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Abstract

Background

Pneumonia remains a leading cause of hospitalization and death among young children worldwide, and the
diagnostic challenge of differentiating bacterial from non-bacterial pneumonia is the main driver of antibiotic
use for treating pneumonia in children. Causal Bayesian networks (BNs) serve as powerful tools for this
problem as they provide clear maps of probabilistic relationships between variables and produce results in an
explainable way by incoporating both domain expert knowledge and numerical data.

Methods

We used domain expert knowledge and data in combination and iteratively, to construct, parameterise
and validate a causal BN to predict causative pathogens for childhood pneumonia. Expert knowledge
elicitation occurred through a series of group workshops, surveys and one-on-one meetings involving 6-8
experts from diverse domain areas. The model performance was evaluated based on both quantitative
metrics (area under the receiver-operating characteristics curve (AUROC) and log loss) and qualitative expert
validation. Sensitivity analyses were conducted to investigate how the target output is influenced by varying
key assumptions of particular high degree of uncertainty around data or domain expert knowledge.

Results

Designed to apply to a cohort of children with X-ray confirmed pneumonia who presented to a tertiary
paediatric hospital in Australia, the resulting BN offers explainable and quantitative predictions on a range
of variables of interest, including the diagnosis of bacterial pneumonia, detection of respiratory pathogens in
the nasopharynx, and the clinical phenotype of a pneumonia episode. Satisfactory numeric performance has
been achieved including an AUROC of 0.8 in predicting the clinical diagnosis of bacterial pneumonia. Three
commonly encountered scenarios were presented to demonstrate the potential usefulness of the BN outputs
in various clinical pictures.

Conclusions

To our knowledge, this is the first causal model developed to help determine the causative pathogen for
paediatric pneumonia. It can be utilized to derive recommendations to support more directed and judicious
use of antimicrobials for relevant cohorts. The BN needs further validation before it can be clinically
implemented. Our model framework and the methodological approach can be adapted beyond our context to
broad respiratory infections and geographical and healthcare settings.

Keywords: paediatric pneumonia, Bayesian network, causal model, expert elicitation, clinical decision
support

1 Introduction

Pneumonia, infection of the lower airways, remains a leading cause of hospitalisation and death among
young children worldwide [1,2]. In recent decades, marked reductions in the burden of disease have
occurred thanks to public health strategies including immunisation targeting Haemophilus influenzae type b,
Streptococcus pneumoniae, and influenza virus [3,/4], however substantial morbidity and mortality remains.
These interventions has led to a decline in the contribution of bacterial pathogens in particular, challenging
the appropriateness of routine empiric antibiotic use for treating community-acquired pneumonia (CAP) [5].
Viruses are increasingly considered a major cause of paediatric pneumonia especially in high income settings,
and children with viral infection are unlikely to benefit from antibiotic therapy [6,[7]; rather, unnecessary
antibiotic use may lead to otherwise avoidable side effects, and be a driver of antimicrobial resistance [81[9].
Despite this, antibiotics are still widely prescribed for children with pneumonia [5] possibly due to the
difficulty in excluding bacterial infection as well as clinician concern regarding the potential consequences of
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under-treatment of bacterial pneumonia whether caused by ‘typical” bacterial pathogens such as Streptococcus
pneumoniae (pneumococcus), atypical bacteria such as Mycoplasma pneumoniae (mycoplasma), or bacterial
super-infection following viral infection [10].

The aetiology of CAP in children has been studied extensively [11]. A number of clinical and laboratory
factors have been shown to be associated with pneumonia in sick children [12414], and many of these features
(including cough, increased respiratory effort and raised inflammatory markers ) are common in both bacterial
and non-bacterial pneumonia. However, no single predictor exists that is sufficiently sensitive or specific
to reliably differentiate bacterial (including bacterial-viral co-infection) from non-bacterial pneumonia [9].
Also, the performance of possible predictors may vary by context, e.g., in early versus late stage illness,
or where the underlying prevalence of a pathogen varies [15]. The contribution of bacteria and viruses to
pneumonia has been reported to vary by age, season, vaccine coverage, socioeconomic status, and across
countries [6,/16,/17], although a recent review found evidence that viruses associated for a similar proportion
of pneumonias across settings |7]. Isolation of pathogens directly from the lower respiratory tract is highly
specific and may be sensitive, but sampling is typically invasive, challenging in children, and rarely indicated
clinically and consequently rarely done [18]. Although less specific, nasopharyngeal samples are frequently
used for extrapolating pneumonia aetiology because of ease of collection, however any pathogens detected in
the nasopharynx might not be the actual cause of the pneumonia [19]. Due to the dynamic nature of disease
epidemiology, non-specific clinical presentation and diagnostic limitations of laboratory tests, the timely and
accurate identification of pathogens causing pneumonia remains an ongoing challenge.

Mathematical prediction models have been developed to aid clinical diagnosis, and existing approaches
are usually based on quantifying associations between the target (e.g. bacterial pneumonia) and certain input
variables in specified patient groups. Typical statistical regression methods are agnostic to underlying causal
mechanisms and ignore complex interactions, such as those that occur between epidemiological, clinical,
microbiological and immunological factors in pneumonia. Nevertheless, reasonable diagnostic performance
has been achieved [20,[21]. However, the implementation and uptake of these models has been limited for
several reasons. First, validation and clinical implementation of models are often challenged by missing
data 22|, such as biomarkers which might be useful predictors but may not be available in all cases to
aid timely clinical decision-making [21]. Second, the models may not be transportable from the training
context to other clinical contexts, because the predictive values of input variables are often driven by baseline
prevalence [15], infection severity and testing techniques employed in the validated study population. Third,
association-driven predictions that lack causal explanation may not be accepted by their intended end-users
(i.e., clinicians) [23]. The clinical implementation of any model for decision support is largely dependent on
trust which, in turn, depends on end-users understanding how the model works.

