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Abstract The recently derived Hybrid-Incidence Susceptible-Transmissible-
Removed (HI-STR) prototype is a deterministic epidemic compartment model
and an alternative to the Susceptible-Infected-Removed (SIR) model proto-
type. The HI-STR predicts that pathogen transmission depends on host pop-
ulation characteristics including population size, population density and some
common host behavioural characteristics.

The HI-STR prototype is applied to the ancestral Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV2) to show that the original estimates of
the Coronavirus Disease 2019 (COVID-19) basic reproduction number (R0)
for the United Kingdom (UK) could have been projected on the individual
states of the United States of America (USA) prior to being detected in the
USA.

The Imperial College London (ICL) group’s R0 estimate for the UK is
projected onto each USA state. The difference between these projections and
ICL’s estimates for USA states is either not statistically significant on the
paired student t-test or epidemiologically insignificant.

Projection provides a baseline for evaluating the real-time impact of an in-
tervention. Sensitivity analysis was conducted because of considerable variance
in parameter estimates across studies. Although the HI-STR predicts that in-
creasing symptomatic ratio and inherently immune ratio reduce R0, relative
to the uncertainty in the estimates of R0 for the ancestral SARS-CoV2, the
projection is insensitive to the inherently immune ratio and the symptomatic
ratio.
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1 Introduction

1.1 Motivation

The coronavirus disease 2019 (COVID-19) pandemic highlighted the need to
anticipate the impact of a novel pathogen on healthcare [1–4] or the econ-
omy [5, 6]. One of the impact factors is the basic reproduction number (R0)
– a demographic concept that has been repurposed for infectious disease epi-
demiology [7–11]. R0 represents the average number of susceptible people a
host infects in a completely susceptible population whilst that host is in its
infected state [12,13]. Based on R0 estimates for COVID19’s causative agent,
severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), various cate-
gories of predictive [1, 14–17], forecast [18–20] and regression [21–24] models
have been constructed to anticipate healthcare system demand.

The COVID-19 pandemic’s infections have been periodic [23–27]. Contin-
uous feedback control loops like prevalence dependent contact rates [28] and
intervention fatigue [29] may contribute. Equally, irregular events/pulses like
relaxation of previous restrictions, superspreader events and migration [29] re-
sult in perturbations in the rate of new infections or the active infections [25].
Cyclical events like seasonal host behaviour or pathogen biology, seasonal mi-
gration or waning immunity [27, 29] result in periodic infection perturbations
or vibrations [24]. The superposition of these perturbations manifest as pan-
demic waves [30].

For the COVID-19 pandemic, some subsequent waves of infection have
been associated with mutations to the ancestral (wild-type) SARS-CoV2 in
some countries [29, 31, 32]. Paradoxically, these distinct variant waves may be
consequence of SARS-CoV2’s slow virion mutation rate [33–35]. Even if the
virion mutation rate is constant, the time to accumulate the appropriate num-
ber of mutations in the appropriate loci of a virion, in a sufficiently gregarious
individual, in a sufficiently connected geographical location to collectively con-
stitute a variant of concern (VOC) may not be [35]. Thus the timing and the
impact of these these events are treated as random and prediction requires
manifestation in at least one region. This manuscript projects the impact of
a random event like a novel VOC from a region in which it has manifested to
one in which it has not. It proposes that each of SARS-CoV2’s VOCs (with
its associated perturbations) can be treated as a pandemic and that COVID-
19 is the collective manifestations of these overlapping pandemics [36]. Their
distinct clinical manifestations provudes justification for this approach [37,38].
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Implicitly each VOC contender is a potential new pandemic [29,34,39–41].
Consequently, a new local R0 can be projected for that VOC. This local R0

represents an upperbound of the challenger VOC’s impact in anticipation of
it outcompeting and supplanting the incumbent [42]. It is an upperbound be-
cause, by definition, a R0 assumes complete susceptibility to the new variant.

The hybrid-incidence, susceptible-transmissible-removed (HI-STR) [43] model
is a deterministic, compartment model prototype constructed to replace two
assumptions of Kermack-McKendrick’s susceptible-infectious-removed (SIR)
prototype [44–46]. It replaces the assumption that the removal rate is propor-
tional to the size of the infected compartment with the more biologically ap-
propriate assumption that the transmissible period is fixed and, consequently,
the removal rate is the same as the infection rate one transmissible period
ago [43]. It also replaces Hamer’s mass action law with its chemistry precursor
– the law of mass action [47]. The latter allows the derivation of a population
density dependent R0 [21, 22,43].

The HI-STR model differs from existing compartment models by predict-
ing that R0 is not only a pathogen property but also depends on the host
population’s characteristics – including population-size (N), -density (ρn) and
behaviour [29, 48]. Here a novel method of foretelling local R0 in sufficiently
behaviourally-similar, isolated populations is introduced. This method is des-
ignated projection. It proposes that, if an estimate of R0 exists for an isolated

population y
(
yR̂0

)
, the projection of this R0 onto a sufficiently behaviourally

similar isolated population z is given by

zR0

yR̂0

= B

√
zρ2n × zN
yρ2n × yN

(1)

where B is determined by the pathogen’s transmission dynamics in that host
population.

