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1. Abstract28

Brain metastases (BM) remain a significant cause of morbidity and mortality in breast cancer29

(BC) patients. Specific factors promoting the process of BM and predilection for selected30

neuro-anatomical regions remain unknown, yet may have major implications for prevention31

or treatment. Anatomical spatial distributions of BM from BC suggest a predominance of32

metastases in the hindbrain and cerebellum. Systematic approaches to quantifying BM location33

or location-based analyses based on molecular subtypes, however, remain largely unavailable.34

We analyzed stereotactic Cartesian coordinates derived from 134 patients undergoing gamma-35

knife radiosurgery (GKRS) for treatment of 407 breast cancer BMs to quantitatively study36

BM spatial distribution along principal component axes and by intrinsic molecular subtype37

(ER,PR,Herceptin). We corroborated that BC BMs show a consistent propensity to arise38

posteriorly and caudally, and that Her2+ tumors are relatively more likely to arise medially rather39

than laterally. To compare the distributions among varying BC molecular subtypes, we used the40

notion of mutual information, which revealed that the ER-PR-Her2+ and ER-PR-Her2- subtypes41

showed the smallest amount of mutual information and were most molecularly distinct. Using42

kernel density estimators, we found a propensity for triple negative BC to arise in more superiorly43

or cranially situated BMs. BM location maps according to vascular and anatomical distributions44

using cartesian coordinates to aid in systematic classification of tumor locations were additionally45

developed. Further characterization of these patterns may have major impacts on treatment or46

management of cancer patients.47



Significance: The quantitative spatial distribution of breast cancer metastases to the brain, and the48

effects of breast cancer molecular subtype on distribution frequencies remain poorly understood.49

We present a novel and shareable workflow for characterizing and comparing spatial distributions50

of BM which may aid in identifying therapeutic or diagnostic targets and interactions with the51

tumor microenvironment.52

2. Introduction53

In patients with breast cancer (BC), brain metastases (BM) are a significant source of morbidity54

and mortality, and average interval between diagnosis of BM and death remains under two years16.55

Despite significant advances in systemic treatment of primary breast cancer, treatment for BM56

remains mostly confined to surgical resection, stereotactic radiosurgery, and less commonly57

whole brain radiation therapy.58

BM from BC have been reported to show preferential spatial metastatic patterns within the brain,59

with a predominance of lesions arising in the posterior circulation and cerebellum [1–3].While60

the spatial distributions for BM have been described in a qualitative fashion (e.g. located61

in cerebellum), there have been minimal efforts to systematically and quantitively analyze62

spatial distributions of BM. In addition, the influence of molecular subtype in topographic BM63

distribution remains largely unknown.64

There is relevant clinical and potential therapeutic motivation for understanding the spatial65

distribution of BM, specifically according to cancer origin and molecular subtype. There has been66

growing interest in the relationship between the tumor microenvironment (TME), surrounding67

both tumor and normal brain parenchyma, and the development of BM, which is referred to as the68

‘seed-and-soil’ hypothesis [4–6]. Recent studies have characterized a need for priming a metastatic69

niche prior to BM colonization and tumorigenesis [7–9]. A more thorough understanding of the70

patterns of spatial distribution of BM and the influence of TME on tumorigenesis may provide71

potential targets for diagnosis or treatment of BM.72

Gamma Knife Radiosurgery (GKRS) is a highly targeted form of stereotactic radiosurgery and is a73

first line therapy for many BM, particularly those in which surgical resection is unfavorable [10,11].74

The use of stereotactic frames and precise, predetermined locations in three-dimensional space75

allow for Cartesian coordinates of tumors to be recorded and studied (Figure 1) using spatial76

modeling techniques. We describe a novel computational approach for characterizing and77

comparing the spatial distribution of BM arising from BC, using objective tumor location data78

from patients undergoing GKRS. Tumor locations were analyzed using kernel density plots and79

principal components analyses (data-based coordinates), and further characterized and compared80

according to BC molecular subtype. We compared two distributions using the metric of mutual81

information which is a (nonlinear) measure of the mutual dependence between two random82

variables [12]. A standard interpretation of mutual information is that it quantifies the amount83

of information obtained about one random variable by observing the other, thus low values84

indicate that the distributions are more distinct (independent) than distributions with higher85

values. While this study introduces new tools for quantifying spatial distributions of BM using86

large comprehensive data sets collected over a twenty-year period, it also paves the way for87

further analyses with larger, prospective multi-center studies across a variety of cancers and88

molecular subtypes to further elucidate natural distribution patterns of BM and their importance89

for improving cancer treatment.90

3. Methods91

3.1. Radiosurgery Setup and Patient Selection92

Gamma Knife radiosurgery (GKRS) is a commonly used frontline treatment modality in which a93

stereotactic frame (Leksell coordinate frame, see Figure 1) is used in conjunction with cobalt94



radiation sources to deliver precise doses of radiotherapy to highly accurate locations in three-95

dimensional space corresponding to contoured BM on MRI (Figure 2). Predetermined target96

coordinates are utilized, and patients are fixed to the stereotactic Leksell coordinate frame as97

depicted in Figure 1. As a result, Cartesian coordinates (X,Y,Z) in 3D space of each BM central98

location are obtained and recorded.99

All patients undergoing GKRS at The Keck Hospital of the University of Southern California100