Bayesian networks (BNs) may offer a solution to the challenges of predictive model design and imple-
mentation into clinical practice [24]. BNs have been used to clarify complex medical problem domains
including diagnosing CAP and ventilator-associated pneumonia [25427], by facilitating probabilistic and
causal reasoning using directed acyclic graphs (DAGs) [28[29]. The graphical representation of BNs facilitates
the translation of knowledge from domain experts and that acquired from clinical datasets into a causal
inference framework, with quantitative relationships between variables. BNs provide probabilistic predictions
that are transparent and explainable. The development of BNs relies on collaboration between domain experts
and modellers to synthesize an understanding of the problem domain with the modelling technique, creating
model outputs that are meaningful for clinical practice. BN model outputs can be applied to a variety of
patient subgroups (such as specific age groups or geographic locations), and can robustly account for missing
input variables like biomarker measurements from laboratory data. Our previous work has demonstrated how
epidemiological, procedural and laboratory observations can be organised under a BN designed for predicting
the causative pathogen in other childhood infections, and how such a model may be presented to aid clinical
decision making [30,31].

Here we present a causal BN model that depicts the pathophysiology of pneumonia in children, which
could be used to help distinguish bacterial (including typical and atypical bacteria, and mixed viral-bacterial
infections) from non-bacterial infections. The model was constructed, parameterised, and validated using
both domain expert knowledge and data. We used data obtained from 230 children admitted to a tertiary
hospital in Western Australia from 2015-2018 with pneumonia who underwent clinical, microbiological,
immunological and radiological assessment [5/32]. A diverse group of domain experts participated in the
knowledge elicitation process. Based on numeric evaluation metrics, the outcome model showed stable and
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good performance in predicting clinical diagnosis of bacterial pneumonia as well as the detection of pathogens
in the nasopharynx. The model also produced clinically meaningful outputs as assessed by domain experts
via evaluation workshops and surveys. To demonstrate the potential utility of the model, we apply it to
three representative clinical scenarios and discuss how our model may be implemented as a tool for decision
support to improve patient management and encourage judicious use of antibiotics for paediatric pneumonia.

2 Methods

A BN model consists of two components, 1) a DAG that qualitatively describes how variables (nodes) interact
with each other, and 2) a joint conditional probability distribution that quantitatively specifies how changes
in each parent variable probabilistically drive changes in their child variables. The arrows (arcs) of the DAG
indicate the presence of a direct influence of predecessor (or parent) variables on their child nodes (nodes
extending from other nodes). A causal BN is one in which the arcs represent influences that are causal;
sometimes with minor exceptions for associations that are required, but are not a core part of the causal
process being modelled. Developing a causal BN involves constructing the model structure (the DAG) that
describes the problem domain of interest, and quantifying the probabilistic effect that parents have on their
children in the model as a series of conditional probability tables (CPTs), i.e., parameterisation. In this
project we used domain expert knowledge and data in combination and iteratively, to build a causal BN to
predict causative pathogens for childhood pneumonia. Fig.[l|shows a schematic of the BN model development
process.

Project commencement

Initial structure Revision of model Revision of model Revision of variable selection Final model (v4)
% based on full set of structure based on structure, i‘.mia] and discretisation, model with revised
=} variables available Survey 1 and parameterisation and structure and parameterisation; structure,
§ from the cohort Workshop 1 (v1) evaluation (v2) initial cross-validation analysis parameterisation,
(v3) evaluation, and

sensitivity analysis.
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Fig 1. Schematic of model development. The top blue row presents the development of the BN
from its initial form (left) to the fourth iteration (right), and how this iteratively interacts with the
data analysis (middle grey row) and the knowledge elicitation (bottom green row). The four
workshops were organised between December 2019 and August 2021.

2.1 Knowledge elicitation

Expert knowledge elicitation occurred through a series of group workshops, surveys and one-on-one meet-
ings (Fig. [1)) involving 6-8 domain experts (with backgrounds in infectious disease, clinical microbiology,
emergency medicine, general paediatrics, immunology and epidemiology). Workshops and surveys covered
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the development of the model structure, elicitation of key model parameters, data interpretation, model
structure validation, and validation of the application use cases. One-on-one meetings were organised when
more detailed discussion was considered necessary by the modellers, such as to consolidate understanding of
a particular topic discussed during a workshop. As shown in Fig. [T} the theme of the workshop and survey
was often driven by the evolving modelling progress—questions arising from data analyses, development of
model structure and parameterisation. In Additional File 1, we provide a summary of survey questions.

2.2 BN structure and parameterisation

The final model structure was achieved through an iterative process of synthesising expert knowledge, data
and learnings from earlier BN revisions (Fig. . Parameterisaton of the model was conducted using the
expectation maximisation (EM) algorithm [33], with one of the following three methods applied to each node,
depending on the quality of the data available for that node:

A data-driven approach was used to derive CPTs directly from the observed distribution of relevant
variables in the data, when data for those variables was sufficient.

An expert-driven approach was used for conceptual variables that were not or could not be recorded
in the data. In this approach, the CPT was fully specified by domain expert knowledge alone and not
further updated with data. For example, susceptibility to progression describes the extent to which
an infected child is at risk of progressing from mild to severe manifestations of pneumonia. In the model,
this susceptibility is higher in younger children, in those with chronic respiratory disease, and in those
who are immunocompromised.

A hybrid expert-data approach was used in which expert-driven CPTs were used as a Bayesian prior
(i.e., a starting point) and subsequently updated using available data. This method was preferred for
variables that were strongly associated with other data, but could not be directly observed or mapped
to any individual variable (i.e., latent), as well as for observable variables where data were sparse for
certain patient subgroups.