1.2 Background

The omnipresent SIR compartment model prototype for the temporal evolu-
tion of an infectious disease proposes that the individuals of an homogenous
population can be grouped into three compartments – susceptible, infected
and removed [44–46]. Susceptible implies capable of contracting a pathogen,
infected implies capable of replicating and spreading the pathogen and re-
moved refers to either recovery (expulsion of the pathogen and immunity) or
death. Additional compartments [1,49] and stratified or heterogenous popula-
tions [50–53] result in more sophisticated deterministic, compartment models.

An infectious epidemiology modelling taxonomy is proposed (Figure 1) to
distinguish between foretell’s common synonyms [54] in mathematical epidemi-
ology. It is proposed that deterministic, compartment models are a subcategory
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Fig. 1 Epidemiology prophesy taxonomy

of differential equation (DE), orthodox, predictive models. Predictive (mecha-
nistic [55]) models presuppose that phenomena can be explained and that these
explanations can be simulated. The orthodox predictive models, consist of a
three or four step process of explanation, abstraction into mathematics, the
application of a numerical method and in silico simulation of the abstraction.
The pioneering categories of orthodox models are stochastic and deterministic.
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The deterministic compartment models are DE models. The DEs assume
an homogenous population and simulate averaged phenomena. The ordinary
differential equation (ODE) models only simulate the rate of change of the
compartment sizes. Historically, the delay differential equation (DDE) com-
partment models [56, 57] are an alternative to the exposed (E) compartment
of the SEIR ODE model [58–60]. Both the delay term and the E compart-
ment incorporate an incubation period into the SIR prototype. The HI-STR
is a DDE model that reduces to an ODE for periodic phenomena [43]. The
HI-STR’s delay is not due to incubation, it is intended to simulate a constant
transmissible period. The transmissible period is another subtle difference from
conventional ODE models. Similar to the infectious period, it is the period of
time that a host can transmit the disease but it can be limited biologically
(e.g. the incubation period), behaviourally (e.g. isolation, quarantine [61] or
hospitalisation) or technologically (e.g. face mask or pharmacy). An example
of pharmacological restriction to a transmissible period is human immunod-
eficiency virus (HIV) control where anti-retrovirals (ARVs) substantially re-
duce viral load and therefore transmissibility. Thus transmissibility may be
idealised as a step function under appropriate circumstances [62]. Implicitly,
transmissibility is a population characteristic while infectivity is an individ-
ual characteristic. Partial differential equation (PDE) models typically model
spatial spread as diffusion [63–65]. Algebraic formulae for thresholds like R0

and proportion to vaccinate are a consequence of deterministic models

Stochastic, orthodox models translate to binomial chain models (BCM)
[66–68] or stochastic differential equation (SDE) models that superimpose un-
certainty on ODE models [69–71]. They complement deterministic models with
their ability to assign probabilities to outlier events [72] like pathogen extinc-
tion. The distribution of the uncertainty is an assumption [73]. Note that the
forecasting models (to be described) are also statistical. The distinction is
that, like the deterministic models, the stochastic models simulate a theory to
prophesize the future while the forecasting models extrapolate the past into
the future.

Graph based epidemiological models can be interpreted as an abstraction
of an explanation (or a translation) to a branch of mathematics – graph the-
ory [74,75] – before in silico simulation [76–79]. The latter interpretation pro-
vides the flexibility of graph theory or the heritage of an established application
like social network theory [80–83]. Here graph or network based methods are
therefore classified as orthodox predictive methods and ODE alternatives.

The unorthodox predictive methods also presume that phenomena can be
explained but the explanation is not translated into mathematics before sim-
ulation. Rather, direct in silico simulation of the explanation is performed.
Thus some graph based implementations can be interpreted as unorthodox
[17,84–87]. Graphs consist of vertices and edges where (for infectious diseases
and social networks) the vertices represent individuals and the edges represent
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relationships or interactions. Traditionally, the vertices have no geometric in-
terpretation and do not simulate spatial spread [88] but the vertices can be
mapped to location [86].

Agent based models (ABM) [6, 16, 89, 90] and cellular automata (CA)
[91–93] are spatial, unorthodox, predictive models and PDE alternatives. CA
are constructed on a regular lattice and this restriction is removed for ABM
[94]. As examples of Artificial Life [95], an agent (or node) acts independently
subject to simple rules on the local environment. The collective can prophesize
complex phenomena that other predictive methods cannot [96]. These models
simulate heterogeneity and mixing [97] but the PDEs that they represent are
not apparent [43, 98]. CA can reduce to ODEs [99] and for at least one ap-
plication (computational fluid dynamics) the PDEs that they represent have
been derived [100]. Lattice gas cellular automata (LGCA) [99] and probabilis-
tic(PCA) or stochastic cellular automata (SCA) [92, 93] are subclassifications
of CA [43,98].