(USC) between the years 1995-2015 for the treatment of BM were reviewed and analyzed101

following approval from the local USC IRB. Those with primary BC were identified, and102

retrospective chart review was conducted to determine molecular subtype (ER, PR and Her2/Neu103

[HER2]). Samples were divided into 6 major subtypes based on HER2, ER and PR receptor104

status. Subtype information was available in 134 patients comprising a total 407 intracranial105

metastases. Clinical data gathered included: sex, age at diagnosis of primary cancer, age at106

diagnosis of BM, ER status, PR status and Her2/Neu status. To avoid potential confounders with107

prior radiation therapy, only patients with their first radiation treatment were included and those108

with prior radiation or radiosurgery were excluded. Multiple metastases from individual patients109

(at one treatment) were included. See data summary in Table ??.110

GKRS planning and treatment were performed by a multidisciplinary team including a neurosur-111

geon, radiation oncologist, and medical physicist. Tumor locations were recorded as (X,Y,Z)112

values on a Cartesian plane, corresponding to the Leksell coordinate frame axes and recorded113

using GammaPlan ™ software (Elekta corporation). In addition, specific clinical locations (e.g.114

Left frontal lobe) as well as tumor volume, number of treatments, vascular distribution, and115

radiation dose were recorded.116

3.2. Principal component analysis (PCA) and mutual information (MI)117

The principal component (PC) coordinates are a data-based orthogonal coordinate system118

designed to bring out the directions of maximal spread of the data and used in many settings in119

which patterns are sought from large data sets [13]. The PC coordinates are linear combinations120

of the three (X,Y,Z) physical coordinates, with mean at the origin, mutually orthogonal (so they121

span the same space as X-Y-Z), and such that PC1 lies in the direction of maximal spread, PC2 is122

orthogonal to PC1 and is in the next most likely direction of spread, while the PC3 direction123

is orthogonal to both, with the least direction of spread. Since the method of calculating the124

PC coordinates is standard, we refer the interested readers to Kirby [13] for theoretical details.125

We use scikit-learn Python package [14] for our data analysis. To compare two distributions126

associated with different molecular subtypes, we use the notion of mutual information (MI) [12]127

(relative entropy) which quantifies nonlinear mutual dependence between two random variables.128

If the MI is zero between two random variables, they are deemed to be completely independent129

and unrelated, which implies that using observations drawn from one has no value in predicting130

sequences generated by the other. The formula we use to estimate MI is [15]:131

𝑀𝐼 (𝑋;𝑌 ) = 1
𝑛

𝑛∑︁
𝑖=1

log[ 𝑝𝑋𝑌 (𝑥𝑖 , 𝑦𝑖)
𝑝𝑋 (𝑥𝑖)𝑝𝑌 (𝑦𝑖)

] (1)

where 𝑝𝑋𝑌 (𝑥𝑖 , 𝑦𝑖) is the estimated joint PDF, and 𝑝𝑋 (𝑥𝑖) and 𝑝𝑌 (𝑦𝑖) are the estimated marginal132

PDF’s at (𝑥𝑖 , 𝑦𝑖). The larger the MI value, the more the distributions are correlated, i.e. one133

distribution carries a high amount of information about the other. A very useful discussion and134

application of MI can be found in reference [16].135

3.3. Kernel density estimators and bootstrap method136

Kernel density estimators offer a useful tool to convert a discrete multivariate data set into137

smoothed, multivariate distributions to extract information and patterns associated with the138



probability distribution function associated with data [17]. Color gradient bars and contours are139

then used to identify ‘hot spot’ regions of highest density (probability), and regions of lowest140

density (probability). In principle, the computed MI does not depend on the size of the data141

sets being compared, although well known issues can arise from smaller data sets [15, 16]. For142

these reasons, to overcome the issue associated with small and unequal sizes of data sets for143

different molecular subtypes, we use a bootstrap (resampling) method [18], starting from the144

smoothed multivariate distributions obtained for each subtype (from the original data sets) to145

generate sample data of 1000 points and then calculate the MI values (see Table S2) for those146

points between each pair of subtypes. We carry out this re-sampling step and MI calculation step147