2.3 BN performance and evaluation

We evaluated the performance of the BN in two ways. Quantitatively, numerical evaluation ensured the model
predictions were consistent with the observed data. While metrics that predict accuracy such as area under
the receiver-operating characteristics curve (AUROC) have been widely used to summarise the performance
of classifiers regarding their true positive/negative and false positive/negative rates, they can be misleading.
These measures are more suitable for definite classifications rather than the probabilistic predictions that
some models are able to provide. For probabilistic models like BNs, we can create a binary classification by
applying a threshold. For example, if we choose a cut-off threshold of 0.5, the model predicted probabilities
of 0.51 and 0.99 would be collapsed together; if we instead shifted the threshold to 0.55, then 0.51 and 0.01
would be collapsed together. AUROC mitigates this problem by evaluating all possible thresholds, but still
rests on the expectation that outcomes will be dichotomised one way or another — when in fact end-users
of the model will see the probability, not a deterministic prediction. For this reason, log loss (and similar
probability-sensitive metrics) is considered more informative for evaluating models that generate probabilistic
predictions [34]. Log loss is calculated, for a given case, as the negative log of the model’s estimated probability
of what was actually observed (i.e. —log{P(observed outcome)}) with a lower log loss indicating a better fit
of the model to the observed data. The log loss metric rewards accurate probability estimates most highly.
For example, if a positive blood culture is truly observed, a model predicted probability for positive blood
culture of 0.51 yields a log loss of —log (0.51) = 0.29, while a model predicted probability of 0.99 yields a
much lower (and hence better) log loss of 0.004, reflecting a reward for the greater confidence in a positive
culture if correct, but punishing this greater confidence if incorrect. Accumulating log loss over a number of
cases then rewards the most accurate probabilistic predictions.

Sensitivity analyses were conducted using variance-based sensitivity analysis (VBSA) [35,36], to investigate
how the target variable of the model is influenced by varying the assumptions for a range of key variables,
especially those affected by a high degree of uncertainty around data or domain expert knowledge.
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The approaches above are unfortunately of limited value in evaluating the causal features of a model.
For example, its common for two BNs to differ in their causal features but be identical in their statistical
properties [29}37]; such models would be assessed as equivalently good by any of the above metrics. More
commonly, major differences in causal features may only lead to minor differences in predictive performance.
Thus, while predictive performance can help identify significant issues (such as major missing pathways or
dependencies), other approaches must be used to evaluate the individual causal features of a BN. This can be
achieved in a number of ways (e.g., comparing to literature, conducting experiments, etc.); here we performed
this validation with experts, by walking through the DAG structure afresh at each workshop, and by soliciting
feedback on the DAG structure via followup emails.

In addition, we performed qualitative expert validation of the model outputs, allowing us to assess if
the model behaves in a way that meets clinician expectations and offers clinically informative predictions.
We simulated three typical scenarios encountered in clinical practice, and presented BN predictions in both
survey format (Survey 4) and during workshops (Workshops 3 and 4) for expert review.

Ethics approval was granted by the Child and Adolescent Health Service Human Research Ethics Committee
(RGS2477). We used the GeNle BN (https://www.bayesfusion.com/) software to elicit the BNs presented here,
and Netica (nttps://www.norsys.con/|) to develop and parameterise subsequent models. Data, evaluation and
sensitivity analyses were conducted using R [38] and Python [39]. Throughout the paper, we label the name
of a BN variable in bold, and its state name in italics where referred for the first time.

3 Results

Background

Background e

factors

Organisms in
nasopharynx

Organisms in
nasopharynx

Interventions

Signs, symps

& labs Infection

Signs, symps &

Interventions labs

Clinical diagnosis
of bacterial
pneumonia (28)

Fig 2. The high-level model structure of paediatric pneumonia, BN v4.5. Variables were organised
into five highly interdependent groups (shown as rectangle boxes). In the centre of the diagram sits
the core part of the model, infection of the respiratory tract (white box), which is predominantly
influenced by the presence of a range of pneumonia-causing pathogens in a child’s nasopharynx
(yvellow), as well as a number of background factors (blue). Infection manifests as clinical signs,
symptoms and abnormal laboratory markers (salmon). Interventions (purple) refer to investigations
and treatments which are relevant to the episode of pneumonia, and which may either occur before
presentation (e.g., prior antibiotic use) potentially affecting variables like the culture result, or after
presentation (e.g., supplemental oxygen) which may be affected by variables like the infection
phenotype. Additional File 2 includes a BN dictionary which defines each variable.
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Fig. [2[ presents the high-level structure of the BN (v4.5), a model of paediatric pneumonia at the point
of hospital presentation. We explicitly model the existence of infection (which is latent) separately from
its clinical diagnosis (white node) which may be operationally defined by a set of clinical or laboratory
observations. A more detailed description of the model is provided in §[3.2}

3.1 Summary of model variables

The model consists of 63 variables including 14 which are background factors, six pathogen-specific variables
describing the presence of pathogens in the nasopharynx, nine variables representing infection or the diagnosis
of infection, 24 variables representing specific signs and symptoms, six laboratory variables, and four
intervention variables. Alongside the 53 observable variables, nine latent variables were created for modelling
purposes; latent variables help to explicitly describe important underlying mechanisms that cannot be directly
observed and thus captured by data. One variable (current clinical phenotype (52)) was introduced as a
summary of the presenting clinical phenotypes of pneumonia. This variable was derived based on a separate
clustering using the EM algorithm to determine a child’s most probable pneumonia phenotype based on their
clinical observations. The analysis resulted in two phenotypes, where phenotype 1 represented a more severe
type which increased the probability of all observable signs and symptoms compared to phenotype 2, and this
information was added as an additional column in the cohort data and subsequently used as an observed
variable. We discuss the role of this variable further below §[3.2.3]

In the BN dictionary, we provide information on each model variable, including identifiers (ID and variable
name), what it means and how it’s mapped to data (description), how it’s discretised in the BN (states),
its parents in the BN, and how it’s affected (mechanistically rather than statistically) by those parent
nodes. The dictionary also notes the observational status (whether observable, latent or derived), and the
parameterisation method used (data-driven, expert-driven or hybrid expert-data) for each variable. Fig.
shows a sample of the BN dictionary; the full dictionary is provided in Additional File 2.