Forecasting presumes that phenomena have a recognisable and reproducible
pattern. Forecasting fits a curve to a historical pattern and extrapolates the
pattern into the foreseeable future [55, 101]. The Fourier theorem states that
any curve can be reproduced by an infinite series of superimposed sinusoidal
waves [23,102–106]. Filtering refers to the attenuation (or omission) of frequen-
cies that do not substantively contribute to the signal [23,102,107] – resulting
in a finite series. In electrical engineering, signal noise is presumed to have high
frequency. A low-pass filter (allowing low frequencies to pass) attenuates the
noise and smooths the resultant signal [102]. Generally, smoothing is a subset
of filtering [102] that attenuates high frequency signals.

The Box-Jenkins forecasting models [108, 109] also fit curves. The pro-
totype is the autoregressive moving average (ARMA) model that forecasts
weakly stationary behaviour. The autoregressive integrated moving average
(ARIMA) includes trend by differencing to transform the ARIMA model into
a stationary model [108–110]. Seasonality (periodicity) can also be incorpo-
rated into these time series models [109]. The term autoregression refers to
historical data points of a curve being used to estimate the model parameters
that predict future values of that same curve [111]. Autocorrelation is a metric
of how well past results may foretell future results.

ARIMA models fit a linear combination of a finite number of earlier ob-
servations and their differences – parsimonious models [108]. See Mills [111]
chapters 6 and 11 for an introduction to non-linear functions. The curve fit-
ting distinguishes the traditional time series models [18, 112, 113] from the
artificial intelligence (AI) time series models [112]. Traditional, statistical es-
timation methods include the maximum likelihood method, the conditional
sum of least-squares and the ordinary sum of least-squares [108,109,114,115].
AI is an umbrella term for a collection of methods that searches a space for
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an adequate solution. In epidemiology, the AI methods search for parameter
combinations that result in adequate curve fitting [19,116,117]. Although the
parameters are not necessarily optimal, AI excels at non-linear models with or
without a priori knowledge or understanding of the system’s behaviour [118].

State-Space models are a subset of signal-plus-noise problems [107] and
are introduced as a form of forecasting [109, 111]. Briefly, an observation
(space) equation and a state equation are coupled. Each of these equations
has a superimposed uncertainty that is assumed Gaussian [119]. The obser-
vation (measurement) equation’s independent variable is the signal. In infec-
tious epidemiology; reported new cases, disease mortality [120], waste water
serology [121] and combinations thereof are examples of signals. The signal
can be a proxy [122, 123] that can be affected by both testing strategy and
implementation [120]. For example, South Korea’s strategy of significantly in-
creasing access to testing [124] in COVID-19, may have affected the signal
quality. Conceivably, universal testing is more effective [125, 126] but less ef-
ficient [127] than opportunistic, symptomatic testing [128–131]. Nevertheless,
these strategies should converge when asymptomatic infection is rare. Con-
ceivably, a well implemented track-and-trace policy can outperform a poorly
promoted/implemented universal testing policy [127,132,133].

The unobserved state function is based on a priori knowledge of a sys-
tem’s behaviour and can be deterministic [134,135] or empiric [136,137]. The
measured observation/signal is coupled to an unknown state. Backward and
forward recursion approximates a state that corresponds to the signal [107].
The Kalman Filter is a popular recursion method for implementing state-space
models [121,134–139].

The above models require local, disease-specific data for prophesy. Thus,
the disease must manifest in that region to determine the model parameters
for that region. Cardoso and Gonçalves [21] propose a form for a universal
population-size or -density dependent scaling law and use regression [101]
to determine the parameters for COVID-19. Their approach potentially cir-
cumvents the need to determine local modelling parameters locally. Rather,
parameters from other centres can be projected – adjusted for local condi-
tions [25]. Figure 2 illustrates the 1 week delay [140] in the stage of spread of
the ancestral SARS-CoV2 between the UK and the USA [141]. Given the time
dependence of intervention, the universal scaling law may prove more bene-
ficial to regions less connected to the epicentre like India in the COVID-19
example of Figure 2.

Hu et al [142] potentially circumvent regression’s need for many pre-existing
disease centres [21,25] by repurposing formulae from the kinetic theory of ideal
gases to derive population-density dependent contact rates. Hu’s contact rates
are an alternative to the HI-STR’s law of mass action. The HI-STR proto-
types’s contact rate is population-size and -density dependent [43].
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Fig. 2 Delay in confirmed cases per million population by country [141]

2 Methods

The HI-STR prototype is based on the SIR model but replaces 2 assumptions
and is formulated for an isolated population on a surface [43]. Thus

1. it is explicit that the model only applies to sufficiently isolated populations,
2. population density is incorporated because it is formulated on a surface

and
3. the PDE model formulation problem is replaced by the problem of defining

sufficiently isolated populationss (SIPs) and sufficient behavioural similar-
ity.