1000 times, and obtain sample means and standard deviations for the MI for each pair using the148

enlarged data sets generated from sampling from the distributions generated from the original149

data sets.150

4. Results151

The data set is compiled in Table ?? which shows the number of BM for each of the molecular152

subgroups, as well as details associated with Figures 2-8, S1, S2. Figure 2 shows the entire153

data set of brain metastases (Figure 2 A,B,C) for our cohort of breast cancer patients, in the154

sagittal, axial, and coronal planes. These same views are shown in Figure 2 D,E,F as kernel155

density plots depicting the density distributions associated with the data. The darkest enclosed156

regions of the kernel density plots nicely depict the highest density regions (‘hotspots’), which157

generally cluster towards the midline (coronal, axial view), posteriorly and caudally (sagittal).158

Figure S9 shows the same data broken down according to the molecular subtype (along each159

column): ER-PR-Her2+; ER+PR+Her2-; ER-PR-Her2-(TNBC); ER+PR+Her2+ (TPBC). The160

red dot marks the mean position. The corresponding kernel density plots for the molecular161

subgroups are shown in Figure 3 . The sagittal view across all subtypes (Figure 3, Row 1)162

demonstrates clear maximal clustering in the posterior, caudal region of brain; however TNBC163

appears to visually cluster superiorly/cranially compared to the other breast cancer subtypes. We164

next focused on elucidating differences in topographic patterns associated with the molecular165

subgroups by using the principal component axis coordinates [13]. The principal component166

coordinates are a rotated orthogonal coordinate system centered at the mean of the data that167

are optimally designed to highlight the largest spread direction (PC1). In Figure 4 we show168

the relationship between the principal component coordinates (PC1-PC2-PC3) and the physical169

cartesian coordinates (X-Y-Z). Figure 4 A shows PC1-PC2-PC3 in the X-Y-Z space, while170

Figures 4 B,C,D shows each of the two-dimensional projections. From Figure 4 B we can see171

that PC1 lies predominantly in the anterior-posterior (Y), although with other components as172

well (Figure 4 C,D). The precise linear relationship between the two coordinate systems is given by:173

174

𝑃𝐶1 = −0.0486(1, 0, 0) + 0.7672(0, 1, 0) + 0.6396(0, 0, 1)
𝑃𝐶2 = −0.6140(1, 0, 0)˘0.5280(0, 1, 0) + 0.5867(0, 0, 1)
𝑃𝐶3 = −0.7878(1, 0, 0) + 0.3642(0, 1, 0)˘0.4968(0, 0, 1)

(2)

In Figure S10 we compare the spatial distributions in the original X-Y-Z coordinates and the175

principal component axes (PC1-PC2-PC3) from the full data set for the six molecular subtypes:176

Her2+, ER+, PR+, PR-, Her2-, ER- separately. In each plot, the yellow horizontal bar marks the177

mean, while the white dot marks the median. The colors mark the molecular subtype, as shown in178

Figure S10 A which most clearly shows the divergence along the PC1 axis which is the direction179

of maximal spread. To understand the advantages of using the principal component coordinates180

over the cartesian coordinates, in Figure S10 A it is clear that the median lies below the mean181

(i.e. is shifted back with respect to the mean), with the three negative subtypes shifted further182

back than the three positive ones. Comparing this with Figure S10 E (spread along Y-axis), the183



pattern is not nearly as clear. For each pair of violin plots (distributions), we calculate the mutual184

information score (MI) along with standard deviations using the bootstrap method described185

earlier. Lower MI score indicates less mutual dependence between the compared distributions,186

higher MI score indicates more mutual dependence. Figure 5 A-F shows the same as Figure187

S10, but using the molecular subgroupings: TPBC; ER+PR+Her2-;ER-PR-Her2+; TNBC. The188

divergence between the mean and the median is largest in the triple negative grouping, shown189

most clearly in Figure 5 A along the PC1 axis. An ordered listing of all of the MI scores for190

each pair of molecular subtypes is shown in Table S2 and presented visually for the individual191

subtypes in Figure 8 as a heat map. The ordering in Table S2 goes from smallest to largest along192

the PC1 axis (first column), with all other axes also shown. In Table S2 and Figure 5 A we193

draw attention to the fact that the pair with the smallest MI value (8.966 +/- 3.394) is between194

ER-PR-Her2+ and ER-PR-Her2-, i.e. those two groupings are the most molecularly distinct.195

The two groups with the largest MI value (14.808 +/- 3.589) is between ER+PR+Her2+ and196