Parame-

ID Variable name Description NETEY Parents in the BN Relationship with parent nodes Status terisation Category
Age group of study participant. In |/nfant, Backeround
Age group the model, we define each group  [PreSchool,  |None Not applicable Observable |Data-driven €
factors
1 as follow: Infant (<=2yo), ... School
This describes the extent of the Ace aroun. chronic The pneumonia is more likely to
Susceptibility to |child to progress to more severe ] £¢ group, ¢ progress if the child's immune . Background
. . X . High, Low |respiratory disease, . Latent Expert-driven
progression manifestation of pneumonia if . . . system is unable to clear the factors
. impaired immunity . .
14 infected. infection. ..
Viral-like Replication of viral-like pathogens Qrganlsms in nasopharyn Prcscncc of virus or mycop lasma
. . Present, (influenza, RSV, HMPV, |in the nasopahrynx predisposes .
nasopharyngeal |is occuring in the nasopharyngeal . . . Latent Expert-data  |Infection
. . . Absent parainfluenza, viral-like nasopharyngeal
infection tissues. X .
21 mycoplasma) infection.
Crackles/ crepitations as Current clinical Crackles refers abnormal lung .
. . Recorded, . . Signs &
Crackles auscultatory finding recorded in phenotype, causative sounds characterized by Observable |Expert-data
. Unknown . X . S symps
44 the medical notes. pathogen for pneumonia |discontinuous clicking or ...
C-reactive The amount of C-reactive proteins Above70, Current clinical Elevated level of CRP in blood
. p Btw30And70, |phenotype, causative can be driven by the systemic Observable |[Expert-data  [Labs
proteins (CRP) detected from blood. . X .
55 Below30 pathogen for pneumonia _|inflammatory response, which ...

Fig 3. Euxtract from the BN dictionary. The full dictionary is provided in Additional File 2.

3.2 Model description
3.2.1 The epidemiological context

The model introduced three latent concepts (light blue) to simplify and describe the complex nature of
pneumonia epidemiology in children; namely the level of exposure (12), the susceptibility to coloni-
sation (13), and the susceptibility to progression (14) (Fig. [4). The susceptibility to colonisation
summarises the level of a host’s susceptibility to being colonised in the nasopharynx with ‘typical’ bacterial
pathogens, which is higher in the younger age group (1), in children with impaired immunity (6), and
when there is a smoker in the household (3). The level of exposure refers to the host’s exposure to
transmissible pathogens. Greater exposure is associated with older age, more childcare days per week
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Fig 4. The epidemiological context, BN v4.5. Due to the number of arcs emanating from Age
group, a lighter shade of blue has been used to make the graph easier to read. The detailed model
structure and definition for each variable are provided in Additional File 2. Source model files can
be accessed via Open Science Framework (https://osf.io/n97vb/)).

(5), and Indigenous Australian ethnicity (2), which may in turn be surrogates of frequent and/or close or
prolonged social contact and therefore greater opportunity for transmission. The susceptibility to progression
describes the propensity of the host to pneumonia progression if infected, which is higher if the child is
younger, is reported to have impaired immunity or has chronic respiratory disease (7).

This BN explicitly describes the presence of six pathogens in the nasopharynx: influenza, respiratory
syncytial virus (RSV), human metapneumovirus (HMPV), parainfluenza, mycoplasma and typical bacteria
(e.g., pneumococcus) (Fig. |4} yellow nodes (15) - (20)). Various epidemiological risk factors interact resulting
in varied prevalence of each pathogen in the nasopharynx, which predispose children to respiratory tract
infection including pneumonia, leading to the core part of the model presented in Fig. [f] For example, while
seasonality can influence the prevalence of many pathogens, in this model we use influenza season (9)
(defined as June to September based on the expected pattern of influenza in the southern hemisphere in
the pre-COVID-19 era) as a surrogate of the temporal increase in the prevalence of influenza, RSV and
HMPV, with the model estimating increases of 220%, 173% and 177%, respectively. Influenza vaccine (11)
reduces the probability that influenza is present in the nasopharynx by a modelled estimate of 67%. Recent
antibiotic exposure (60) reduces the probability of typical bacteria being present in the nasopharynx from
75% to 49%.

3.2.2 The infection

Fig. |5| shows how the BN depicts infection, based on whether viruses or typical or atypical bacteria are
involved in a particular pneumonia episode, and whether upper respiratory sites (nasopharynx and/or throat)
are involved when pneumonia is present. Mycoplasma is an intracellular bacterial pathogen with similarities
to viruses with respect to mechanism of acquisition and some clinical manifestations. For modelling purposes,
we grouped it with the viruses (described as the wviral-like group) while keeping all the other bacteria in
the typical bacterial group. For viral-like pathogens, the BN assumes infection of the lung (viral-like
pneumonia (23)) can either occur directly without observed upper respiratory tract infection (URTI), or it
can occur following observed URTT including viral-like nasopharyngeal infection (21) and viral-like
throat infection (22). The exact probability of each virus causing a respiratory infection is influenced
by its pathogenicity (parameters estimated via the hybrid expert-data approach). Viral infection of the
nasopharynx or throat increases the probability of viral pneumonia. Unlike viral-like pathogens, typical
bacteria frequently colonise in the nasopharynx (62% in the model), described by Typical bacteria in
nasopharynx (20), and spontaneously cause pneumonia (typical bacterial pneumonia (24)) at a much
lower frequency than viruses. In addition, pneumococcal vaccination, the presence of viral-like infection, and
the age of the child, can all directly influence the probability of typical bacterial pneumonia.

