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Abstract 

We conducted an ecological analysis of the dynamics of Delta and Omicron 

establishment and dominance in U.S. states. Omicron became the dominant circulating 

variant later in states with higher population-level immunity. By contrast, population 

immunity did not impact the rates of transition from prior variants to either Delta or 

Omicron.  
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INTRODUCTION 

The pandemic of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been 

characterized by the emergence of variants with competitive advantages in transmissibility 

and/or the capacity to evade pre-existing immunity [1]. A quantitative framework to 

understand how new variants displace circulating strains and the impact of population 

immunity on these dynamics is critical to inform public health preparedness for future waves.  

Two recent variants of concern, Delta and Omicron, both reached global dominance, 

irrespective of geographic variation in rates of vaccination and/or prior infection [2][3]. These 

variants, however, became dominant under relatively different circumstances of competition 

with previously circulating strains. Whereas the Delta variant was somewhat more immune 

evasive than its predecessor, the Alpha variant, the Omicron variant is considerably more 

immune evasive than Delta [1]. In the United States, SARS-CoV-2 population immunity has 

historically varied considerably by state due to differences in prior infection and vaccine uptake 

[4]. Yet, it remains unclear how this variability impacts the establishment and dominance of 

variants with different immune evasiveness characteristics. 

We performed an ecological study using publicly available data on SARS-CoV-2 incidence, 

vaccination rates and variant fractions to evaluate the dynamics of Delta and Omicron 

establishment and transition to dominance in the US. We assessed the relationship between 

population immunity to SARS-CoV-2, and the rate, date, and timing of variant takeover at a 

state level. We hypothesized that if immune evasion was a major driver of variant dominance 

dynamics, then both variants would become dominant sooner and faster in states with higher 

levels of pre-existing immunity, with a greater effect during Omicron takeover.  
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METHODS  

SARS-CoV-2 Variant Data Sources and Definitions 

We accessed SARS-CoV-2 genomic sequence data submitted to the Global Initiative on 

Sharing Avian Influenza Data (GISAID) (https://www.gisaid.org/) from all 50 US states between 

January 1 and August 13, 2021, and between November 24, 2021 and February 8, 2022. These 

periods spanned the first detection of the Delta and Omicron variants respectively, to a time 

when each consistently represented >99% of all sequenced genomes. For each period, we 

extracted the proportion of the emerging variant among total SARS-CoV-2 sequences, 

computed as 7-day averages. We identified the initial week during which a variant was first 

sequenced and designated it as the week of variant emergence if at least one additional isolate 

of the variant was identified within the subsequent three weeks. This constraint was 

implemented to avoid misclassifying stochastic introductions of a variant without subsequent 

sustained transmission as the true emergence of a new variant, a phenomenon that can be 

observed on occasion with over-dispersed spread [5]. It affected seven states during Delta 

emergence, and no states during Omicron emergence. 

Modeling/Statistical Methods to Evaluate Variant Takeover 

We fit asymmetric logistic growth curves to changes in variant proportion over time and 

obtained curve-fit estimates for (i) maximum slope; (ii) inflection point, i.e. the time at which 

variant proportion was 50%; and (iii) time at which variant proportion was 10% [6]. In line with 

epidemiological reality, the lower and upper asymptotes of the curves were fixed at 0 and 100 

respectively. Using these data, we derived three outcome measures of variant takeover: (i) 
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takeover rate, defined as the maximum slope of the logistic curve; (ii) calendar date of variant 

dominance, estimated as the date variant proportion exceeded 50%; and (iii) time from 

establishment to dominance, computed as the time taken for variant proportion to increase 

from 10% to 50%. We estimated the calendar date of dominance to mitigate against the effect 

of variation in fractions of sequenced cases in different states impacting the likelihood of 

variant discovery, which would in turn alter the observed time to dominance. 10% variant 

fraction was chosen to define variant establishment to minimize the effect of stochastic 

fluctuations at lower variant fractions [7]. 

