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ABSTRACT

Background: Fragile X syndrome (FXS) is the most prevalent form of inherited intellectual disability1

and is the most common monogenetic cause of autism. Previous studies have linked the structural2

and functional alterations in FXS with impaired sensory processing and sensory hypersensitivity,3

which may hinder the early development of cognitive functions such as language comprehension.4

In this study, we compared the P1 response in event-related potential (ERP) and its habituation to5

repeated auditory stimuli in male children (2-7 years old) with and without FXS, and examined their6

association with clinical measures in these two groups.7

Methods: We collected high-density electroencephalography (EEG) data in an auditory oddball8

paradigm from 12 children with FXS and 11 age- and sex-matched typically developing (TD) children.9

After standardized EEG pre-processing, we conducted a spatial principal component (PC) analysis10

and identified two major PCs — a frontal PC and a temporal PC. Within each PC, we compared the11

P1 amplitude and inter-trial phase coherence (ITPC) between the two groups, and performed a series12

of linear regression analysis to study the association between these EEG measures and several clinical13

measures, including assessment scores for language development, non-verbal skills, and sensory14

hypersensitivity.15

Results: At the temporal PC, both early and late standard stimuli evoked a larger P1 response (p16

= 0.0037, p<0.0001, respectively) and higher ITPC (p = 0.0402, p = 0.0027) in FXS than in TD.17
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We observed habituation of ITPC in both groups at the frontal PC (p = 0.0149 for FXS; p = 0.024418

for TD). Linear regression analysis showed that within the FXS group reduced frontal P1 response19

to late standard stimuli and increased habituation were associated with better languages scores. No20

associations were observed with non-verbal skills or sensory hypersensitivity.21

Conclusion: We identified P1 amplitude and ITPC in the temporal region as a contrasting EEG22

phenotype between the FXS and the TD groups. P1 response and habituation in the frontal region23

may be reflective of the language outcome in male children with FXS. These EEG measures are24

potential biomarkers for early diagnosis and future language development in patients with FXS.25

Keywords Fragile X syndrome · autism · EEG · ERP · phase coherence · neural habituation · language · biomarker26

1 Introduction27

Fragile X syndrome (FXS) is a genetic condition that affects approximately 1 in 4,000 males and 1 in 8,000 females28

(Rais et al., 2018). It is the most prevalent form of inherited intellectual disability and is the most common monogenetic29

cause of autism (Crawford et al., 2001; Hersh et al., 2011). FXS results from an expansion (>200 repeats for full30

mutation) and hyper-methylation of a CGG trinucleotide repeat in the FMR1 (Fragile X messenger ribonucleoprotein 1)31

gene, and individuals with this mutation exhibit developmental and behavioral challenges including delays in learning,32

speech and language delay, sensory issues, hyperactivity, and anxiety (NICHD, 2021). The long repeat of the CGG33

sequence prevents the expression of the encoded FMRP protein, which leads to alterations in the development of34

synapses, including thin and elongated dendritic spines with increased density, and immature synaptic connections,35

as evidenced by studies with FXS animal models and postmortem studies of FXS individuals (Rudelli et al., 1985;36

Comery et al., 1997; Hinton et al., 1991; Irwin et al., 2002). It might also prevent activity-based synapse maturation and37

synaptic pruning, which are essential in developing normal cognitive functions (reviewed in Schneider et al. (2009) and38

Knoth and Lippé (2012)).39

The structural and functional alterations in FXS have been linked with atypical neural processing and arousal40

modulation problems (Barnea-Goraly et al., 2003). Previous research using rodent models with FMR1 knockout (KO)41

mice revealed cortical hyperexcitability due to impaired inhibition and altered neural synchrony (Gonçalves et al., 2013;42

Zhang et al., 2014). A decreased level of gamma-aminobutyric acid (GABA) receptors and GABAergic input, and43

increased GABA catabolism were observed in multiple regions in the FMR1 KO mouse brain (Idrissi et al., 2005; Selby44

et al., 2007; D’Hulst et al., 2009). This deficit of GABAergic inhibition impacts multiple components of the sensory and45

cognitive system, including the auditory brainstem (McCullagh et al., 2020), amygdala (Olmos-Serrano et al., 2010),46

and the auditory cortex (Song et al., 2021), and may underlie the auditory hypersensitivity and auditory processing47

alterations commonly seen in FXS (Castrén et al., 2003; der Molen et al., 2012a; Schneider et al., 2013; Rotschafer and48

Razak, 2014). Notably, previous studies in autism have associated auditory processing alterations with language delays49

(Rincón, 2008; Roberts et al., 2011), a phenotype often shared by the FXS population (Abbeduto et al., 2007; Finestack50

et al., 2009), which suggests a tight relationship between the auditory response of the brain and language development51

in individuals with FXS.52

In the recent decades, noninvasive neuroimaging techniques like electroencephalography (EEG) have made it53

possible to track dynamical brain responses without the need of complex neurosurgery, and thus have become a popular54

tool for studying auditory brain responses. With EEG collected from the widely-used auditory oddball paradigm,55

previous studies identified multiple components in the event-related potential (ERP) being altered in individuals with56

