௏ =  
𝛽௢௨௧

𝛽௘௫௣
 

 
This ratio is equivalent to the two-stage least squares (2SLS) model when a single instrument is 
used. The first stage of a 2SLS regresses an exposure variable on the instrument variables. The 
predicted values of the smoking exposures from this regression are then used in the second 
stage regression with costs as the outcome. The F-statistic from the first stage regression tests 
the joint significance of all instruments and is an indicator of instrument strength. Weak 
instruments will lead to estimates biased in the direction of the conventional multivariable 
estimate.  
 
For the 2SLS models, we developed polygenic risk scores (PRSs), also known as genetic risk 
scores or allele scores. Each PRS was calculated as the weighted sum of the effect alleles for all 
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SNPs. Each SNP was weighted by the regression coefficient from the respective GWAS in which 
the SNP was identified. These estimates were adjusted with age, sex and the first 40 genetic 
principal components.  
 
The interpretation of the 2SLS effect estimates is that of a unit change in genetic liability to the 
exposure variable. For the initiation exposure, this reflects a change in genetic liability in case 
status; that is, the causal effect estimate represents the costs per person, per year of becoming 
a smoker. For the composite index of lifetime smoking, the 2SLS reflects a unit change in the 
composite smoking index,  equivalent to (for example) a current smoker who has smoked 22 
cigarettes per day for 10 years, or an individual who smoked 30 cigarettes per day for 11 years 
who quit smoking 5 years ago. See Wootton et al [42] for further details on this variable.  
 

3.3 Sensitivity analysis  

We conducted several sensitivity analyses. An important potential violation of the requirements 
for valid instrumental variable analysis in Mendelian Randomization is horizontal pleiotropy, in 
which a variant is associated with the outcome other than via the exposure of interest. The 
presence of pleiotropy may be indicated by the presence of heterogeneity in effect estimates 
across SNPs. This may be formally tested by comparing Cochran’s Q statistic (Formula 7) to the 
critical values of a chi-squared distribution:  
 

𝑄 = ∑
ଵ

ఙೋ
మ (𝛽መ௝ − 𝛽መூ௏ௐ)ଶ௃

௝ୀଵ      

 
Here, J indexes the number of SNPs, 𝛽መ௝ is the effect estimate for SNP j, 𝛽መூ௏ௐ is the overall 
inverse variance (IVW) weighted effect calculated for J SNPs, and the variance of the SNP-
outcome association is denoted by 𝜎௒ೕ

ଶ . We assessed the sensitivity of our results to potential 

violations of the exclusion restriction by estimating a variety of over-identified Mendelian 
randomization models. We implemented a random-effects inverse-variance weighted (IVW) 
estimator. This estimator calculates the Wald ratio for each SNP separately, and then combines 
these SNPs using weights determined by the precision of the association between the SNP and 
healthcare costs. More precisely estimated SNPs receive more weight.  
 
This estimator assumes that no pleiotropy in violation of the exclusion restriction is present, or 
that any such pleiotropy has a net zero effect on point estimates. The consequence of the latter 
form of horizontal pleiotropy – in which any effects “balance out” – is that estimates are 
unbiased but will have somewhat larger variance than in the no-pleiotropy case. We calculated 
three other estimators that relax this assumption.  
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The Mendelian Randomization Egger estimator includes and conditions on an intercept, which 
may be interpreted as the average pleiotropic effect of all included SNPs. Horizontal pleiotropy 
is indicated if this intercept is statistically different from zero. This estimator is consistent even 
if all SNPs violate the exclusion restriction, provided further assumptions on the relationship 
between instrument strength and any direct pleiotropic effect of SNPs are met – for details see 
[43, 44].  
 
If the Wald ratio estimates for all SNPs are ordered, then the median estimate will be consistent 
if at least 50% of SNPs are valid instrumental variables. We implemented a penalized and 
weighted version of a median estimator in which effect estimates are weighted by precision 
and in which outlying variants (measured by their contribution to the Cochran Q heterogeneity 
statistic) are penalized by down-weighting their contribution to the overall effect estimate. 
Finally, the mode estimator is given by the mode of the Wald ratio estimates. Unlike the 
median estimator, the mode estimator is consistent even if more than 50% of the SNPs are 
invalid instrumental variables, provided that the largest homogenous cluster of SNPs are valid 
instrumental variables. We implemented a version of the estimator that down-weighted the 
contribution of less precisely estimated SNPs.  
 