Population Immunity Data Sources and Definitions 

Using data from the US Centers for Disease Control (https://covid.cdc.gov/), and assuming a 

two-week delay between exposure and attainment of immunity, we estimated statewide 

immunity to COVID-19 using four definitions: (i) proportion fully vaccinated; (ii) proportion 

boosted; (iii) proportion with a prior infection and (iv) proportion with either prior infection or 

fully vaccinated/boosted. We defined the proportion with prior infection as the number of 

reported cases divided by the state population. We utilized this metric given the availability of 

time-resolved data and limitations on accuracy of other estimates of infection prevalence. For 

primary analysis, we assessed vaccine-induced population immunity using the most effective 

vaccine series available during variant takeover, i.e. the fully vaccinated proportion during Delta 

takeover and the boosted proportion during Omicron takeover [8]. We approximated combined 

immunity from infection or vaccination by estimating the fraction of the population without 

immunity as w=(1-p)*(1-v), where p and v are the previously-infected and vaccinated 

proportions respectively, then computing the total proportion immune as 1-w [9]. 
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For each measure of variant takeover, we fit linear regression models to estimate the 

relationship with estimates of population immunity across different states. Code for the 

analysis is available at github.com/pankomah/variant_immunity. Analytic datasets are collated 

in Supplementary File 1. 

 

RESULTS  

 We fit logistic curves to estimate the proportion of SARS-CoV-2 infections attributable to 

Delta or Omicron variants in each state during the transition from Alpha and other circulating 

variants to Delta, and from Delta to Omicron (Figure S1, Table S1). In Figure 1, we graphically 

depict the relationship between variant takeover and combined population-level immunity 

from vaccination and infection. There was no statistically significant relationship between 

variant takeover rates and immunity for Delta (R=0.13, p=0.37; Fig. 1a) or Omicron (R=-0.14, 

p=0.32; Fig. 1b). Takeover for Omicron occurred at later dates in states with more immune 

populations (R=0.52, p<0.001; Fig. 1d), with a similar, but not statistically significant trend for 

Delta (R=0.24, p=0.091; Fig. 1c). There was also a statistically significant difference in time from 

establishment (10%) to dominance (50%) for Omicron (R=0.3, p=0.036; Fig. 1f), occurring over a 

longer period in states with higher population immunity, but not for Delta (R=-0.07, p=0.64; Fig. 

1e). 

In sensitivity analyses, we observed similar results when we limited estimates of 

population immunity to the most effective vaccination strategy for each variant, omitting 

recorded infections. There was no relationship between immunity and takeover rates, a 

statistically significant delay in Omicron takeover date (p<0.001) and time from establishment 
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to dominance (p=0.009) in states with more boosted populations and a nonsignificant trend to 

delayed takeover date for Delta in states with higher proportions of fully vaccinated people 

(p=0.055) (Figure S2). When we used the fully vaccinated instead of the boosted proportion to 

represent immunity against Omicron (Figure S3) or documented preceding infection as the sole 

measure of immunity for both variants (Figure S4), no statistically significant relationships were 

observed between immunity and any takeover metric.   

 

DISCUSSION  

In this ecological study, we tested the hypothesis that novel variants with greater 

immune-evasive capacity would become dominant faster in states with higher levels of 

population immunity. Contrary to our hypothesis, we found no statistically significant 

association between takeover rates of Delta or Omicron and state-level immunity. By contrast, 

we observed later takeover for Omicron in more immune states and a similar but not 

statistically significant trend for Delta. 

These results suggest that population-level immunity did not enhance the rates at which 

the Delta or Omicron variants became dominant, despite greater immune escape capacity for 

each compared to major variants that were circulating at the time of their emergence. While 

preferential transmission among vaccinated individuals is expected for immune-evading 

variants [10], we speculate that this might have been counterbalanced by decreased rates of 

secondary transmission in these same immune sub-populations. For example, longitudinal 

cohort studies have demonstrated that full vaccination and boosting decrease the secondary 

attack rate among contacts of individuals infected with Delta or Omicron respectively and 
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accelerate the rate of viral clearance, thereby decreasing potential subsequent transmission 

events [11]. The observation of a statistically significant delay in date of and time to Omicron 

but not Delta takeover, may be sequelae of the relatively greater ability of Omicron to infect 

immune sub-populations during its competitive circulation with Delta, moreso than for Delta 

with Alpha. As a result, Omicron’s dominance would be more likely slowed down by immunity 

compared to Delta.  