FXS relative to the control group. Elevated N1 (Clair et al., 1987; Castrén et al., 2003; der Molen et al., 2012b; Knoth57

et al., 2014; Ethridge et al., 2016) and P2 (Clair et al., 1987; der Molen et al., 2012b; Knoth et al., 2014; Ethridge et al.,58

2016) amplitudes have been consistently reported from individuals with FXS. Habituation of N1, defined as the reduced59

neural response (i.e., the N1 response) to repeated stimulus presentations, was shown to be weaker in FXS compared60

to age-matched comparison groups (Castrén et al., 2003; der Molen et al., 2012a; Ethridge et al., 2016). Similar to61
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the findings in ERPs, greater response and weaker habituation were also observed in gamma (>30Hz) oscillatory62

power and inter-trial phase coherence (ITPC) in individuals with FXS (Ethridge et al., 2016). Nonetheless, most of63

these studies have focused on the adult population; very little is known about the developmental aspect of these neural64

signatures in FXS. Wunderlich et al. (2006) explored the maturation of auditory ERP in infants and young children, and65

discovered that the waveform and scalp distribution of auditory ERP change as a function of age. For example, the P166

component, which is prominent in preschoolers and young children, is diminished in adults (Wunderlich et al., 2006;67

Kuuluvainen et al., 2016). This is possibly the reason why none of the aforementioned studies reported significant68

findings in P1 response. Additionally, the association between EEG signals and early language development in FXS69

remains unclear. To our knowledge, only one study by Wilkinson and Nelson (2021) addressed this question, and70

reported a positive relationship between resting-state gamma power and language scores in male children with FXS.71

This finding is important from a clinical perspective, because therapeutics (both behavioral and pharmacologic) will72

ideally be provided near the age of diagnosis (∼3 years of age). More EEG biomarkers that could sensitively, robustly,73

and timely predict future language outcomes in FXS children are therefore desirable for the implementation of early74

intervention.75

To fill these gaps in research, this study recorded EEG data in a passive auditory oddball paradigm from preschool76

and school aged boys with or without FXS and collected clinical and behavioral measures. First, we compared the77

amplitude and short-term habituation of the P1 response and its corresponding ITPC between the two participant groups.78

We hypothesized that the FXS boys would have greater amplitude and less habituation in these measures than their79

age-matched typically developing peers. Second, to investigate the clinical relevance of these EEG measures, we80

examined how they are associated with language development, non-verbal skills, and sensory hypersensitivity.81

2 Materials and Methods82

2.1 Participants83

A total of 16 children (33 - 78 months old) with Fragile X syndrome (FXS) and 13 age-matched, typically developing84

(TD) children (33 - 80 months old) were recruited for participation. The uneven number of participants between groups85

was a result of the COVID-19 interruption. All FXS participants had documented full mutation of the FMR1 gene.86

Given that female FXS patients have variable expression of the FMR1 encoded protein and thus variable phenotypes,87

they were excluded from this study (n = 1 in the FXS group). Three boys with FXS did not perform or complete the88

EEG experiment of this study. Additional exclusion criteria across both groups (FXS and TD) included a history of89

prematurity (<35 weeks gestational age), low birth weight (<2000g), known birth trauma, known genetic disorders90

(other than FXS), unstable seizure disorder, current use of anticonvulsant medications, and uncorrected hearing or91

vision problems. Only children from families whose primary language is English (> 50% of the time at home) were92

included. Some participants were on stable doese of medications (Oxybutin (1 TD); Melatonin (2 FXS); Miralax (193

TD); Sertraline (1 FXS)). More information about the participants can be found in Table. 1.94

This study was approved by the Institutional Review Board at Boston Children’s Hospital / Harvard Medical School95

(IRB#P00025493). Written informed consent was obtained from all guardians upon their children’s participation in the96

study.97

2.2 EEG collection and experiment design98

The EEG was recorded in a dimly lit, sound-attenuated, electrically shielded room. Participants either sat in their99

caregiver’s lap or sat independently in a chair, high-chair or stroller depending on their preference, and the caregiver100

was instructed to avoid social interactions or speaking with their child. During the experiment, EEG data were collected101

using a 128-channel HydroCel Geodesic Sensor Net (Version 1, EGI Inc, Eugene, OR) connected to a DC-coupled102

amplifier (Net Amps 300, EGI Inc, Eugene, OR) with impedance of all electrodes kept below 100 kΩ. Data were103
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FXS TD

N = 12 N = 11 p value

Age, mean in months (SD) 50.68 (16.66) 49.03 (12.82) 0.7914

Maternal Education , n (%)

<4-year college degree 1 (7.69) 0 (0)

4-year college degree 4 (30.77) 4 (36.36)

>4-year college degree 8 (61.54) 7 (63.64)

Paternal Education, n (%)

<4-year college degree 4 (30.77) 0 (0)

4-year college degree 2 (15.38) 5 (45.45)

>4-year college degree 7 (53.85) 6 (54.55)

Household Income, n (%)

<$40,000 0 (0) 0 (0)

$40-70,000 3 (23.08) 0 (0)