We also assessed whether genetic variants associated with smoking and smoking heaviness 
affected costs in “ever smoker” compared to “never smokers” – if these variants influence costs 
only via smoking heaviness, their effect should only be apparent in ever smokers [45]. We 
assessed this association by interacting in each of the split GWAS samples the smoking initiation 
phenotype with variants associated with smoking and located closest to the CHRNA5 locus. 
Evidence of an interaction in smokers but not non-smokers would constitute some evidence – 
albeit not definitive evidence – in support of the exclusion restriction for the initiation 
phenotype.   
 
Smoking SNPs identified in GWASs may also reflect genetic liability to risk tolerance. Risk 
tolerance may therefore influence smoking behaviour, as well as other risk-taking behaviours 
that themselves cause healthcare costs. We therefore implemented multivariable Mendelian 
Randomization, in which the casual effect of both smoking and risk tolerance were jointly 
estimated in a single instrumental variable model. Multivariable Mendelian Randomization 
allows for the direct effect (not via the other exposure) of each exposure to be determined. It 
also allows the causal effect of each exposure to be expressed as conditional on the other. We 
implemented separate models for smoking initiation and risk tolerance, and for lifetime 
smoking and risk tolerance. We used the methods of Sanderson and colleagues [46] to 
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implement our models, as implemented in the MVMR R package 
(https://github.com/WSpiller/MVMR).  
 
We also explored potential consequences of correlated pleiotropy. We applied Steiger filtering 
[47] to each smoking exposure as a simple test of the assumption that instruments affect the 
outcome via the influence of these instruments on the exposure. This test calculates the 
variance explained by the SNPs, and tests if the variance explained by the instrument in the 
outcome is less than the variance explained in the exposure. If so, this provides some evidence 
that the SNPs influence the exposure via the outcome, and not because the direction of 
causation is running from the outcome to the exposure.  The weighted median and weighted 
mode estimators, described above, are robust to some types of correlated pleiotropy, provided 
that this (and other forms of horizontal pleiotropy) affect less than half of variants (for the 
median estimator) or that the modal pleiotropic effect is zero (for the modal estimator). We 
also explored the use of the “MR CAUSE” methodology [48] as a means of accounting for 
correlated pleiotropy but could not obtain stable estimates.  
 

4 Data  

We used the UK Biobank study as our primary source of data (13–15). This is a population-
based cohort of some 500,000 individuals recruited between 2006 and 2010. All adults aged 40-
69 living in defined catchment areas were invited to participate [49, 50], with a final response 
rate of 5.45%. Participants provided a wide variety of personal and phenotypic data at baseline 
recruitment, and most consented to genotyping. Individuals in the cohort are generally 
healthier, wealthier and more educated than the wider UK general population [49, 51].  
 
We studied two measures of smoking: smoking initiation and a composite index of lifetime 
smoking. The composite index of lifetime smoking was created by Wootton and colleagues [42] 
to reflect smoking initiation, duration of smoking, heaviness of smoking and smoking cessation 
(if any). These different measures were aggregated into a composite lifetime smoking index 
with a half-life constant to reflect the exponential declining impact of smoking on health at a 
given time. The half-life was obtained from a simulation of the effect of smoking on lung cancer 
and on all-cause mortality in the UK Biobank.  
 