We introduced the causative pathogen for pneumonia (25) and upper airway involvement (26)
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Fig 5. The infection, BN v4.5. The detailed model structure and definition for each variable are
provided in Additional File 2. Source model files can be accessed via Open Science Framework
(nttps://osf.io/m9Tvb/).

variables to summarise the above. We defined the causative pathogen for pneumonia to be typical bacterial
if typical bacterial pneumonia (24) is present, viral-like if viral-like pneumonia (23) is present
and typical bacterial pneumonia is absent, or no pneumonia if both the typical bacterial and viral-like
pneumonia are absent. Note that the probability of no pneumonia should always be 0% in our model as it
was parameterised using data from a cohort of children who all had X-ray confirmed pneumonia (27).
The operational definition of clinical diagnosis of bacterial pneumonia (28) in the cohort study was
either having a pleural effusion (46) or a positive blood culture result (53), comprising 11% of children
in the cohort. As illustrated in Fig. [5] this definition is subject to potential measurement and selection
biases introduced by prior antibiotic exposure, the decision to perform blood culture (61) and hospital
transfer (59).

The BN predicted that of all pneumonia presentations, 28.4% involved infection with typical bacterial
pathogens with a mean of 25.2% based on the 10-fold cross validation (10-fold mean), while 92.8% (10-fold
mean 94.6%) involve infection with viruses or viral-like pathogens. Among all pneumonia presentations
involving infection with viruses or viral-like pathogens, 22.8% (10-fold mean 20.1%) were predicted to also
involve infection with typical bacterial pathogens. From the decision-support perspective, it is important to
differentiate infection with mycoplasma from viruses, and this can be addressed by combining information
provided by two nodes, the causative pathogen for pneumonia (25) and mycoplasma in nasopharynx
(19). In other words, if the model predicts a high probability of infection with a wviral-like pathogen and
also a high probability of mycoplasma in nasopharynx, there is a high probability that mycoplasma is the
causative pathogen (with possible implications for management).

3.2.3 The evidence

From a clinical perspective, a child’s causative pathogen for pneumonia (25), current clinical phe-
notype (52) and upper airway involvement (26) are not directly observed (i.e., they are latent), and
can only be inferred from clinical observations and the results of laboratory investigations. From a causal
perspective, these latent variables interact to give rise to the various types of evidence including clinical signs,
symptoms, and laboratory results (Fig. @ The potential causes of signs, symptoms, and laboratory results
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Fig 6. The evidence, BN v4.5. Causative pathogen for pneumonia, current clinical phenotype and
upper airway involvement interact to give rise to the various types of evidence including clinical
signs, symptoms, and laboratory results. The BN dictionary (Additional File 2) details how these
latent variables may give rise to each type of evidence. Source model files can be accessed via Open
Science Framework (nttps://osf.io/m97vb/).

are rarely deterministic, singular or mutually exclusive. For example, cough (29) can be driven by upper
airway irritation, inflammation, or mucus production (e.g. postnasal drip secondary to rhinorrhoea/rhinitis)
or can be from pneumonia affecting the lower airways. Similarly, increased respiratory rate (53) can be a
consequence of airway inflammation or low oxygen saturation (58) and can vary by the child’s age.

Background (dark blue) and intervention (purple) factors may also influence certain types of evidence.
For example, age is an important determinant of the report of pain (e.g., headache (30), abdominal
pain (47) and sore throat (32)) because children need to be old enough to communicate these symptoms.
Recent antibiotic exposure (60) may reduce the probability of a successful blood culture (blood culture
result (53)) even if a child is bacteremic. Knowing the type of oxygen (62) (supplemental or room air)
is essential for interpreting oxygen saturation in relation to lung function. Symptoms and signs may also
interact, e.g., vomiting (39) and diarrhoea (40) may lead to reduced oral intake (41) which could
subsequently lead to lethargy (42).

The classification of the current clinical phenotype of pneumonia is analogous to a count-based metric for
disease severity, where those with phenotype 1 had a median of 12 pneumonia-relevant signs and symptoms,
compared to a median of 8 for phenotype 2. The inclusion of this variable allowed us to separate the differential
influence of causative pathogen (typical bacterial or viral-like) from the severity of clinical manifestations
conditional on the causative pathogen. For example, the overall probability of a child being phenotype 1
(severe) was almost identical for pneumonia involving viruses and viral-like pathogens (14.0%) and those
involving typical bacterial pathogens (13.6%). For a child who had symptom onset within two days and been
transferred from another hospital, the probability of phenotype 1 was much higher for viral-like pneumonia
(79.4%) than typical bacterial case (42.6%). In contrast, if the child presented to ED directly (not transferred),
the overall probability of phenotype 1 is lower (15.5%), however, typical bacterial pneumonia has a more
severe phenotype (23.8%) than their viral-like counterparts (12.1%).
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3.3 Model evaluation and sensitivity analyses

Fig. [7] presents the BN predicted probabilities of clinical diagnosis of bacterial pneumonia for every pneumonia
episode for children in the cohort, and compares these against their final diagnosis (i.e., Bacterial Diagnosis:
Yes/No). Note that we use the recorded clinical diagnosis as the best estimate of the causative pathogen
type, acknowledging that some of these diagnoses may be incorrect. So long as the number of incorrect
diagnoses is not great, this will not affect our conclusions. The graphs represent four input scenarios (a-d),
each providing more information to the model than its preceding scenario:

(a) provides the model with available basic background factors of the partipants; these can include age
group, childcare days per week, chronic respiratory disease, ethnicity, influenza season, prematurity,
smoker in the household, impaired immunity, influenza vaccine, pneumococcal vaccine, and previous
significant infection.