$70-100,000 3 (23.08) 3 (27.27)

$100-140,000 2 (15.38) 4 (36.36)

>$140,000 4 (30.77) 4 (36.36)

Race

White 9 (69.23) 6 (54.55)

African American 0 (0) 1 (9.10)

Asian 1 (7.69) 1 (9.10)

Mixed 1 (7.69) 3 (27.27)

Ethnicity, n (%)

Hispanic or Latino 3 (23.08) 0 (0)

Clinical Measures, mean (SD)

Nonverbal Developmental Quotient 58.56 (15.56) 112.49 (16.59) <0.0001

PLS Auditory Comprehension 69.54 (15.09) 118.64 (9.88) <0.0001

PLS Expressive Communication 68.77 (17.15) 122.09 (8.78) <0.0001

VAS Receptive Language 9.15 (3.56) 14.55 (1.51) <0.0001

VAS Expressive Language 6.62 (3.50) 15.55 (1.37) <0.0001

Sensory Profile 23.36 (6.58) 23.56 (5.10) 0.9437
Table 1: Sample characteristics

sampled at 1000 Hz with reference to the electrode Cz. A sequence of 800 tones were played with 1000-ms inter-104

stimulus interval at 70dB from a speaker while the child was watching a silent movie for compliance (Figure. 1). These105

tones were all 50 ms in duration, and could be either 1000-Hz or 2000-Hz. The 1000-Hz tones, deemed as the more106

frequent “standard” (STs) stimuli, appeared for 87.5% of the time, while the 2000-Hz tones, deemed as the less frequent107
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“deviant” stimuli, accounted for the rest 12.5%. The number of STs preceding a deviant was either 4, 5, 6, or 7, varying108

with equal probability.109

Figure 1: Experimental design of the auditory oddball paradigm. Each standard or deviant stimulus was 50ms in
duration. Inter-stimulus interval was 1 second. The first and the fifth standard stimuli after each deviant stimulus were
deemed as the “ST1” and the “ST5” conditions, respectively.

2.3 EEG pre-processing110

Raw EEG data were exported from NetStation (version 4.5, EGI Inc, Eugene, OR) and were batch preprocessed with111

the Harvard Automated Preprocessing Pipeline for EEG plus Event-Related Software (HAPPE+ER) (Monachino et al.,112

2021), a MATLAB-based EEG processing pipeline. The processing steps in HAPPE+ER are as follows. Line noise113

was first removed using CleanLine via a multi-taper regression approach. Signals were then resampled to 250 Hz and114

low-pass filtered (100 Hz). Bad channels, including those with flat line, residual line noise, and other excessive noise115

evaluated by a joint probability method, were removed and interpolated. A subsequent wavelet-thresholding artifact116

removal pipeline (Castellanos and Makarov, 2006) — an algorithm that parses signals into frequency components and117

identifies artifacts based on the distributions of these components — was implemented to remove noise in the frequency118

domain. After band-pass filtering (1 – 30 Hz), continuous EEG data were then segmented into epochs between 200 ms119

before and 500 ms after the onset of each stimulus, and were baseline corrected by the average over the pre-stimulus120

period (-200 to 0 ms). Only those epochs associated with the first (ST1) and the fifth (ST5) standard tone after each121

deviant were retained in this study. It should be noted that “ST5” was chosen for analysis for two reasons. First, it122

is more distant from “ST1” than any earlier standards, and thus is expected to elicit more habituation effects. And123

second, the number of trials in “ST5” (n = 92) is closer to the number of trials in “ST1” (n = 100) compared to any later124

standards (n < 65). Epochs with residual artifacts, evaluated by their amplitude and joint probability, were removed by125

HAPPE+ER. We excluded participants with fewer than 20 trials in either ST1 or ST5 condition — 12 participants in the126

FXS group and 11 participants in the TD group remained in this analysis after the overall EEG pre-processing. In order127

to control for the difference in number of trials between ST1 and ST5, we randomly downsampled the condition with128

more trials to match with the other condition.129

2.4 EEG analysis130

An overview of the EEG analysis is shown in Figure. 2. In brief, a spatial principal component analysis was performed131

on preprocessed EEG data, and the principal components were applied on the original multi-channel EEG signals as132

spatial filters to derive PC-transformed time courses. Event-related potential and inter-trial phase coherence measures133

were calculated from these time courses, which were later studied for their association with clinical measures of different134

domains.135

2.4.1 Principal Component Analysis136

A spatial principal component analysis (PCA) was conducted to identify representative spatial patterns in neural137

activation following the steps in previous studies (Ethridge et al., 2012, 2015, 2016). EEG data were first averaged138

across trials, conditions and participants for a grand average EEG matrix, whose dimensions are number of time points139

by number of channels. A spatial PCA processed each time point as an observation and each channel as a variable,140
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Figure 2: A schematic diagram for all the analyses in this study. For intelligibility, only 16 out of 128 channels are
displayed in “Preprocessed EEG” and “Grand averaged EEG”. Each line in “PC-transformed time course” represents
the average ERP of an individual.
PCA, principal component analysis; a.u., arbitrary unit; STFT, short-time Fourier transform; ITPC, inter-trial phase
coherence; CBPT, cluster-based permutation test; PLS, Preschool Language Scales; VAS, Vineland Adaptive Behavior
Scales; SPC, Sensory Profile Child; MSEL, Mullen Scales of Early Learning.