The smoking initiation phenotype measure captures whether cohort participants ever smoked, 
without further distinction according to duration or intensity. A binary variable indicating 
smoking initiation (“ever” smoked versus “never” smoked) was created from the lifetime 
smoking index, with non-zero values of the lifetime index indicating an individual had initiated 
smoking. 
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Mendelian Randomization studies may be biased if the same sample used to select SNPs is also 
used as the sample in which those SNPs are analyzed as instrumental variables [52]. Sample 
overlap will tend to bias associations towards the observational exposure-outcome association. 
We randomly split our available Biobank sample into two non-overlapping samples. On one of 
these sets, we conducted de novo GWASs to identify SNPs, which we then analyzed on the 
other set of data. We then performed fixed-effect meta-analysis to obtain a single summary 
measure of effect (and the associated confidence intervals) across both samples. We used a set 
of standard in-house [53, 54] quality control procedures for conducting the de novo UK Biobank 
GWASs. We used a clumping threshold of R2<0·001 to account for potential linkage 
disequilibrium between SNPs.  
 
Genetic data on lifetime smoking (and the related binary smoking initiation variable) was 
obtained from two de novo GWASs of using the composite lifetime smoking index undertaken 
on 318,067 individuals in the UK Biobank. We also conducted a de novo GWAS for a measure of 
risk tolerance to use in multivariable Mendelian Randomization (N=274,450). This was 
constructed using responses to UK Biobank questionnaires. A score was created from response 
to questions relating to days per week of moderate and vigorous physical activity, hours of TV 
viewing, breaking of motorway speed limits, illicit drug use, alcohol consumption, self-harm, 
and sexual activity. The precise details of the construction of this variable are given in the 
supplementary material.  
 
Genetic and other data from UK Biobank were linked to records of inpatient hospital care. A 
patient undergoing an inpatient hospital visit will occupy a bed but does not necessarily stay 
overnight. The process by which episodes of care were coded to reflect costs are described 
elsewhere [55, 56]. Briefly, episodes of inpatient hospital care were coded to create hospital 
resource groups (HRGs), which denote episodes of care with similar diagnoses, operations and 
procedures. These HRGs were then cross-referenced to unit costs of care to create a per-
person, per-year overall figure for inpatient hospital costs.  
 
All analyses were performed in R version 4.02 and Stata version 16.1. Analysis code is available 
at www.github.com/pdixon-econ/MR_smoking_costs.  
 

5 Results  

Up to 300,045 individuals were analyzed, of whom 54% were female (n=161,022). Mean age at 
recruitment was 57 years (standard deviation = 8.0 years). Mean costs per year were £478 and 
median costs £87. Some 45% of the sample had zero inpatient NHS costs. There were 87,651 
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individuals in this sample who had ever smoked. The range of the cumulative smoking index is 
from 0 to 4, with a score of 0 indicating a never-smoker. The mean value of this index amongst 
all individuals was 0.33 (standard deviation: 0.67) and amongst smokers 1.14 (standard 
deviation: 0.78).  
 
Conventional multivariable models, estimated using linear regression and adjusted for age and 
sex but without any genetic information, are summarized in Table 1.  
 
Table 1 Multivariable estimates of association between smoking initiation, 

lifetime smoking, risk tolerance, and annual inpatient hospital costs  
 

 N  
Effect estimate 95% confidence 

interval 
Phenotype 
Smoking initiation 300,045 £208 £196 to £219 
Lifetime smoking 
amongst smokers 87,651 £142 £131 to £153 

Note to Table 1: These models adjust for age, sex and recruitment centre only. 
  
The effect estimate on the smoking initiation phenotype indicates the observational association 
between becoming a smoker compared to never smoking on per-person, per-year inpatient 
hospital costs. Likewise, a unit change in the lifetime smoking index in the intensity, duration 
and cessation (if any) is associated with £142 increase in annual per-person inpatient costs. 
Given that median per-person costs in this sample are £87 per year, both smoking exposures 
are associated with a substantial increase in annual costs. These conventional multivariable 
models will be confounded by any variables other than age, sex and UK Biobank recruitment 
centre that jointly influence smoking and healthcare costs.  
 
Table 2 details information relating to the polygenic instrumental variable models.  
 