(b) uses the information in (@) plus signs, symptoms and interventions if reported; these can include
duration of symptom /s onset, rhinorrhoea, cough, respiratory rate, oxygen saturation, breathing difficulty,
crackles, wheezing, (parent-reported) fever, highest temperature, chill, sweats, irritability, vomiting,
diarrhoea, reduced oral intake, lethargy, chest pain, abdominal pain, other pain, earache, sore throat,
headache, rash, (prior) antibiotic exposure, type of oxygen, hospital transfer, and (decision to) perform
blood culture.

(¢) uses information in (b) plus any detection (or no detection) of respiratory pathogens in the
nasopharynx; these can include RSV, influenza, HMPYV, parainfluenza, mycoplasma, and any typical
bacteria.

(d) includes (¢) plus all other available results; these can include C-reactive proteins (CRP), white cell
count (WCC), and neutrophil proportion (of total WCC).

Graphs that show a strong overlap (such as in Fig. ) indicate the model is only able to achieve weak
discrimination between bacterial diagnoses and others. However, as further information is provided (through
scenarios (b), (c) and (d)), the discrimination improves, as evidenced by both the graphs and the improving
AUROC scores. In contrast, the log score does not improve over the first 3 scenarios; coupled with the
improving AUROC, this suggests the initial probabilistic prediction is already quite close to the true class.
Log loss does improve in the final scenario, as does AUROC again and the greatest discrimination is visible in
this graph. Table [I]additionally presents the evaluation metrics for other targets including pleural effusion,
positive blood culture result, and the detection of viruses or mycoplasma in the nasopharynx.

Table 1. The performance of BN v4.5 in predicting a range of evaluation targets under different
input scenarios, in the form of mean log loss and AUROC based on 10-fold cross-validation. Note
for each target and scenario, the variables used to operationally define the evaluation target were
removed from the input variables.

Evaluation target AUROC Log loss
Scenario (a) ‘ (b) ‘ (c) ‘ (d) (a) ‘ (b) ‘ (c) ‘ (d)
Clinical diagnosis of bacterial pneumonia || 0.58 | 0.70 | 0.71 | 0.80 || 0.36 | 0.36 | 0.35 | 0.31
Pleural effusion 0.58 | 0.73 | 0.73 | 0.81 || 0.35 | 0.33 | 0.33 | 0.30
Positive blood culture 0.73 ] 0.74 | 0.80 | 0.91 || 0.67 | 0.08 | 0.08 | 0.06
RSV 0.74 | 0.75 | NA | 0.75 || 0.48 | 0.51 | NA | 0.52
Influenza 0.52 | 0.56 | NA | 0.56 || 0.29 | 0.28 | NA | 0.28
HMPV 0.53 | 0.54 | NA | 0.54 || 0.36 | 0.36 | NA | 0.36
Parainfluenza 0.45 ] 049 | NA | 0.52 || 0.25 | 0.25 | NA | 0.24
Mycoplasma 0.67 | 0.73 | NA | 0.73 || 0.33 | 0.32 | NA | 0.32
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Fig 7. The performance of BN v4.5. Predicted probabilities of clinical diagnosis of bacterial
pneumonia are compared with the final bacterial diagnosis for four input scenarios, with mean log
loss and AUROC based on 10-fold cross-validation. For each scenario, available information from
each participant was entered as input for the BN to predict the clinical diagnosis of bacterial
pneumonia.

We varied relevant parameters by 20% to investigate how various factors affect the predicted probability
of typical bacterial pneumonia (Fig. . This target prediction is most sensitive to parameters describing
the pathogenicity of the potential pathogens in causing pneumonia, ranging from 12% to 50%. Varying the
prevalence of various pathogens in the nasopharynx caused the predicted probability of the involvement of
typical bacteria to vary from 22% to 30%. Varying the assumptions regarding the latent epidemiological
concepts (e.g., level of exposure) had a small influence on the probability of involvement of typical bacteria

(25% to 27%).
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Fig 8. Sensitivity analysis, BN v4.5. Relevant parameters were varied by 20% to investigate how
they affected the predicted probability of involvement of typical bacteria. This target prediction
was most sensitive to the pathogenicity of potential pathogens in causing pneumonia (white),
followed by the prevalence of various pathogens in nasopharynx (yellow), and was least sensitive to
the latent epidemiological concepts (blue).

3.4 Demonstrative clinical scenarios

When serving as a clinical decision support tool, the available background factors, clinical observations and
investigation results would be entered as model inputs for making inferences about the pathogen causing
pneumonia in a particular episode. We presented three scenarios to demonstrate the potential use of this
model in a clinical context (Fig. . The BN predicted probability of typical bacterial pneumonia is 28%
for the cohort of children with X-ray confirmed pneumonia (labelled in the blue box at the top right corner).
For each scenario, this prediction is updated, branching in multiple possible ways that are conditional on
information that may become available over time along the child’s clinical course. In parentheses we provide
the change in the target prediction in relation to the cohort average; we use red text to indicate if the
predicted probability of typical bacterial pneumonia is higher than the cohort average, and use green text to
indicate predicted target probabilities which are more than 50% lower than the cohort average.