ER+PR+Her2-, i.e. those two groupings are the most molecularly similar (more important than197

the nominal values of these MI scores are the differences between them).198

Figures 6 and 7 show the differences between anterior vs. posterior and lateral vs. medial199

lesions from the sagittal, axial, and coronal views (Figure 6) and according to molecular subtype200

groupings. While Figures 7 A-D show the Count (number of metastatic lesions), Figure 7 E-H201

shows the proportion in each of the regions. It is clear that from Figure 6, the majority of lesions202

are located in the posterior circulation or watershed areas, and BMBC are relatively rare in the203

anterior circulation. Figures 7 G,H demonstrate the differences in medial vs lateral distribution204

of these tumors. It is clear from Figure 7 G that midline tumors are most common across205

all molecular subtypes. In addition, it appears that Her2+ tumors have the highest proportion206

of medial metastases, and more rarely metastasize laterally. This is consistent (Figure 7 H)207

within the molecular subgroups as well, with ER+PR+Her2+ tumors having similar categorical208

distributions to ER-PR-Her2+ tumors but significantly different than TNBC or ER+PR+Her2-209

tumors.210

5. Discussion211

Accurate quantitative characterization and analysis of BM distributions for primary breast cancer,212

broken down according to molecular subtypes, is an important step in the direction of highly213

personalized oncologic therapy and an understanding of the dynamics between BM subtypes and214

the TME that promote or inhibit the formation of metastasis. To further classify the relationship215

between a tumor and the microenvironment in which growth is facilitated or the genetic influences216

which allow for tumor growth in a particular environment, the specific location of tumor foci217

must be accurately and quantitatively analyzed. Although collecting, quantifying, and processing218

this information from large multicenter datasets is ongoing, our intention was to develop and219

share a practical and novel workflow for objective and data-driven analysis of BM distribution,220

along with useful quantitative techniques that are broadly applicable to other cancer types, larger221

data sets, and a wide range of centers whom intend to investigate similar relationships. While222

the seed-and-soil hypothesis has been an accepted overarching framework for over 100 years,223

detailed information about the spatial distributions of metastases in sensitive organs and broken224

down by tumor types and molecular subtypes is lacking [12]. In this study, we describe current225

methods for quantifying the spatial distribution of brain metastases, describe the utility of GKRS226

coordinates to facilitate this quantification, and discuss future applications and possibilities using227

widespread coordinate mapping and analysis.228

In preliminary analyses, triple negative breast cancers or TNBC (i.e. estrogen receptor negative,229

progesterone receptor negative) with varying her2 status were the most spatially distinct. In230

contrast, hormone receptor positive tumors with differing her2 status were the most similar. This231

suggests that hormone receptor status may disproportionately influence the spatial distribution of232



metastases. One hypothesis is that hormone receptor status, when ‘silent’, then allows her2 status233

to drive spatial distribution of BM. Conversely, when ‘activated’ (e.g. progesterone positive234

and estrogen positive), differences in her2 status may be more muted, at least in the context of235

spatial distribution. Clinically, luminal breast cancer (hormone receptor positive, Her2 negative)236

demonstrates distinct responses to therapies, and have a slower rate of growth and more positive237

outcomes. In addition, there is a relationship between TNBC, Her2-negative/hormone receptor238

positive tumors and mutations in the genes BRCA1 and BRCA2. These additional genetic markers239

may influence the spatial makeup of these subtypes and may validate the mutual information240

scores determined between these subtypes. Furthermore, hormone receptor positive tumors,241

regardless of their Her2 status, tend to portend the best clinical outcomes for patients. While242

this phenomenon is currently largely driven by therapeutic targets afforded by hormone receptor243

positivity, there may be additional genetic drivers which also influence spatial distribution.244

While several groups have aimed to categorize tumor location by subtype using MRIs, these studies245

are generally pilot studies and relatively small in sample size [19–22]. The non-granular level of246

anatomical precision from MRI studies (e.g. describing tumor location qualitatively as ‘frontal247

lobe’) often prevents further downstream analysis of these tumor distributions using advanced248

mathematical and computational means. This precision becomes important when discussing249

embryologic, signal-based and/or genetic and epigenetic influences in tumor development;250

discriminating between the midline frontal lobe and more lateral aspects is meaningful as these251

regions have different vascular distributions, functions and are likely embryologically driven252

by different mechanisms, despite being in the same lobe [22]. FOX genes, for instance, are253

theorized to drive midline brain development and Sonic Hedgehog (SHH) has been shown to254

drive cerebellar development [23–25]. The process of anatomical mapping of brain metastases255

when performed via MRI is also sensitive to variations in institutional MRI sequence protocol,256

and can influence the spatial mapping of tumors, as shown by a study by Kyeong et al [25] and257

Izustsu et al [26] who mapped genetic subtypes of breast cancer with differing MRI sequences258

and obtained conflicting results [25,26]. Lastly, MRI reading requires a trained neuro-radiologist259

and is time consuming and tedious, preventing its widespread adoption. While advancements in260

machine learning and computer vision may allow for precise anatomical landmark distinction at261

scale, these techniques are not widespread [27].262

Analysis using GKRS is a promising alternative to qualitative anatomical location analysis for a263

variety of reasons. GKRS Leksell coordinates are already collected at the time of radiosurgery264

and utilized in routine clinical care, allowing for ease of implementation. They are specific265

to each patient and each tumor and provide accurate, three-dimensional coordinates of tumor266

centroids. Finally, GKRS data are easily scalable and standardizable across institutions for267

future data collection and does not require manual annotation by skilled professionals, and can268

be analyzed in an objective and quantitative fashion rather than using categorical descriptors,269

thereby increasing internal validity of the analyses.270

By transforming the data from the original Leksell anatomical coordinates to the principal271

coordinate axes, we are using an optimal data-derived coordinate system that highlights the axis272

along which there is the largest spread (PC1), the second largest spread (PC2), and the least spread273