Table 2 Cases, number of SNPs and strength of instruments  
 

 N  
N of 
SNPs 

% of variance 
explained by 

polygenic risk score  

F-statistic from first 
stage of 2SLS polygenic 
risk score 2SLS model 

Phenotype 
Smoking initiation sample 1 149,995 10 0.19% 223 
Smoking initiation sample 2 150,050 11 0.25% 293 
Lifetime smoking sample 1 149,995 17 0.40% 584 
Lifetime smoking sample 2 150,050 15 0.44% 620 
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Note to table : Percentage of variance obtained from pseudo R2 from a logistic regression of initiation status on the 
PRS for initiation, and from R2 obtained from linear regression of lifetime smoking on the PRS for this exposure.  

 
The number of SNPs refers to genome-wide significant hits in each split sample of the UK 
Biobank cohort. The proportion of variance explained by the polygenic risks scores is modest, 
being less than 1% in all cases. However, the first stage F-statistic from the 2SLS indicates that 
these are strong instruments.  
 

5.1 Instrumental variable results  

Table 3 summarises the causal effect estimates and associated 95% confidence intervals 
representing the effect of genetic liability to each smoking phenotype, estimated using 
polygenic risk score 2SLS models.  
 
Table 3 2SLS allele score estimates  
 
    Beta   95% confidence interval 
Phenotype    
Smoking initiation £477 £187 to £766 
Lifetime smoking £204 £105 to £303 

Note to Table 3: Estimates and confidence intervals from fixed-effects meta analysis over each split sample. 

 
The betas in Table 3 reflect inpatient hospital costs per person per year of a (genetically 
influenced) change in liability to smoking initiation and to the lifetime smoking index. Note that 
these represent the effect of genetic liability to each smoking phenotype, and are not directly 
comparable to the corresponding conventional multivariable estimates [57, 58]. Note also that 
the wide confidence intervals are a consequence of the modest proportion of variance that 
each polygenic risk scores explains in the respective phenotypes. Nevertheless, the effect 
estimates are consistent with substantial effects of genetic liability to each smoking phenotype 
on healthcare costs.  
 

5.2 Sensitivity analysis 

Inspection of Cochran’s Q revealed little evidence of heterogeneity (Table 4).  
 
Table 4 Cochran’s Q statistic and heterogeneity by phenotype 

 N of SNPs Q statistic 

 
 

Q p-value 
Phenotype    
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Smoking initiation 
sample 1 

10 13.2 0.16 

Smoking initiation 
sample 2 11 8.7 0.47 

Lifetime smoking 
sample 1 17 25.2 0.07 

Lifetime smoking 
sample 2 15 12.2 0.51 

Note to table: There were insufficient SNPs to calculate the Q statistic for the risk tolerance exposure.  
 
The data do not suggest the presence of pleiotropy, with the possible exception of sample 1 for 
the lifetime smoking phenotype. We nevertheless report the findings of the various pleiotropy 
robust estimators in supplementary material. These data are generally concordant in indicating 
a similarity of causal effects across estimators for both samples and for both smoking 
phenotypes. They are similar to the 2SLS analysis in indicating a substantial effect of smoking on 
costs. The results of Steiger filtering tests indicated that the direction of causality was more 
likely to be from each smoking exposure to outcome rather than vice versa. These results are 
reported in supplementary material. Interactions between initiation and variants located near 
the CHRNA5 locus were consistent with the null (see supplementary material).  
 
We used multivariable Mendelian Randomization to examine whether risk tolerance may 
influence the association between smoking and healthcare costs. Multivariable Mendelian 
Randomization requires that the instrumental variable assumptions hold jointly for all included 
exposures. In particular, SNPs must be strongly associated with each exposure, conditional on 
the other included exposures. Sanderson and colleagues [46] recommend that each exposure 
included have an F-statistic greater than 10. In the event, the conditional strengths of the SNPs 
for risk tolerance (but not the two smoking exposures) were too weak to make reliable 
inferences. Further details of these results, including the F-statistics, are reported in 
supplementary material.   
 