and generated a series of mutually orthogonal principal components (PCs) that could sequentially explain most of the141

variance in the data. The number of PCs equals the number of time points (i.e., more than 100), and most of them142

carry a negligible amount of variance explained. In order to determine the number of PCs that should be included for143

further analysis, we ran a parallel analysis (Franklin et al., 1995) implemented in MATLAB (Shteingart, 2022), which144

identified two PCs as being significant with more than 95% confidence (Figure. 3). We deemed the one with high145

weights in the frontal region as the “frontal PC”, and the one with high weights in the temporal regions as the “temporal146

PC”. All subsequent analyses were performed in these two PCs independently.147

2.4.2 Event-related potentials148

The PCs derived from the previous step were used as spatial filters to scale and integrate signals from all channels in149

each trial, for each condition and each participant. This reduced the 128-channel EEG data to one single time course for150

each trial. Event-related potential (ERP) analysis was conducted with these PC-transformed time courses instead of the151

original multi-channel signals.152

We specifically focused on the P1 component of an ERP in this study, which is the first positive deflection in153

the average EEG waveform after the stimulus onset. Considering that the ERP waveform changes during childhood154

(Wunderlich et al., 2006), and that we are uncertain about the exact latency for P1 in children with FXS, we did not use155

a pre-defined time window for P1 calculation. Instead, we performed a non-parametric cluster-based permutation test156

(Maris and Oostenveld, 2007) for each condition and group. This method searched for continuous time intervals in157

which ERP is statistically above zero at around 100ms, and we defined the P1 window as the union of such intervals158

over both conditions and both groups. The amplitude of P1 was then calculated as the peak in each participant’s159
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PC-transformed time course within this window. Habituation of P1 was defined as the difference in P1 amplitude160

between ST1 and ST5 (i.e., ST1 - ST5) as we expected to observe a reduced P1 amplitude in ST5 compared to ST1.161

2.4.3 Inter-trial phase coherence162

Inter-trial phase coherence (ITPC) examines the consistency in oscillatory phase across all the trials in a condition. It163

can be calculated with the following equation:164

ITPC(f, t) =

∣∣∣∣∣ 1n
n∑

i=1

Xi(f, t)

|Xi(f, t)|

∣∣∣∣∣ (1)

where Xi(f, t) denotes the Short-Time Fourier Transform (STFT) of a given time course x(t), and n denotes the165

number of trials in a condition. The value of ITPC ranges between 0 and 1, with 0 indicating totally random phase166

distribution and 1 indicating perfect phase synchronization.167

We applied a STFT with a 32-point Hann window, 95% overlap between windows, and a 256-point fast Fourier168

Transform. We chose a narrow window to capture transient phase changes at the cost of spectral resolution, because169

the exact frequency of peak phase coherence is not the interest of this study. After a time-frequency map of ITPC170

was calculated for one condition, we applied the P1 window derived from the ERP analysis in the previous step, and171

searched for the maximum ITPC value within that time window and across all the frequencies (2 – 30Hz), which is the172

ITPC measure we used for further analysis. As in the ERP analysis, habituation of ITPC was defined as the difference173

in ITPC between ST5 and ST1.174

2.5 Clinical measures175

Receptive and expressive language abilities were evaluated by the Preschool Language Scale - 5th Edition (PLS)176

(Zimmerman et al., 2011), a comprehensive developmental language assessment standardized for children aged 0 – 83177

months. The Vineland Adaptive Behavior Scales - 3rd Edition (VAS) (Sparrow et al., 2018), a parent-report measure178

assessing communication, social, motor, and daily living skills commonly used in clinical trials, was also administered.179

Standard scores and v-scaled scores were used for PLS and VAS, respectively. Non-verbal skills were evaluated by180

the Mullen Scales of Early Learning (MSEL) (Mullen, 1989), a standardized assessment of development for children181

0 – 69 months of age; a nonverbal developmental quotient (NVDQ) was calculated for all FXS participants and TD182

participants under 70 months of age based on their fine motor and visual reception scores. We also included the Child183

Sensory Profile-2 (SPC) (Dunn, 2014) to evaluate sensory processing patterns. We calculated a customized score for184

sensory hypersensitivity by summing the raw score of 13 selected questions in the Child Sensory Profile-2 caregiver185

questionnaire — these questions were picked from the Auditory Processing, Visual Processing and Touch Processing186

sections, and from the Avoiding and Sensitivity quadrants, which are highly pertinent to the sensory hypersensitivity187

characteristic that we are interested to study in patients with FXS. The exact questions selected for SPC calculation are188

listed in Supplementary Material Table S1. Two FXS and two TD participants did not complete the SPC questionnaire,189

thus were excluded from this part of the analysis. A summary of clinical measures is shown in Table 2.190