(PC3) of the data. What we lose in this linear transformation is an easily interpretable anatomical274

frame, but we gain the ability to quantify what would otherwise be very subtle differences among275

molecular subgroups. We have retained the original anatomical frame, however, to depict the276

kernel density plots showing the clustering regions along the 3 two-dimensional projections, in277

order to more easily discern the physical locations in the brain where the clusters occur and to278

correlate this with blood flow patterns.279

We further demonstrate that the results obtained by the GKRS coordinate spatial distribution280

system are accurate and can elucidate meaningful differences in molecular subtype distribution281

patterns. It has been well described that breast cancer preferentially metastasizes to the cerebellum;282



KDE plots from GKRS data demonstrate the preference for the posterior circulation and below the283

central cranio-caudal axis, consistent with a cerebellar distribution [1, 21]. Izutsu et al [26]found284

that in their cohort of 67 patients with 437 tumors, Her2 positivity was associated with metastases285

in the putamen and thalamus and less frequently in the cerebellum [26]. Figure 7 corroborates286

these findings, wherein Her2+ tumors appear to be preferentially distributed on the midline287

(thalamus and putamen are midline structures). Kyeong et al [25] found that TNBC was evenly288

distributed in the brain, which is supported by Figure 7 F, where TNBC appears to have a289

relatively uniform distribution between anterior, posterior and watershed areas of circulation [25].290

It is important to note that our study did not corroborate all of the findings within the literature-291

for example Kyeong et al [25] contradicted the findings by Izutsu et al [26] (and our analysis) and292

found BM from Her2 positive and luminal type tumors more common in the cerebellum and293

occipital lobe. These inconsistencies (and differences in sequence methods) highlight the need294

for high quality, standardized data collection and analysis methods. Using mutual information,295

data on subtype similarity may be explored: for instance, TPBC and hormone negative BC296

(TNBC, ER-PR-Her2+) had two of the most divergent patterns of distribution. This supports297

known characterization of BC, where hormone receptor positivity portends significantly improved298

outcomes [28]. Further characterization of and groupings of subtypes with higher MI coefficients299

(higher similarity) should also be explored (with larger data sets), such as between ER+PR+Her2+300

tumors and ER+PR+Her2- tumors; it may be that the clustering of these tumors are both relatively301

non-preferential, hence they have high MI coefficients, however there may be underlying factors302

related to tumor microenvironment or other genes which may drive tumorigenesis in similar303

locations. Subsequent translational/animal models which attempt to categorize growth of tumors304

based on their location should prioritize investigating tumor subtypes with the most convergent305

and divergent MI indices.306

5.1. Opportunities for Advancement in Diagnosis and Treatment307

Neurotransmitters (e.g. gamma-aminobutyric acid (GABA), glutamate, dopamine, etc) are the308

biochemical backbone for synaptic signaling, but are also utilized for other cellular functions.309

These neurotransmitters are present in varying concentrations in different regions; for example,310

GABA-ergic communication is predominant in cerebellum. This difference is also highlighted311

by blood-flow; and it is speculated that BM have a predominance in the cerebellum due to the312

difference in blood flow to those regions, however it is unknown why this affect has a nonuniform313

impact across primary cancers and subtypes. Understanding the spatial distribution of BM based314

on molecular subtype may further characterize tumor ability to adapt to regional microenviron-315

ments based on these neurotransmitter distributions, and may promote BM progression [3,10,29].316

There is a need for large, multi-center studies which utilize standardized data collection criteria to317

accurately map our brain metastases to avoid inaccuracies as previously mentioned, and enhance318

generalizability and external validity of this work. In addition, the current advantage of MRI319

mapping vs GKRS is the ability to develop a 1-1 anatomic map. Accordingly, efforts should320

be made to create a Leksell-Anatomic mapping, wherein specific X,Y,Z coordinates map to321

a specific location on a standardized cartesian plane. These mapping classifications must be322

corroborated with in-vitro and animal models, demonstrating the ability to seed tumor more323

readily in certain areas of the brain, or identify DNA/RNA lineages specific to tumor locations.324

Finally, this data must be correlated with clinical factors (e.g. time to diagnosis, overall survival,325

etc.) which can allow for the development of clinical decision trees. Groups have postulated that326

the accurate classification of subtypes and correlation with high-risk subgroups might warrant327

increased surveillance in the period following cancer diagnosis but before BM diagnosis, or even328

prophylactic, low dose radiation to regions of the brain with high susceptibility [26]. These329

clinical implementations remain distant, however the systematic, quantifiable mapping of BM330

distributions is an important first step in personalized oncologic care for the patient with BMBC.331