Fig. |§| presents a scenario in which the BN predicts a low probability (13%) of a typical bacterial cause of
pneumonia for a 4 month old infant with X-ray confirmed pneumonia with moderate signs and symptoms
(i.e., highest temperature of 38.5 degrees Celcius, runny nose and cough). The predicted probability remains
low unless both the CRP and WCC are high (at least 100 mg/L and 12 x 10%/L, respectively). In contrast, if
instead a 9 year old (school-aged) child with X-ray confirmed pneumonia presents various signs and symptoms
(Fig. , the probability of typical bacterial pneumonia is predicted to be higher and similar to the cohort
average. The predicted probability of typical bacterial pneumonia is almost doubled if the child has no
breathing difficulty, and a moderately high CRP (40 mg/L) can be indicative for a bacterial cause. In other
words, the significance of a raised CRP varies under various scenarios. The third scenario (Fig. presents a
3.5 year old (pre-school aged) child with X-ray confirmed pneumonia and very high temperature during the
influenza season. The probability of typical bacterial pneumonia increases if the child is under-vaccinated for
pneumococcus, regardless of whether RSV is detected in their nasopharynx. If fully-vaccinated, the presence
of wheezing will lead to a decrease in the predicted probability of typical bacterial pneumonia, and this
prediction will drop to only 4% if RSV is detected in the child’s nasopharynx.
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Fig 9. Clinical scenario 1, BN v4.5. This use case presents an infant with X-ray confirmed
pneumonia, moderately high temperature, cough and runny nose. The BN predicts a low
probability of typical bacterial pneumonia for this child, and a reported history of diarrhoea alone
does not largely affect the prediction. The target prediction remains low unless both the CRP and

WCC are moderately elevated.

BN dicted bability of
predicted probability o 28%

'”;ﬁa' . 9yo, respiratory rate 55, highest typical bacterial pneumonia
observations temperature 3£|3.5, runny nose 5o, (-24%) among the X-ray confirmed cohort
\Z v
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CRP10 CRP10 CRP40 CRP100 CRP 100 CRP 100 CRP10 CRP10 CRP40 CRP 100 CRP 100 CRP 100
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2% 20% 44% 14% 67% 91% 1% 7% 20% 8% 41% 79%
(-95%) (-30%) (+56%) (-51%) (+136%) (+221%) (-98%) (-76%) (-31%) (-71%) (+44%) (+176%)

Fig 10. Clinical scenario 2, BN v4.5. This scenario presents a school-aged child with X-ray
confirmed pneumonia and with moderately high temperature, runny nose and high respiratory rate.
The BN predicts a 22% probability of typical bacterial pneumonia for this child, and this prediction
increases to 42% if the child has no breathing difficulty. Moderate and very high CRP and WCC
further increase the probability of a typical bacterial cause for this pneumonia.
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Fig 11. Clinical scenario 3, BN v4.5. This scenario shows a pre-school aged child with X-ray
confirmed pneumonia and very high temperature during the influenza season. The probability of
typical bacterial pneumonia increases if the child is under-vaccinated for pneumococcus, regardless
of whether RSV is detected from their nasopharynx or not. If fully-vaccinated, the presence of
wheezing will lead to a decrease in the predicted probability of typical bacterial pneumonia, and
this prediction will drop to only 4% if RSV is detected in the child’s nasopharynx.
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4 Discussion

The diagnostic challenge of differentiating bacterial from non-bacterial pneumonia is the main driver of
antibiotic use for treating pneumonia in children. We have built a causal BN that captures the complex
epidemiological context of paediatric pneumonia and how this gives rise to the variable clinical manifestations
observed in the hospital setting. Based on the combined use of domain expert knowledge and data, the model
was designed to apply to a cohort of children with X-ray confirmed pneumonia who presented to a tertiary
paediatric hospital in Australia. The resulting BN offers explainable and quantitative predictions on a range
of variables of interest, including the diagnosis of bacterial pneumonia, detection of respiratory pathogens in
the nasopharynx, and the clinical phenotype of a pneumonia episode. These outcomes can be utilized to
derive recommendations to support more directed and judicious use of antimicrobials for this cohort.

Quantitatively, the model achieved stable and good performance (Table in predicting the directly
observable variables like the diagnosis of pleural effusion, positive blood culture and detection of RSV
and mycoplasma in the nasopharynx, based on 10-fold cross-validation. Qualitatively, we used commonly
encountered scenarios to assess the potential usefulness of the model outputs in various clinical pictures.
To our knowledge, this is the first causal model developed to help determine the causative pathogen for
paediatric pneumonia. Our model framework and the methodological approach can be adapted beyond our
context to broad respiratory infections and geographical and healthcare settings.

4.1 Using latent concepts to reveal the epidemiological context

When a child has X-ray confirmed pneumonia, the causative pathogen for pneumonia usually remains
unobserved, i.e., latent. Patient background factors such as basic demographics, seasonality, vaccination
and comorbidities can help predict the latent causative pathogen because they often causally influence the
presence of a respiratory pathogen in the child’s nasopharynx or respiratory tract which in turn predisposes
to pneumonia. For example, RSV is more prevalent in influenza season owing to its elevated circulation in
the community, and bacterial infection is more probable in a younger child due to the interplay between their
developing immunity and respiratory microbiota [40,/41]. The difficulties faced by clinicians arises from the
dynamic and complex interactions amongst these factors, as we saw in Fig. [11] for a young child who presents
to hospital in the influenza season.

We addressed this challenge by firstly organising relevant variables under a causal framework (Fig. 4)),
and introducing several latent concepts such as the level of exposure and the susceptibility of a child to
colonisation. This approach helped explain the potentially complex role of each variable in the problem
domain. For example, older children may have lower susceptibility to bacterial colonisation as well as to
pneumonia progression, with both leading to a reduced probability of typical bacterial pneumonia [41].
However, they are also more likely to have a high exposure through attendance at childcare or school [42],
leading to an increase in the nasopharyngeal presence of all pathogens, thereby increasing the potential for
subsequent infection. Being explicit about these underlying mechanisms allowed us to capture and understand
the role of each factor in the context of each pneumonia episode, which in turn gave us further insight into
the epidemiological context and more precise predictions of the causative pathogen for pneumonia.