Hamer’s mass action law [143] assumption is replaced with the law of mass
action [43] – its chemistry precursor [144, 145] – such that the probability
density function for a single successful transmission is

P (t) = ηµκ(x) s(t)τ(t) (2)

where η is an infectious disease-specific variable that reflects avidity, µ is a
function of mode of transmission, κ(x) is a function of social behaviour, s(t) is
the density of susceptible individuals and τ(t) is the density of hosts capable
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of transmitting the pathogen. The total transmissions (including those of sec-
ondary hosts) in a population of size N ≫ 1 and population density ρn over
the period that the primary host is transmission capable (∆τ) is shown to be

ˆ
∆τ

Ṫ (t0)dt ≈
ˆ
∆τ

ηµκ
N2

2
s(t0)τ(t0)dt =

ˆ
∆τ

βAρ
2
nS(t0)T (t0)dt

where S(t) is the size of the susceptible population, T (t) is the size of the
transmission-capable population and βA = ηµκ

2 [43].

The SIR prototype’s exponential infectious period assumption is replaced
with the HI-STR model’s more biologically appropriate constant transmission
period. This results in the SIR-like DDE model.

Ṡ(t) = −βAρ2n(x) S(t)T (t)
Ṫ (t) = βAρ

2
n(x) S(t)T (t)− Ṫ (t−∆τ)

Ṙ(t) = Ṫ (t−∆τ).

Selecting a timescale (the transmissible timescale) where a time unit (∆t)
equates to ∆τ (1 : ∆t = 1 : ∆τ) renders the delay negligible – reducing the
above DDE to an ODE [43].

Exploiting the periodicity of infection opportunity, a second timescale (the
rhythmic timescale) is defined as 1 : ∆t = 1 : δt where δt is the period of the
infection opportunity cycle. For respiratory infectious diseases, δt is the host’s
sleep-wake cycle (ie 1 day). Given that there are B units of δt in ∆τ , the
number of infections after Bδt is the same as after ∆τ . A binomial expansion
is used to show that the ODE in the transmissible timescale reduces to

Ṡ(t) = − B
√
βAρ2nN

S(t)T (t)

N(x)

Ṫ (t) = B
√
βAρ2nN

S(t)T (t)

N(x)
− B

√
τα I(t)

Ṙ(t) = B
√

τα I(t)

in the rhythmic timescale [43] where τα is the infection frequency in the trans-
missible timescale. The HI-STR model’s rhythmic timescale basic reproduction
number for SIP z is then [43,146]

z
ρR0 = B

√
βA × zρ2n × zN

τα
. (3)

Both βA and τα are dependent on behavioural characteristics that may be
cultural [48, 147]. These are assumed constant for behaviourally-similar pop-
ulations. There is a subtle difference between Böckh’s R0 and its rhythmic
timescale equivalent, ρR0, but these are used interchangeably here [43].
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Dividing Equation 3 for SIP z by the same for behaviourally-similar SIP y
derives Equation 1. It is assumed that the anglophone United Kingdom (UK)
and United States of America (USA) have similar concepts of personal space
and familiarity with an associated hierarchy of physical interaction rituals [148]
such that Equation 1 applies. A metric for behavioural/cultural similarity was
not identified. Conceivably, host behaviour could be sufficiently similar across
all SIPs. If host behaviour is sufficiently similar across SIPs, then Equation 1
is a universal scaling law (independent of behaviour) and should be compared
with Cardoso and Gonçalves’ universal scaling law [21] obtained by regres-
sion. The UK and USA were selected to increase the likelihood of a successful
validation. From Figure 2, projection would have given the most connected
states one week’s lead time. The ancestral SARS-CoV2 pathogen was selected
because transmission dynamics data were available, there was no interference
from VOCs and the Imperial College London (ICL) group estimated R0 for
the ancestral SARS-CoV2 in both the USA and the UK..

The same field- (reported mortality) and estimation methods [140] were
used by the ICL group to measure the ancestral SARS-CoV2’s R0 for the
UK [140] and the individual states of the USA [149]. Consequently, using
these studies to validate the projection of the UK’s R0 on to the USA’s states
avoids biases introduced by different field- and estimation methods. Their
semi-mechanistic Bayesian hierarchical model is sensitive to the generation
interval [140] but a gamma distribution with mode 6.5 days was used for their

R̂0 for both the UK and the USA states. From Equation 1, the projection onto
state z is

zR0 = B

√
zρ2n × zN

UKρ2n × UKN
× UKR̂0. (4)

The paired student-t test is used to compare the USAR0 estimates
(
zR̂0

)
[149]

to the UK’s projection on z
(
zR0

)
.