5.2. Limitations332

There are limitations to the current study. While stereotactic headsets are standardized in their size,333

they are fit to a patient’s specific head size which may introduce variation in coordinate recordings.334

Studied across a cohort of hundreds or thousands of patients, however, these individual cranial-335

frame variations are likely to normalize and not preclude meaningful statistical comparison.336

Secondly, the anatomical distributions demonstrated (anterior/posterior, medial/lateral) are337

Cartesian-derived and may have a limited degree of inaccuracy, although GKRS accuracy has338

been reported to be on the order of 1mm. The data itself introduces a level of systematic bias as339

it only accounts for patients who had GKRS for treatment of BM, and not patients who elect340

not to undergo GKRS, those who undergo whole brain radiation, or have undiagnosed BMBC.341

Furthermore, correlation with MRI endpoints would significantly strengthen this work. However,342

advanced imaging studies which may allow us to make more definitive claims regarding the343

tumor-tumor microenvironment specific to anatomic endpoints (e.g. MR angiograms, perfusion344

MRI, tractography, etc.) were not performed systematically across any significant subset of345

patients. Lastly, given that individual cancers themselves have differential distribution patterns,346

by definition, variance within cancers will be far more subtle. Accordingly, our samples may be347

significantly underpowered to detect meaningful difference in cancer subtype distribution, which348

is why we employ the bootstrap/re-sampling method. Scaling the analysis described using the349

current workflow to thousands of BMK patients from multi-center consortia will increase power350

and allow more meaningful and granular comparison of cancer and molecular BM subtypes.351

6. Conclusion352

We demonstrate a novel, objective, data-based methodology for classifying and analyzing the353

spatial distribution of brain metastases by breast cancer molecular subtypes using stereotactic354

coordinates, principal component coordinates (PC), and kernel density estimators (KDE) to355

highlight clustering regions in the brain. We then compare distributions associated with dif-356

ferent molecular subtypes using the mutual information (MI) metric, which is a widely used357

bioinformatic metric [15, 16], but to our knowledge has not been used in the current context.358

This systematic, quantitative method for classifying BM distribution is easy to scale, accurate,359

and a meaningful step forward towards understanding the relationship between BM tumor360

microenvironment and tumorigenesis. Her2+ vs. Her2- cancers may show differential patterns361

based on this pilot study data and novel methodology.362
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Fig. 1. Schematic illustration of Gamma Knife radiosurgery (GKRS) stereotactic
headset, intracranial metastasis (brown), and targeted radiation location in X (yellow), Y
(Red) and Z (Green) planes. These coordinates are subsequently mapped to a traditional
three dimensional cartesian plane (right), and repeated for all brain metastases for all
patients undergoing GKRS at our institution.



Fig. 2. Scatter and kernel density plots showing the spatial distribution of metastatic
brain tumors for all breast cancer patients in sagittal, axial, and coronal views. A)
Scatter plot, sagittal view, red dot indicates the mean; B) Scatter plot, axial view, red dot
indicates the mean; C) Scatter plot, coronal view, red dot indicates the mean; D) Kernel
density plot, sagittal view. Color shading indicates density, closed dark regions indicate
highest density of metastatic tumors. Distributions on top and right are probability
distribution functions (pdf’s) describing the distribution of tumors. E) Same as (D),
axial view; F) Same as (D), coronal view.



Fig. 3. Kernel density plots of metastatic tumor distributions according to genetic
subgroups, sagittal, axial, and coronal views. Color shading indicates density, closed
dark regions indicate highest density of metastatic tumors. Distributions on top and
right are probability distribution functions (pdf’s) describing the distribution of tumors.
A) Column showing ER-/PR-/Her2+ subgroup, three views; B) Column showing
ER+/PR+/Her2- subgroup, three views; C) Column showing TNBC subgroup, three
views; D) Column showing TPBC subgroup, three views.



Fig. 4. Scatter plot of all breast cancer metastatic brain tumors in X-Y-Z coordinates
showing the Principal component axes PC1-PC2-PC3. A) 3D data representation in
(X,Y,Z) space showing the orientation of (PC1,PC2,PC3). B) 2D projection onto (X,Y)
plane; C) 2D projection onto (X,Z) plane; D) 2D projection onto (Y,Z) plane.