6 Discussion 

Conventional multivariable estimates in simple linear models indicated a substantial association 
of both smoking initiation and the composite smoking index on annual per-patient inpatient 
costs in the UK Biobank cohort. Mendelian Randomization analyses of both of genetic liability 
exposures were estimated with more uncertainty, but were consistent with potentially large 
impacts on hospital costs.  
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Under the assumption of monotonicity – that the effect of the instrumental variables on each 
respective exposure is in the same direction for all subjects – these estimates are local average 
treatment effect estimates that capture lifelong genetic liability to smoke. In the present study, 
this assumption means for those individuals whose smoking differs by levels of the respective 
instruments, then the association change in smoking behaviour is in the same direction for all 
individuals. This assumption may be reasonable although we do not formally test it.  
 
The Mendelian Randomization estimates refer to the impact on costs of a genetic liability to 
smoking and do not necessarily correspond with the effect estimates that would be obtained 
from a hypothetical experiment to compel people to smoke (or to compel smoking cessation) 
and in which healthcare costs are observed over a period of time. Mendelian Randomization 
estimates do not necessarily comply with the stable unit treatment value assumption (SUTVA) 
[59]. Our effect estimates relate to the cumulative lifetime impact of a genetic liability to 
smoke, and cannot necessarily be used to make inferences about the effects of smoking at 
particular phases of life. This also complicates comparisons between conventional multivariable 
models and Mendelian Randomization estimates on the liability scale.  
 
Studies using similar smoking exposures (e.g. [60]) have found evidence of pleiotropic effects,  
particularly in relation to smoking initiation.  There was little evidence of heterogeneity 
associated with pleiotropy in the present study. We further examined estimates from 
pleiotropy robust estimators, which were similar and suggested that the same causal effect was 
being identified by each such estimator. However, if risk attitudes (or other variables) confound 
the association between smoking and healthcare costs, then interventions that address 
smoking may not necessarily influence healthcare costs [61]. Moreover, confounding the 
effects of smoking on healthcare cost with those of attitudes toward risk may lead to biased 
estimates of the external effects of smoking. There was no attenuation of the effects of 
smoking on healthcare cost when including instruments for risk tolerance, although this finding 
was not robust to weak instrument bias. We cannot rule out bias arising from associations 
between risk attitudes and smoking, including via correlated pleiotropy. 
 
We estimated all associations on the UK Biobank cohort, which is a self-selected sample of 
individuals who are healthier, wealthier and more educated than the wider UK population of 
adults. This may lead to sample selection bias. Simulation studies [62, 63] suggest that biases 
other than those attributable to selection, such as violations of the exclusion restriction caused 
by pleiotropy, may have a greater impact on effect estimates. We were also limited to studying 
individuals of European (White British) ancestry, and to the analysis of inpatient hospital costs. 
The relationships we estimate on this ethnicity may not reflect associations between smoking 
and costs in other ancestral groups.  
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Mendelian Randomization requires that variants are conditionally independent of local 
environments. This assumption will be violated if there is clustering of alleles in certain 
environments, or amongst certain types of individual. In relation to the former, geographical 
stratification that is not wholly accounted for by genetic principal components is a feature of UK 
Biobank [64] and may impart bias to our results. In relation to the latter, alleles that indicate 
genetic liability to smoking will tend to cluster amongst individuals if assortative mating means 
that smokers are more likely to marry other smokers than they are to marry non-smokers [65, 
66].  
 
There may also be biases from dynastic effects [67]; for example, children raised by smokers 
are more likely to smoke independently of the genetic liability that a child has to smoke. Howe 
et al [68] use a within-family GWAS to control for demographic and indirect genetic effects, 
such as the impact of non-transmitted parental alleles. These GWAS found smaller effect 
estimates for smoking than in GWASs of unrelated individuals. This would suggest that the 
effect estimates in the present study, drawn from GWASs of unrelated individuals, may be 
upward biased.    
 

7 Conclusion 

Mendelian Randomization analysis of the causal effect of genetic liability smoking initiation and 
lifetime smoking indicated a substantial impact of each exposure on annual inpatient hospital 
costs, although these associations may be inflated by indirect genetic effects and potentially 
also by risk attitudes. Nevertheless, the costs we attribute to smoking suggest that externalities 
associated with smoking, and the cost-effectiveness of interventions to prevent smoking 
initiation and encourage cessation, may be considerable.     
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