4.2 Mapping clinical and laboratory evidence to explicit causal paths

Model predictions can be further improved by utilising additional information which is likely to be available
shortly after presentation, namely, clinical observations and laboratory investigation results. By modelling the
overlap and divergence in the pathophysiological pathways indicated by each piece of clinical and laboratory
evidence (Fig. @, the causal BN approach can estimate the episode-specific probability of each causative
pathogen based on any input variables available. As illustrated in clinical scenario 1 (Fig. E[), while diarrhoea
can be a feature of either viral or bacterial pneumonia, knowing about diarrhoea alone does not greatly affect
the predicted probability of typical bacterial pneumonia. However, when additional information such as CRP
and WCC becomes available, the prediction can vary from close to 0% up to 82%.

A challenge faced by clinicians is the variable predictive value of specific clinical and laboratory observations
when the underlying epidemiology changes [15]. More specifically, typical bacterial pneumonia is more likely
to drive elevated WCC and CRP [32], however, elevated biomarkers can also be caused by viral pathogens,
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especially when disease manifestation are severe, leading to reduced specificity for bacterial infection. Our
BN addressed this issue by introducing a variable to summarise the clinical phenotype for each episode, which
functioned to separate the influence of the causative pathogen from the clinical progression of the presenting
episode based on the patient’s susceptibility to progression and the duration and severity of the presenting
illness. This was illustrated in Scenario 1 (Fig. E[) and Scenario 2 (Fig. , in which the same blood results
could lead to significantly different predictions of typical bacterial pneumonia for the two demographically
and clinically distinct presenting episodes.

4.3 The challenge and need to better understand pathogenicity

It became apparent since early in the model development (after Workshop 1) that the pathogenicity of
different organisms plays a central role in driving the probability that a pathogen is causative. There are a
large number of organisms (viral and bacterial) that are capable of causing pneumonia, while there are also
frequent detections of multiple potentially pathogenic organisms in the nasopharynx. Hence, it is important
to understand the prevalence of relevant organisms in the respiratory tract (including the nasopharynx) as
well as the probability of being causative of pneumonia given they are present there. These issues affect
how the model should be structured (e.g., to what extent we should separate or group pathogens) and how
we should parameterise the model (e.g., given the co-presence of more than one pathogen, which one is the
more likely to be the causative agent). Many of these issues remain the subject of debate and ultimately
unresolved by the scientific community [43].

We designed a series of survey questions to elicit the current understanding and knowledge of domain
experts (Survey 2, 3 and 5). Finding the best way to frame questions proved challenging given the complexity
of the problem domain. Consequently, we explored a variety of approaches based on modelling needs,
facilitated by graphical illustration, data visualisation, and various question formats. This process also
helped clarify the modelling requirements themselves, helping us to better manage our current imperfect
understanding of the problem domain. In the areas of greatest need, sensitivity analyses were subsequently
conducted to understand how much the uncertainty in our understanding could impact on the BN predicted

outcomes (Fig. [g).

4.4 Implications for providing decision support for antibiotic prescription

Satisfactory numeric predictive performance has been achieved by the BN in predicting directly observable
variables, especially those used to operationally define bacterial pneumonia. The model was qualitatively
reviewed in various forms, including in Workshops 3 and 4 and Survey 4. The review outcomes from our
experts from diverse domain areas provided confidence in the potential clinical value that this BN offers as a
decision support tool.

Among the 230 children enrolled in our cohort of X-ray confirmed pneumonia, 99% received antibiotics
during their hospital stay, although only 11% were confirmed with a clinical diagnosis of bacterial pneumonia
[32]. This indicates that the current approach to clinically diagnose bacterial pneumonia fails to provide
clinicians the information they need to confidently defer antibiotics. Applied to this cohort, the outcome
BN predicted that 28% had typical bacterial pneumonia (either bacterial or viral-bacterial co-infection),
indicating the potential to greatly rationalise use of antibiotics.

The three scenarios in §[3.4] provide an insight into how we envisage the model outputs could support
decisions under various clinical contexts, leading to numerous questions about how model outputs should be
presented. Even if causal models have good performance and produce explainable outputs, they will not be
useful tools unless their outputs can be presented in a form that end-users can understand, interpret and
use. The barriers to implementation and uptake that decision support tools including BNs face are widely
reported [44./45]

4.5 Study limitations and future direction

The BN needs further validation before it can be clinically implemented, particularly examining the perfor-
mance of the model in additional cohorts that differ in both key contextual factors and in the availability and
operational definitions of superficially equivalent variables. Examples of such differences include: whether
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the definition of pneumonia is distinct across studies; whether a different spectrum of respiratory infections
are involved; and how the clinical epidemiology differs based on the geographically distinct transmission
dynamics or variations across healthcare systems. The results of these additional cohort validations should in
turn feed back and inform how the BN should be further developed and adapted to other settings.

It is important to note there is a distinction between the actual presence of an organism at a body site
and its successful detection by sampling at that body site; we only ever know about the former via evidence
of the latter. In the model, we used the detection of organisms as a surrogate for their actual presence in the
nasopharynx, in order to reduce the number of latent variables. For our model development, these data were
collected prospectively and PCR testing was performed systematically to identify relevant pathogens over
and above the routine clinical practice, generating high quality information with little missing data. However,
the quality of model predictions will not be as robust if data from routine clinical review and investigation
are used alone. Future work should consider the sensitivity and specificity of the laboratory techniques used
to capture this information.

The BN can be further improved using richer data with a higher level of granularity. For example,
information on the severity of reported symptoms was limited. Furthermore, other comorbidities were
identified but are yet to be included in the model, such as the history of neurological conditions that may
affect susceptibility to colonisation and disease progression. There is also the potential to include further
information on the use of intravenous fluid, intensive care management and patient progression over time,
which would enable the model to predict the likely effects of specific interventions. Integrating such models
into electronic medical record systems to enable efficient data capture is an important future direction, as it
would significantly improve the ability to evaluate, maintain and use these models and, ultimately, to derive
the most value from them.
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