Fig. 5. Violin plots (probability distribution functions) of metastatic distributions
according to molecular groupings (indicated by color), comparing distributions in
original Cartesian X-Y-Z coordinates, and Principal component coordinates (PC1-PC2-
PC3). MI metric is shown for each pair. A) Distribution along PC1-axis according
to molecular grouping. Yellow dash indicates mean, white dot indicates median; B)
Distribution along PC2-axis according to molecular grouping. Yellow dash indicates
mean, white dot indicates median; C) Distribution along PC3-axis according to
molecular grouping. Yellow dash indicates mean, white dot indicates median; D)
Distribution along X-axis according to molecular grouping. Yellow dash indicates
mean, white dot indicates median. We use this representation to arrange the subtypes
from left to right in order of increasing divergence between the means and medians;
E) Distribution along Y-axis according to molecular grouping. Yellow dash indicates
mean, white dot indicates median; F) Distribution along Z-axis according to molecular
grouping. Yellow dash indicates mean, white dot indicates median.



Fig. 6. Scatter plots of metastatic tumors, anterior/posterior, lateral/medial, three
different views. A) Sagittal view, blue indicates anterior, pink indicates posterior, grey
dots indicate washout region; B) Axial view, blue indicates anterior, pink indicates
posterior, grey dots indicate washout region; C) Coronal view, blue indicates anterior,
pink indicates posterior, grey dots indicate washout region; D) Sagittal view, blue
indicates lateral, red indicates medial; E) Axial view, blue indicates lateral, red indicates
medial; F) Coronal view, blue indicates lateral, red indicates medial; G) Topographical
illustration (axial) showing the X-coordinates corresponding to the lateral and medial
regions.



Fig. 7. Histograms (Count and Proportion) showing spatial distribution (ante-
rior/posterior; lateral/medial) by molecular subtypes and groupings. A) Count per
molecular subtype, anterior (blue), posterior (pink), watershed (grey); B) Count per
molecular grouping, anterior (blue), posterior (pink), watershed (grey); C) Count per
molecular subtype, lateral (blue), medial (red); D) Count per molecular grouping,
lateral (blue), medial (red); E) Proportion per molecular subtype, anterior (blue),
posterior (pink), watershed (grey); F) Proportion per molecular grouping, anterior
(blue), posterior (pink), watershed (grey); G) Proportion per molecular subtype, lateral
(blue), medial (red); H) Proportion per molecular grouping, lateral (blue), medial (red).



Fig. 8. Mutual information heat map for the six breast cancer molecular subtypes along
PC1-axis. Low mutual information indicates the distributions associated with the two
subtypes are not highly dependent. High mutual information indicates the distributions
associated with the two subtypes are highly dependent.



Fig. S9. Scatter plots of metastatic tumor distributions according to genetic subgroups,
sagittal, axial, and coronal views. Red dot indicates mean. A) Column showing
ER-/PR-/Her2+ subgroup, three views; B) Column showing ER+/PR+/Her2- subgroup,
three views; C) Column showing TNBC subgroup, three views; D) Column showing
TPBC subgroup, three views.



Fig. S10. Violin plots (probability distribution functions) of metastatic distributions
according to molecular subtype (indicated by color), comparing distributions in original
Cartesian X-Y-Z coordinates, and Principal component coordinates (PC1-PC2-PC3).
MI metric is shown for each pair. A) Distribution along PC1-axis according to molecular
subtype. Yellow dash indicates mean, white dot indicates median; B) Distribution along
PC2-axis according to subtype. Yellow dash indicates mean, white dot indicates median;
C) Distribution along PC3-axis according to subtype. Yellow dash indicates mean, white
dot indicates median; D) Distribution along X-axis according to molecular subtype.
Yellow dash indicates mean, white dot indicates median. We use this representation
to arrange the subtypes from left to right in order of increasing divergence between
the means and medians; E) Distribution along Y-axis according to molecular subtype.
Yellow dash indicates mean, white dot indicates median; F) Distribution along Z-axis
according to molecular subtype. Yellow dash indicates mean, white dot indicates
median.



ER PR Her2/Neu No. Metastases

Anterior

:

Posterior

:

Watershed

Lateral

:

Medial

Median X

Axis

Median Y

Axis

Median Z

Axis

Median

PC1 Axis

Median

PC2 Axis

Median

PC3 Axis

+ 110 28:42:40 25:85 101.35 73.30 103.85 -3.13 0.12 2.98

- 116 31:56:29 21:95 99.90 76.30 103.60 -10.56 -1.05 2.80

+ 86 19:35:32 21:65 98.85 72.15 102.45 -3.42 -0.35 1.02

- 124 32:57:35 23:101 99.90 76.30 103.85 -4.93 -1.13 1.64

+ 124 27:60:37 22:102 106.80 76.80 101.80 -2.56 -0.77 1.74

- 91 23:37:31 25:66 98.70 72.70 104.20 -9.31 0.55 -0.33

+ + + 20 4:8:8 3:17 110.25 69.35 114.30 -2.91 -1.08 -7.26

+ + - 49 10:20:19 16:33 100.4 73.90 99.1 -3.98 1.19 -2.01

- - + 75 17:40:18 12:63 99.60 77.90 93.90 -9.56 0.28 2.25

- - - 28 8:11:9 7:21 103.45 66.20 107.15 -12.98 -0.58 -1.04

+ - + 8

- + + 4

+ - - 5

- + - 2

Table S1. Number of brain metastases and proportion of different spatial subgroupings
along with the medians in Cartesian and Principal Component coordinates by tumor
subtype. The last four molecular subgroupings (last four rows) are not considered in
this paper due to the small number of data points.