Statistical analysis was conducted in the open-source R Project for statis-
tical computing (https://www.r-project.org)

3 Results

The transmission dynamics, distribution of pathology, case fatality rate and
other clinical, pathological and epidemiological characteristics associated the
ancestral (wild type) SARS-CoV2 are collectively designated COVID-19(wt).
Appendix 6.1 demonstrates that the transmissible timescale for COVID-19(wt)
is 1 : 9 days and the rhythmic timescale is 1 : 1 day. The ratio of the time
units in these timescales (B) is 9.

The UK’s estimated R0 is UKR̂0 = 3.8[3.0−4.5] [140], UKN = 67, 886, 011

with UKρn = 280.6 km−2 in 2020 [150]. Equation 4 projects this UKR̂0 onto
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the states of the USA adjusting for each state’s population-size and -density.
Appendix 6.2 removes any outliers. Figure 3 compares the R̂0 density distribu-
tion [149] of the remaining 40 states to those projected from the UK estimate

(UKR̂0) [140]. Figure 3(a) projects the median UK estimate (UKR̂0 = 3.8)

while Figure 3(b) projects UKR̂0 = 4.2. The latter remains within the uncer-

tainty of the UK’s R̂0 estimate [140].
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Fig. 3 (a) Density distribution comparison between estimated R0 the median estimated R0

for the UK projected on to the USA’s state (b) Box-and-whisker plot comparison between

estimated R0 and a UK R̂0 = 4.2 projected on to the USA’s states

Table 1 summarises the results of the paired student t-test comparing the
estimated R0s [149] of the 40 USA states

(
zR̂0 : 1 ≤ z ≤ 40, z ∈ N

)
to the

projections of the UKR̂0 (within the range [3.0 − 4.5]) [140] on to those 40
states.

Of note, for 4.2 ≤ UKR̂0 ≤ 4.5, a statistically significant difference be-
tween the estimated and projected R0s does not exist for those 40 states. For
3.0 ≤ UKR̂0 ≤ 4.1, although there is a statistically significant difference be-
tween the estimated and projected R0; this difference is not epidemiologically
significant when compared to the uncertainty in zR̂0 for those states [149].
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Estimated UK basic reproduction number (UKR̂0)
UKR̂0 3.0 3.4 3.8 4.1 4.2 4.5
p 7 × 10−15 5 × 10−11 4 × 10−6 0.02 0.13 0.24
µd 0.7 0.5 0.3 0.1 0.1 -0.1
CId [0.6, 0.8] [0.4, 0.6] [0.2, 0.4] [0.0, 0.25] [0.0, 0.2] [−0.2, 0]

Table 1 Comparison of paired student t-test results between estimated and projected basic
reproduction numbers in the USA for various UK basic reproduction number estimates. µd

is mean of differences. CId is 95% confidence interval of the differences. N = 40.

The model assumes no inherent immunity. Furthermore, the parameter es-
timates for B have considerable variation (Tables 2 and 3). Appendix 6.3 is a
sensitivity analysis demonstrating that up to an inherently immune fraction of
50% the change in the zR0 projections is not significant compared to the un-
certainty in zR̂0 – Figure 4(b). Similarly, changing the symptomatic fraction
does not cause an epidemiologically significant change in R0 – Figure 4(a).
The infectious and transmissible periods are varied in Figures 4(c) and (d),
respectively.
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Fig. 4 Sensitivity Analysis for COVID19(wt): (a) Symptomatic fraction (b) Inherently
immune fraction (c) Infectious period (d) Transmissible period

Despite the above, the HI-STR predicts that increasing the symptomatic
fraction decreases B and, consequently, R0 by increasing the contribution
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of those with a shorter transmissible period (Figure 4(a)). It confirms that
increasing the inherently immune fraction reduces reduces R0 (Figure 4(b)).
As expected, increasing the infectious or transmissible periods increase B and
therefore R0 (Figures 4(c) and (d)).

4 Discussion

Coronavirus disease 2019 (COVID-19) is the umbrella term for the diverse
pathological manifestations of severe acute respiratory syndrome coronavirus
2 (SARS-CoV2) and its variants. New variants have the potential to sup-
plant pre-existing variants. Projection provides an efficient method to prophe-
size variant-specific resource requirements. The hybrid incidence, susceptible-
transmissible-removed (HI-STR) has demonstrated that projection can be
used to foretell the impact of a pathogen variant (the ancestral SARS-CoV2)
on the individual states of the United States of America (USA) provided an
estimate exists for the United Kingdom (UK). This was possible because the
HI-STR accounts for the effect of population characteristics on the basic re-
production number (R0). These regions were selected because it is assumed
that the individual states of the USA are sufficiently isolated from each other
and because it is assumed that these anglophone regions have sufficient be-
havioural similarity.

It should be noted that the HI-STR prototype does not include the effect of
demography [151] onR0 estimation and projection but age-stratified SIR mod-
els can be adapted for the HI-STR. Genetically or behaviourally predisposed
individuals also represent subpopulations that affect the average transmission
period. For COVID-19, diabetics are a subpopulation that are at increased
risk of severe disease and death [152,153]. The prototype does not include the
effect of the distribution of predisposed subpopulations. Clearly the individual
states of the USA are not homogenous but a common set of acceptable public
behaviourial norms must exist.