2.6 Linear regression analysis191

The association between EEG and behavior was explored with a series of linear regression analyses. We used an192

ordinary least squares (OLS) model to search for a linear relationship between dependent variables (i.e., behavioral193

measures) and independent variables (i.e., EEG measures) interacted with group identify (i.e. FXS or TD). We also194

included the age of participants as a covariate to parse out any effect of age on EEG or behavior. The equation for this195

OLS model (Model 1) is as follows:196

behavior ∼ age + EEG ∗ group (2)

7
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Domain Clinical measure Subtest or scores

Included in

this study

Language

Preschool Language Scales

- 5th edition

Auditory comprehension

(standard score)

Expressive communication

(standard score)

Vineland Adaptive Behavior Scales

- 3rd edition

Receptive

(v-scaled score)

Expressive

(v-scaled score)

Non-verbal Mullen Scales of Early Learning Non-verbal developmental quotient

Sensory Child Sensory Profile-2
13 selected questions

(see Supplementary Material)

Not included

in this study
Aberrant Behavior Checklist

Table 2: Behavioral data collected from participants

We used the built-in functions in R (R Core Team, 2020) to calculate the beta coefficient of each term in the model.197

In cases where the interaction term has a significant beta value (p<0.05), i.e., the two groups have different effects,198

we conducted a marginal effect analysis on the previous OLS model to estimate the effect within each group. If no199

significant interaction was observed, we discarded the interaction term and estimated the effect with a new OLS model200

with age and group being covariates (Model 2):201

behavior ∼ age + group + EEG (3)

With this general framework for regression analysis, we examined the association between each pair of EEG and202

behavioral measures. There are four EEG measures in this study: 1) P1 amplitude of ST5, 2) P1 habituation, 3) ITPC203

of ST5, and 4) ITPC habituation; and there are six clinical measures: 1) auditory comprehension in PLS (PLS-R), 2)204

expressive communication in PLS (PLS-E), 3) receptive language in VAS (VAS-R), 4) expressive language in VAS205

(VAS-E), 5) NVDQ in MSEL, and 6) sensory sensitivity and avoiding in SPC. In total, twenty-four models were206

estimated for each spatial PC to study its clinical correlate.207

2.7 Statistical analysis208

We conducted a series of two-tailed two-sample t-tests to compare the demographics, behavioral scores, and EEG209

measures within each condition between the FXS and the TD group. Between ST1 and ST5 conditions, we conducted210

right-tailed paired t-tests on EEG measures within each group.211

For the linear regression analysis, we applied the Bonferroni correction to control for family-wise error rate. A212

factor of 2 was applied to p values in SPC and NVDQ models (i.e., for the two types of EEG measures, P1 and ITPC,213

analyzed in this study); a factor of 4 was applied to p values in PLS and VAS models (i.e., for the two types of EEG and214

the two types of language assessments). No correction was applied between EEG amplitude and habituation, or among215

different domains of clinical measures, as they each formed an independent hypothesis.216
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3 Results217

3.1 Sample description218

Demographic data, including the MSEL non-verbal developmental quotient (NVDQ), PLS and VAS language scores,219

and Child Sensory Profile-2 (SPC) scores are shown in Table 1. The FXS and the TD groups are age-matched (p =220

0.7914), but have substantially different NVDQ, and receptive and expressive language abilities (p<0.0001 for all). The221

SPC scores are comparable between the two groups (p = 0.9437).222

3.2 Neural response and habituation223

Brain responses to repeated tones within a passive auditory oddball paradigm were analysed using a spatial principal224

component (PC) analysis. Two significant PCs were identified in the parallel analysis, one with high weights in the225

frontal region (i.e., the frontal PC; Figure. 3A) and the other with high weights in the temporal regions (i.e., the temporal226

PC; Figure. 3B). The PC-transformed time courses for the frontal PC show a clear ERP waveform with a P1 peak at227

around 100ms in both FXS and TD. The average ITPC associated with P1 is stronger in ST1 than in ST5 in both groups.228

In the temporal PC, however, only the FXS group shows a strong P1 response in both ST1 and ST5; the TD group does229

not show a clear P1 peak within the P1 window.230

The P1 amplitude in the frontal PC is comparable between FXS and TD in both the ST1 (p = 0.7593, Cohen’d =231

0.127) and the ST5 (p = 0.4190, Cohen’s d = 0.337) conditions (Figure 4A). No significant difference in P1 amplitude232

between ST1 and ST5 (i.e., the habituation effect) was identified in either FXS (p = 0.4386, Cohen’s d = 0.046) or TD233

(p = 0.6293, Cohen’s d = 0.107) (Figure 4A). The ITPC is also similar between groups in both conditions in the frontal234

PC (Figure 4B). However, we observed habituation effects in ITPC in both the FXS (p = 0.0149, Cohen’d = 0.711) and235

the TD (p = 0.0244, Cohen’s d = 0.709) group (Figure 4B).236

The EEG measures in the temporal PC show a contrasting pattern than those in the frontal PC. The FXS group237

exhibit a more prominent P1 amplitude than the TD group in both the ST1 (p = 0.0037, Cohen’s d = 1.328) and the ST5238

(p < 0.0001, Cohen’s d = 2.357) conditions (Figure 4C). Their ITPC measures are also significantly different in ST1 (p239