PC1 PC2 PC3 X Y Z

ER-PR-Her2+/

ER-PR-Her2-
8.966 ± 3.394 15.508 ± 3.330 16.350 ± 3.655 13.023 ± 3.466 15.548 ± 3.648 16.878 ± 3.600

ER+PR+Her2-/

ER-PR-Her2+
10.767 ± 3.443 17.467 ± 3.496 18.515 ± 3.801 15.805 ± 3.457 17.472 ± 3.694 15.132 ± 3.532

ER+PR+Her2+ /

ER-PR-Her2+
10.979 ± 3.376 17.392 ± 3.667 21.222 ± 3.881 14.446 ± 3.645 17.146 ± 3.745 18.476 ± 3.658

ER+PR+Her2-/

ER-PR-Her2-
12.540 ± 3.527 15.359 ± 3.531 16.221 ± 3.548 14.470 ± 3.536 16.200 ± 3.607 14.571 ± 3.503

ER+PR+Her2+/

ER-PR-Her2-
12.614 ± 3.376 15.249 ± 3.606 18.921 ± 3.789 13.100 ± 3.613 16.029 ± 3.504 18.112 ± 3.677

ER+PR+Her2+ /

ER+PR+Her2-
14.808 ± 3.589 17.018 ± 3.530 20.996 ± 3.820 16.014 ± 3.547 18.158 ± 3.645 16.247 ± 3.766

PR- / ER- 6.031 ± 3.238 17.394 ± 3.854 17.993 ± 3.653 12.273 ± 3.307 13.348 ± 3.636 17.442 ± 3.644

Her2+ / ER- 6.168 ± 3.172 19.844 ± 3.765 17.623 ± 3.609 12.571 ± 3.580 15.414 ± 3.530 17.102 ± 3.598

Her2+ / PR- 7.021 ± 3.326 18.185 ± 3.638 17.752 ± 3.664 11.999 ± 3.372 15.715 ± 3.678 17.683 ± 3.720

Her2- / ER- 8.184 ± 3.338 18.879 ± 3.704 17.836 ± 3.590 14.506 ± 3.569 16.038 ± 3.762 14.683 ± 3.501

PR+ / ER- 8.383 ± 3.290 20.139 ± 3.885 18.164 ± 3.536 15.609 ± 3.565 14.186 ± 3.436 15.196 ± 3.607

ER+ / ER- 8.469 ± 3.476 19.238 ± 3.652 17.926 ± 3.622 15.484 ± 3.515 15.438 ± 3.548 15.482 ± 3.679

Her2+ / Her2- 9.034 ± 3.363 19.914 ± 3.792 17.226 ± 3.539 14.204 ± 3.428 18.322 ± 3.758 14.884 ± 3.548

PR- / Her2- 9.164 ± 3.319 17.213 ± 3.469 17.709 ± 3.605 14.189 ± 3.423 15.927 ± 3.691 15.359 ± 3.520

Her2+ / PR+ 9.227 ± 3.452 21.094 ± 3.730 18.118 ± 3.514 15.350 ± 3.506 16.584 ± 3.661 15.006 ± 3.450

PR+ / PR- 9.334 ± 3.323 18.487 ± 3.690 18.253 ± 3.550 15.325 ± 3.542 14.24 ± 3.522 15.662 ± 3.541

ER+ / PR- 9.393 ± 3.582 17.88 ± 3.851 18.09 ± 3.490 14.980 ± 3.571 15.482 ± 3.830 16.098 ± 3.715

Her2+ / ER+ 9.447 ± 3.351 20.288 ± 3.861 17.830 ± 3.778 15.093 ± 3.558 17.836 ± 3.753 15.588 ± 3.586

PR+ / Her2- 11.178 ± 3.466 20.357 ± 3.804 17.978 ± 3.604 17.838 ± 3.564 16.798 ± 3.715 12.604 ± 3.338

ER+ / Her2- 11.516 ± 3.469 19.579 ± 3.714 17.827 ± 3.669 17.216 ± 3.831 18.183 ± 3.745 13.118 ± 3.396

ER+ / PR+ 11.601 ± 3.455 20.712 ± 3.723 18.224 ± 3.532 18.455 ± 3.691 16.696 ± 3.625 13.286 ± 3.510

Table S2. Mutual Information. Ranked listing (from smallest to largest) of MI between
pairs of molecular subtypes along each of the coordinate axes, using the PC1 coordinate
axis values to order the list. Smaller MI values indicate weaker mutual dependence (i.e.
more independence), larger MI values indicate stronger mutual dependence.