Hawaii, Montana, Alaska and Wyoming are among the outliers. The HI-
STR projections over-estimate R0 for these states. For Hawaii, the sea acts
as a natural barrier between SIPs. Because the HI-STR is non-linear, these
regions cannot be combined. Combining SIPs artificially increases R0 projec-
tions. Communities within Alaska, Montana and Wyoming may be sufficiently
isolated for them to be treated as SIPs. Conversely, states like New York and
Washington, DC may not be sufficiently isolated. Neither the method for aver-
agingR0 estimates across SIPs nor the estimation ofR0 across SIPs is obvious.

This work’s motivation is the timeous preparation for the local impact of
novel pathogen or new VOC. Implicitly, each variant is being treated as a
new pathogen to which the local population is completely susceptible. The
SARS-CoV2 variants are sufficiently closely related that both vaccination and
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previous infection by the incumbent may confer immunity to the new variant
in some individuals. Thus the projection represents an upperbound in which
the challenger VOC replaces the incumbent [42]. This model does not address
an equilibrium states where VOCs form a mixture [34]. Intuitively and the-
oretically, the inherently and naturally immune individuals should affect the
transmission dynamics of the variant and the transmissible period. Given the
uncertainty in the wild type COVID-19 R0 estimates, here it was not possible
to show that these would have an epidemiologically significant impact.

Intuitively, asymptomatic carriers increase the reproduction number [154].
Uniquely, the HI-STR predicts this phenomenon (See Appendix 6.3) but, given
the uncertainty in the SARS-CoV2 ancestral R0 estimates, this effect is not
epidemiologically significant. For diseases where a correlation exists between
symptoms and mortality, an intervention that only converts symptomatic in-
dividuals into asymptomatic individuals may reduce mortality. Ironically, the
theory predicts that such an intervention will increase R0.

5 Conclusion

When confronting a novel pathogen, the impact of the disease has to be fore-
told to prepare accordingly. Some of these impacts are the basic reproduction
number (a proxy for how fast the disease will spread), mortality and morbidity.
Some of the impacts that are beyond the scope of this document are the eco-
nomic and socio-political instability caused by the disease and the intervention.

The hybrid incidence, susceptible-transmissible-removed (HI-STR) proto-
type is a deterministic alternative to the susceptible-infectious-removed pro-
totype and its ordinary differential equation (ODE) model derivatives. In
principle, it has two advantages over these more mature models – it incor-
porates population-size and -density in the model, and it includes a social or
behavioural component. The latter is controversial but it should be noted that
the HI-STR has the flexibility to include a social component in the model. It
may be that physical interaction across regions and cultures is sufficiently sim-
ilar (from an infectious disease perspective) that this variable can be treated
as a constant. In the latter case, the HI-STR derives a populations-size and
-density dependent universal scaling law for R0.

The importance of the capacity to project a R0 for a region is that it al-
lows planning and pre-emptive resource allocation. It also provides a location-
specific R0 (baseline) to evaluate interventions. This manuscript demonstrates
that the HI-STR model can project the UK’s ancestral SARS-CoV2’s R0 onto
the states of the United States. It must still be demonstrated for other anglo-
phone and non-anglophone regions.
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There are 2 parts to the intervention – the intervention policy and the
policy implementation. Policies and strategies [155] can only be evaluated ret-
rospectively [156–160] because of unforeseen long-term risks [161–166] and
unintended consequences [167–171]. For regions with the same intervention
policy, the location-specific R0 provides a baseline to compare intervention
implementation across those regions.

A weakness that the HI-STR currently shares with the other ODE models is
that it does not predict the waves of infection seen with both SARS-CoV2 and
the Spanish influenza of 1918 [40]. Models can be constructed with periodic
interventions or behaviour resulting in periodic infections [29]. SARS-CoV2
has demonstrated that some of these waves may be due to new variants out-
competing incumbents [29]. The HI-STR model does not account for pathogen
evolution and random events like VOCs but here it has been demonstrated that
such an event can still be projected timeously. Seasonal changes in pathogen
biology or behaviour can be incorporated into the avidity term (η) and sea-
sonal changes in host behaviour can be included in the social behaviour term
(κ(x)) of the transmission probability density function (Equation 2). Migra-
tion requires a spatial model [40].

The HI-STR predicts that an intervention that only converts symptomatic
individuals into asymptomatic individuals will increase R0. A risk that can
therefore be foreseen is that, even if the virion mutation rate remains constant
[35], an increased R0 should increase the pathogen population’s mutation rate.