= 0.0402, Cohen’s d = 0.893) and ST5 (p = 0.0027, Cohen’s d = 1.383) (Figure 4D). No significant habituation effects240

were observed in this PC.241

3.3 Relationship between EEG and behavior242

We examined the relationship between EEG and clinical measures through a series of linear regression analyses.243

Table 3 shows the results of linear regression analyses where an interaction term for EEG and group identify were244

included (Model 1), along with age as a covariate. Further analyses of significant interactions are described below.245

For regressions where the interaction term was not significant, a simplified regression (Model 2) was performed246

(Supplementary Material Table S2); however, no significant associations between EEG and clinical measures were247

observed.248

3.3.1 EEG and language249

The models for language scores (i.e., PLS-R, PLS-E, VAS-R and VAS-E) generally show significant or marginally250

significant interactions between P1 measures (i.e., P1 amplitude of ST5 and P1 habituation) and group identity (Table251

3), indicating that the two groups may have different P1-behavior relationships. Accordingly, we analyzed the marginal252

effects of the model for FXS and TD separately to reveal such group-level differences. Results show that the frontal P1253

amplitude of ST5 is negatively correlated with all language scores only in the FXS group, among which its relationship254

with PLS-E and VAS-E survived correction for multiple comparisons (Table 4). Additionally, the frontal P1 habituation255

9

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 7, 2022. ; https://doi.org/10.1101/2022.07.05.22277114doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.05.22277114
http://creativecommons.org/licenses/by-nc-nd/4.0/


NEURAL RESPONSE TO REPEATED AUDITORY STIMULI AND ITS ASSOCIATION WITH EARLY LANGUAGE
DEVELOPMENT IN CHILDREN WITH FRAGILE X SYNDROME

Figure 3: The (A) frontal and (B) temporal principal component (PC) and their associated event-related potential (ERP)
and inter-trial phase coherence (ITPC) for the FXS and the TD group. Dashed lines represent the stimulus onset; the
red and blue shaded areas denote standard error of the mean; the grey shaded areas denote the P1 window identified by
a non-parametric statistical analysis; crosses in the ITPC plots indicate where maximum ITPC was identified for each
participant
a.u., arbitrary unit

showed strong, positive association with VAS-R (p = 0.0055) and VAS-E (p = 0.0004), also only in FXS. These linear256

relationships are depicted in Figure 5 and 6.257
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Figure 4: Comparison of (A) frontal P1, (B) frontal ITPC, (C) temporal P1, and (D) temporal ITPC between conditions
and groups
*p<0.05; **p<0.01; ***p<0.001

3.3.2 EEG and non-verbal skills / sensory hypersensitivity258

We also examined the relationship between EEG and NVDQ or SPC score. Neither Model 1 nor Model 2 revealed259

significant association between NVDQ / SPC score and any of the EEG measures. Only the temporal ITPC was found to260

be marginally correlated with NVDQ before correction for multiple comparisons (p = 0.0791, Table 3). These findings261

suggest that the strong association with EEG discovered in Section 3.3.1 may be specific to language development.262
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PLS-R PLS-E VAS-R VAS-E

dy/dx p value dy/dx p value dy/dx p value dy/dx p value

Frontal P1 amplitude FXS -0.55 (0.27)* 0.0428 -0.78 (0.24)*** 0.0009 -0.14 (0.06)* 0.0147 -0.18 (0.05)*** 0.0002

TD 0.00 (0.30) 0.9954 0.10 (0.26) 0.7104 -0.07 (0.06) 0.2623 0.00 (0.06) 0.9587

Frontal P1 habituation FXS 0.22 (0.16) 0.1779 0.34 (0.16)* 0.0301 0.09 (0.03)** 0.0055 0.10 (0.03)*** 0.0004

TD -0.13 (0.27) 0.6423 -0.10 (0.26) 0.6972 -0.01 (0.05) 0.8587 -0.02 (0.05) 0.6178

Table 4: Marginal effect results for the ordinary least squares model with an interaction term. Significant p values that
survived the Bonferroni correction are in bold.
*p<0.05; **p<0.01; ***p<0.001

Figure 5: Association between the frontal P1 amplitude of ST5 and (A) PLS-R, (B) PLS-E, (C) VAS-R, and (D) VAS-E
in Model 1. The lines and shaded areas denote the prediction lines and their 95% confidence interval estimated by the
marginal effect. The scattered dots represent individual data. The p value of marginal effect for each group is shown in
the legend.