6 Appendices

6.1 The HI-STR parameters for the ancestral SARS-CoV2

COVID-19 is a collection of clinical symptoms and pathologies [172, 173] as-
signed to several variants of SARS-CoV2 [174–176]. The heterogeneity of
pathology [177, 178] is due to both variable host responses to a variant [179–
182], and multiple viral lineages [183, 184], their variants [185, 186] and their
mutations [187, 188]. Here COVID-19(wt) will refer to the distribution of
pathology, case fatality rate, severity and transmission dynamics of the subset
of COVID-19 due to L lineage of the ancestral (wild type) SARS-CoV2 [181]
to distinguish it from the corresponding findings of the α (B.1.1.7) [189], β
(B.1.351), δ (B.1.617.2) [36,183] and o (B.1.1.529) [186] variants.

Benjamin [43] defines a time unit in the transmissible timescale as the
weighted average of the time a host can transmit a pathogen. The transmission
period is limited by viral load in a latent period, recovery, death, pharmacolog-
ical intervention and behavioural adaptation like quarantine. The weighting is
based on the relative proportions of inherently immune (1− σ), symptomatic
(ψ), asymptomatic (1− ψ), and other subpopulations with distinct transmis-
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sion periods.

The assumption is that, for a novel pathogen, when sufficient contact is
made between a host and a potential host (in a completely susceptible popula-
tion) there are 3 possible outcomes. There are inherently immune/resistant in-
dividuals (not previously exposed) that will not become infected and therefore
have a transmission period of zero [190–192], there are asymptomatic individ-
uals [129,193] that may have the transmission period shortened by clearing the
virus [189,194] or prolonged by not isolating [53,195], and the symptomatically
infected who will have the transmission shortened by either self-isolation, hos-
pitalisation or death. In principle, each of these group’s transmission periods
and transmissibility [194,196] are dependent on the demography [151,195],co-
morbidities [152,153] and genetic predispositions [197] within that group.

The prevalence of asymptomatic infection has been reviewed [195, 198].
Whole population survey’s from 2020 of presumed COVID-19(wt) and a young
adult challenge trial [199] are presented in Table 2. The prevalences may re-

n Infected if tested Asymptomatic Population
36 53% 11% Human challenge trial [199]

3711 17.9% Diamond Princess Cruise Ship [200]
565 2.3 % 30.8 % Japanese evacuees from Wuhan [193]

10090 31 % Seven whole population meta-
analyses including Vo’, Italy [198]

5155 2.0 % 42.2 % Vo’, Italy [201]
3711 19.2 % 46.5 % Diamond Princess Cruise Ship [202]
1766 59.4 % 47.8 % Charles de Gaulle Aircraft Carrier [195]
4954 17.3 % 58.4 % USS Theodore Rooseveldt [195]
217 59 % 81.3 % Cruise Ship Ernest Shackleton [131]

Table 2 Asymptomatic prevalence for COVID-19(wt).

flect demography. The median asymptomatic prevalence of 42.2% will be used
further.

The infectious period and infectiousness of these groups have been re-
viewed [61, 196, 203, 204]. Each study uses viral load as an imperfect proxy
for infectiousness [128,204–206]. Lavezzo et al [201] shortens the viral particle
shedding period by 4 days [128,206] to determine the infectious period because
the host continues to shed inactive viral RNA for 4 days before the RT-PCR
assays can no longer detect them. Table 3 presents the latent, incubation and
infectious periods for the symptomatic and asymptomatic.

The latent period is from infection to sufficient viral shedding for successful
transmission. Incubation is from infection to symptom onset. The period of
time that a virus is detectable has been shortened by 4 days to obtain the infec-
tious period because of the detectable inactive viral RNA post recovery.. It is
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Symptomatic Asymptomatic
Location (A/n) Infec- Latent Incu- Transmis Infectious

tious bation sible (∆τ) (∆I) [Source]
UK Challenge(2/18) 8 d 2 d 4 d 2 d 8 d [199]

S.Korea (89/303) 13 d 15 d 15.5 d [207]
S.Korea (68/396) 14 d 10.5 d [208]
Gangzhou (0/77) 14 d 5.8 d 6 d [209]
Wuhan (37/178) 10 d 8 d 15 d [210]

Washington (3/48) 14 d 4 d 18 d [128]

Table 3 Median latent, incubation, infectious and transmissible periods for symptomatic
and asymptomatic COVID-19(wt) patients from early 2020. A = asymptomatic, d = days.

assumed that symptomatic patients self-isolate, are hospitalised or ostracised
at symptom onset or within a day thereof. Therefore the transmissible period
is the difference between the incubation and latent periods.

In each of these studies there is no demonstrable difference in infectivity
between these groups [203, 204, 206, 208]. Table 3 mitigates the bias of retro-
spective studies [194] by only including whole population studies. Nevertheless
each population is unique and not necessarily representative. Of note; there
may be small differences in the definition of symptomatic and asymptomatic
individuals, different real time reverse transcriptase polymerase chain reaction
(RT-PCR) platforms were used and different cycle count thresholds used.