4 Discussion263

In this study, we compared the amplitude and habituation of the auditory P1 response and its corresponding inter-trial264

phase coherence (ITPC) between male children with and without FXS, after performing a spatial principal component265

analysis (PCA) on their EEG data. We also examined the association between these EEG measures and several clinical266
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Figure 6: Association between the frontal P1 habituation and (A) PLS-R, (B) PLS-E, (C) VAS-R, and (D) VAS-E in
Model 1. The lines and shaded areas denote the prediction lines and their 95% confidence interval estimated by the
marginal effect. The scattered dots represent individual data. The p value of marginal effect for each group is shown in
the legend.

measures that assessed sensory sensitivities, language abilities, and non-verbal development. The results show that267

though the two groups exhibit comparable P1 amplitude and ITPC in the frontal PC, male children with FXS have268

stronger temporal P1 and ITPC. No difference in habituation pattern was found between the two groups. In terms of the269

clinical correlate, we discovered a strong association between language abilities and the amplitude and habituation of270

the frontal P1 in individuals with FXS.271

4.1 Interpretation of PCA results272

The spatial PCA identified two significant PCs in our EEG data — one with high weights in the frontal region, and the273

other with high weights in the lateralized temporal regions (Figure 3). The heightened P1 amplitude observed in the274

temporal PC in the FXS group can be understood in two ways. First, elevated N1 and P2 responses have previously been275

reported as a robust EEG phenotype in individuals with FXS (Clair et al., 1987; Castrén et al., 2003; Knoth et al., 2014;276

Ethridge et al., 2016), and both have been linked to auditory hypersensitivity and auditory processing alterations in FXS277

(Schneider et al., 2013; Rotschafer and Razak, 2014). Therefore, the strong temporal P1 response observed in FXS in278

this study could possibly be caused by impaired inhibition in the auditory cortex. Second, the topographical location279

of peak N1 has been shown to change with development; prior to the age of six it is largely temporal (Bruneau et al.,280
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1997) and then this shifts to central regions in older ages (Tonnquist-Uhlén et al., 1995; Knoth and Lippé, 2012). Given281

the adjacency of P1 and N1 sources in the auditory cortex (Yvert et al., 2005), we expect a similar temporal-to-central282

developmental trajectory in the topographical pattern of P1 in children. With this hypothesis, the findings in this study283

might have reflected a delayed development of the auditory brain in children with FXS, which is part of the global284

developmental delay known in this population (Roberts et al., 2016; Wheeler et al., 2021). Either interpretation points285

to the fact that children with FXS may have altered (impaired or delayed) auditory processing than their age-matched286

TD peers.287

4.2 ERP and ITPC differences between groups288

Different from our hypothesis, no habituation of P1 amplitude was observed in either group in this study (Figure 4A &289

C). Previous research adopted a similar experimental setup using repeated auditory stimuli, and reported habituation of290

N1 in the control group, but not in FXS patients (Castrén et al., 2003; der Molen et al., 2012a). However, the participants291

in these studies were either adults or older children (7 - 13 years) compared to our cohort. Given that the waveform292

of auditory ERP changes throughout childhood (Wunderlich et al., 2006), the results from these studies may not be293

directly transferable to the current one. More importantly, despite that N1 and P1 share many commonalities, they294

are substantially different in their sensitivity to stimulus presentation rate. According to the neural adaptation theory295

(Kudela et al., 2018), both would reduce their intensity if a train of stimuli were played. However, P1 would recover to296

its full amplitude if the stimuli are apart by as short as a few hundred milliseconds (Picton, 2010), while the recovery of297

N1 takes more than 10 seconds (Cowan et al., 1993). Since the inter-stimulus interval (ITI) was set at 1000ms in this298

experiment, there was sufficient time for P1 to return to its baseline amplitude, which might have explained the absence299

of P1 habituation in here. Future studies with a shorter ITI (a few hundred milliseconds) are warranted.300

In spite of the null findings in P1 amplitude habituation, we observed strong habituation of frontal ITPC in both301

groups (Figure 4B). Biomedical signals, like EEG, have three important characteristics — amplitude, frequency, and302

phase. Even though event-related potential (ERP) is a popular choice of neural signature for studying human brains, it303

mainly accounts for the “amplitude” aspect of a signal. ITPC, on the other hand, utilizes time-frequency decomposition304

to examine synchrony of instantaneous phase across trials at different frequencies, which discards the magnitude305

information through normalization (see Equation 1) and focuses more on “phase” and “frequency”. Therefore, it may306

provide information that is not available in the aggregate ERP waveform (Makeig et al., 2004). Additionally, ITPC was307

found to be a more stable neural marker than evoked spectral power in terms of inter-subject variability (Engel et al.,308

2020) and test-retest reliability (Legget et al., 2017), possibly because it is independent of amplitude (Legget et al.,309

2017). In developmental neuroscience, ITPC is relatively less studied than ERP, yet previous studies report weaker310

gamma ITPC (Ethridge et al., 2016, 2019) and reduced habituation of low-frequency (theta-alpha band) ITPC (Ethridge311

et al., 2016) in individuals with FXS compared to those without FXS, demonstrating the clinical relevance of ITPC312

measures as a potential biomarker in FXS research. Here, we report habituation of frontal ITPC in both FXS and TD313

groups (Figure 4B), and heightened temporal ITPC in FXS compared to TD (Figure 4D). Cortical phase synchrony314

is considered to be modulated by cognitive demands (Nash-Kille and Sharma, 2014), and it has been associated with315

various cognitive processes like information processing (Tass et al., 1998), feature binding (Palva et al., 2005), and316

neural computation (Fries, 2005). Therefore, the results in this study suggest a relatively lower cognitive demand for317

information processing after a few repetitions of the same standard stimulus, a mechanism that is shared by, but also318

altered in boys with FXS. More future studies on ITPC in FXS children are needed to confirm these findings.319