The proportion of naturally immune or resistant (1 − σ) is unknown. Al-
though the UK challenge trial [199] is prospective, neither the sample nor
the inoculum are necessarily representative. It is assumed that the naturally
immune and resistant are negligible (σ = 1). In summary, 42.2% are asymp-
tomatic carriers with a 15 day transmission period (∆τ) and the symptomatic
57.8% have ∆τ = 5 days. Consequently, the weighted average transmission
period is ∆τ = 9 days and the transmissible times scale is 1 : 9 days.

Periodic human behaviour is the result of superimposed daily, weekly,
monthly and annual cycles. For infectious diseases, the rhythmic timescale
is determined by the periodicity of transmission opportunity. For airborne dis-
eases like COVID-19, the dominant cycle is diurnal with maximum transmis-
sion opportunity during day time social interactions and reduces to a minimum
while sleeping. The periodic timescale (1 : δt) for COVID-19 is thus 1 : 1 day.

The B constant in Equations 1 and 3 is the ratio of a unit of time in
transmissible times scale (∆τ) to a time unit in the rhythmic timescale (δt).
Thus, for COVID-19(wt), B = 9.
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6.2 States of the USA basic reproduction number outliers

Re-arranging Equation 3, substituting the median reproduction numbers esti-
mates

(
zR̂0

)
for the 1 ≤ z ≤ 51 states of the USA [149] and, the population-

sizes (zN) and -densities (zρn) for these states [150] allows one to determine
the proportionality constant

(
M = βA

τα

)
in

zR̂B
0 =M × zN × zρ2n ⇐⇒ M =

zR̂B
0

zN × zρ2n
.

Figure 5 (the density distribution for M) identifies 6 outliers. The median
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New Mexico, Alaska, Oklahoma, New York, South Dakota and Louisiana are
removed from further analysis.

The relative error between the predicted basic reproductive
(
zR0

)
and

zR̂0:

E :=
zR0 − zR̂0

zR̂0

where zR0 =M × zN × zρn,

is assumed to have a Gaussian distribution about a mean of 0. The Median
[IQR] of E is −0.02[−0.17, 0.05]. Figure 6 is the density distribution of the rela-
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tive error between the predicted and measured reproductive numbers. Hawaii,
Montana, Minnesota, Wyoming and Washington DC are removed as outliers.

Figure 7 compares the density distributions of R̂0 andR0 for the remaining
40 states of the USA and demonstrates that the relative error, E, is normally
distributed. The Shapiro-Wilk test on E could not exclude normality (p =
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Fig. 7 (a) Comparison of the theoretical and estimated ρR0, (b) Demonstration of the
normality of the relative error E

0.31).

6.3 Sensitivity analysis – impact of asymptomatic ratio

The ratio of the time units in the transmissible timescale to the time units
in the rhythmic timescale (B) translates to the average transmissible period
(∆τ) for the special case where the time units in the rhythmic timescale (δt)
= 1. For this special case, B is dependent on 4 variables

B = σ(1− ψ)×∆I + σψ ×∆τ + (1− σ)× 0

= σ(1− ψ)×∆I + σψ ×∆τ = ∆τ where δt = 1,

σ is the non-immune or susceptible portion of the population, 1 − σ is the
immune portion that cannot be infected, ψ is the portion of σ that will be
symptomatic if infected, 1− ψ is the proportion that will be asymptomatic if
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infected, ∆I is the infectious period and ∆τ is the transmissible period.

Thus far, this manuscript has assumed that σ = 1 while Tables 2 and 3
demonstrate the considerable variance in the estimates of ψ and ∆I and ∆τ ,
respectively. Figure 4 is a sensitivity analysis depicting the effect of changes
in:

(a) the symptomatic fraction (ψ) when the inherently immune fraction (1−σ),
infectious period (∆I) and transmissible period (∆τ) are held constant at
0; 15 days and 5 days, respectively;

(b) the inherently immune fraction (1−σ) is varied from 0 to 0.5 with ψ = 0.6,
∆I = 15 days and ∆τ = 5 days. The distribution of the constants M and
E deviate from normality for ψ > 0.5;

(c) infectious period (∆I) with 1− σ = 0, ψ = 0.6 and ∆τ = 5 days and
(d) transmissible period (∆τ) with 1− σ = 0, ψ = 0.6 and ∆I = 15 days

on the difference between UK’s projection of R̂0 = 4.2 onto the USA states
and the USA estimates of R0 – projection - estimate.

As expected, increasing the symptomatic fraction (ψ) or the inherently im-
mune fraction (1− σ) reduced R0. Of note, relative to the estimates and the
uncertainties in these estimates [149] the reduction in R0 is epidemiologically
insignificant over the domains investigated. The E distribution deviates from
normality on the Shapiro-Wilk’s test for inherently immune ratios greater than
40% and visibly for ratios greater than 50%.

Increasing either the infectious period (∆I) or the transmissible period
(∆τ) increased R0. Again, relative to the estimates and the uncertainty in
these estimates [149], the increase in R0 is epidemiologically insignificant for
wild type COVID19.
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