4.3 Clinical correlations of brain measures320

We observed a pronounced linear relationship between language scores and P1 amplitude (Figure 5) and habituation321

(Figure 6) in the FXS group; weaker P1 response to late standard stimuli (i.e., ST5) as well as stronger habituation of322

P1 is associated with higher receptive and expressive language abilities. At the time when ST5 is played, the same323

standard stimulus has been repeated for four times. The level of information novelty in ST5 is extremely low. Therefore,324
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it is cognitively advantageous that our neural system reacts weakly to yet another standard stimulus, so that neural325

resources can be preserved for other cognitive processes. Huber and O’Reilly (2003) proposed a short-term synaptic326

depression model to explain this phenomenon. In this model, the response to a recently identified object is suppressed,327

while any new object, for its high salience, triggers stronger neural activities. This mechanism of neural habituation328

was considered to aid perceptual processing of a novel object (Huber and O’Reilly, 2003). Later, an EEG study by329

Jacob and Huber (2020) confirmed the benefit of this habituation mechanism in working memory and novelty detection.330

Furthermore, a recent behavioral study by Marino and Gervain (2019) linked the novelty detection ability of infants331

measured at 9 months with their future language outcomes at 12, 14, 18, and 24 months. These previous works suggest332

a beneficial role of neural habituation in language learning, laying the foundation for understanding our findings in the333

FXS group. In the TD group, however, we did not observe a strong impact of habituation on language scores. This334

result could be interpreted from two angles. First, the range of language scores in the TD group is much narrower than335

that in the FXS group. Thus, it is mathematically more difficult to achieve significance in linear regression models336

from the TD group, especially given our small sample size (da Silva and Seixas, 2017). Second, the children in the TD337

group have an intact, unimpaired neural system to support their early language learning. After the critical language338

period, further language development in these participants may become less sensitive to the cognitive advantages gained339

from neural habituation, but rather be driven by other aspects of learning such as language exposure, home support, or340

non-verbal skills. However, for individuals still in early language acquisition and development (like our study’s FXS341

group), auditory habituation may play a more important role.342

The neural markers we examined in this study have the potential to become reliable biomarkers for early diagnosis343

and outcome prediction in FXS. In a recent review, Kenny et al. (2022) summarized the EEG studies on FXS in the344

past decades, and suggested a few EEG features, including the N1 amplitude, gamma oscillatory power, and gamma345

phase-locking, as promising translational biomarkers for evaluating the efficacy of FXS treatment. Here, we add the346

P1 amplitude and habituation to this list of promising candidates. The passive auditory oddball paradigm is excellent347

for studying neurodevelopment in children or infants, as it requires no attention or reaction from the participants. The348

repeated standard stimuli used in this paradigm can elicit differential neural response in the FXS and the TD group,349

which can be effectively captured by an unsupervised learning algorithm like PCA. The pronounced P1 amplitude in350

the temporal regions observed in our participants with FXS could be employed as a marker for early diagnosis of this351

syndrome, if the same pattern can be found in infants. Similarly, P1 amplitude and habituation have the potential to352

be markers for predicting language outcomes in young patients with FXS, which will facilitate the implementation of353

early intervention and therapeutics for these patients. They may also serve as an outcome measure for clinical trials to354

evaluate the efficacy of treatment. Futures studies on a younger population are therefore desirable.355

4.4 Limitations356

This study is bound to certain limitations. The sample size in this study is small compared to other EEG studies with357

adults. Collecting data, especially high-quality EEG data, from children with FXS can be challenging, as they often358

are sensitive to being touched (especially on their heads), have limited expressive language, and have difficulty sitting359

in one place. We were successful in obtaining high quality EEG data in 80% of the FXS participants eligible for this360

study (12/15). To do this, we communicated with parents ahead of visits in order to implement participant-specific361

behavioral strategies, visual schedules, and positive reinforcements. Careful considerations should always be made to362

accommodate the needs of these participants, which usually takes a long time for training and accumulating experience.363

Hence we expect studies with much larger sample sizes to happen through multi-site collaborative research. Another364

limitation of this study was the inclusion of only full-mutation males with FXS. Understanding the neurobiology of365

females with FXS is important, as the mosaic expression of FMRP in this group may allow for improved understanding366

of the role of FMRP in neurodevelopment and provide insight into therapeutic strategies focused on genetic therapy.367

However, given the increased heterogeneity within females with FXS, larger samples will be needed.368
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5 Conclusion369

We analyzed the auditory evoked response to repeated sounds in male children with or without FXS, and examined370

the neural correlate to early language development. The P1 amplitude and inter-trial phase coherence in the temporal371

regions were found to be increased in individuals with FXS compared to their age-matched typically developing peers.372

Additionally, the P1 amplitude and habituation in the frontal region were strongly associated with language scores in373

the FXS group. These findings suggest that the auditory P1 might be a potential biomarker for early diagnosis of FXS,374

and for predicting language outcomes in children with this syndrome.375
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