Important caveats to our observations include limitations associated with use of publicly 

available data. For example, we used public case reporting to estimate immunity provided by 

prior infection, which likely substantially underestimates total infection rates, possibly to 

varying extents in each state. GISAID data on variant proportions is also a selected sample of all 

cases. In addition, unmeasured confounders such as public health mitigation policies, behaviors 

or population density may systematically vary by state and concurrently affect both vaccination 

rates and variant transmission. Finally, we do not account for the waning of vaccine-induced 

immunity in susceptibility to novel variant infections [12], or the mitigating impact of 

vaccination on disease severity or death.  

Nevertheless, our results suggest that use of population-level data on vaccination and 

infection rates alongside assessments of changing variant proportion may provide a useful 

framework to understand how population immunity affects circulating SARS-CoV-2 variants. 

These findings do not support theoretical concerns about enhanced selection for immune-

evasive variants as a drawback of widespread vaccination campaigns, since states with more 

measured immunity saw similar maximum takeover rates and similar or later time to 

dominance of emerging variants. 
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Figure Legends 

Figure 1. Delta and Omicron variant takeover and immunity in different US states. (A,B) Variant 

takeover rate in different states with 95% confidence intervals; (C,D) estimated initial calendar 

date at which a variant reached 50% of sequenced SARS-CoV-2 genomes in different states ( 

date of takeover); (E,F) estimated time taken for variant proportion to increase from 10% to 

50% of sequenced SARS-CoV-2 genomes in different states with 95% confidence intervals. 

States are identified by standard two-letter abbreviations; states in the same census geographic 

region are plotted with the same color. Error bars for takeover rates were limited to maxima 

and minima of 100 and 0 respectively. Left panel: Delta, Right panel: Omicron. Immunity is 

estimated by the combined proportion of the state’s population with identified SARS-CoV-2 

infection prior to detection of the new variant in the state and either fully vaccinated (for Delta) 
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or boosted (for Omicron) two weeks prior to variant proportion exceeding 50%. Pearson 

correlation coefficient (R) and p-value test results are shown for each plot. 

 

Figure S1. Asymmetric logistic curve fits to weekly estimates of Delta (black circles) or Omicron 

(red triangles) as a proportion of all SARS-CoV-2 isolates in different states grouped by census 

geographic region.  

 

Figure S2. Delta and Omicron variant takeover and vaccination-induced immunity in different 

US states. (A,B) Variant takeover rate in different states with 95% confidence intervals; (C,D) 

estimated initial calendar date at which a variant reached 50% of sequenced SARS-CoV-2 

genomes in different states (date of takeover); (E,F) estimated time taken for variant 

proportion to increase from 10% to 50% of sequenced SARS-CoV-2 genomes in different states 

with 95% confidence intervals. States are identified by standard two-letter abbreviations; states 

in the same census geographic region are plotted with the same color. Error bars for takeover 

rates were limited to maxima and minima of 100 and 0 respectively. Left panel: Delta, Right 

panel: Omicron. Immunity is represented by the proportion of the state’s population fully 

vaccinated (for Delta) or boosted (for Omicron) two weeks prior to variant proportion 

exceeding 50%. Pearson correlation coefficient (R) and p-value test results are shown for each 

plot. 

 

Figure S3. Omicron variant takeover and vaccination-induced immunity in different US states.  

(A) Omicron takeover rate in different states with 95% confidence intervals; (C,D) estimated 
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initial calendar date at which Omicron reached 50% of sequenced SARS-CoV-2 genomes in 

different states (date of takeover); (E,F) estimated time taken for Omicron proportion to 

increase from 10% to 50% of sequenced SARS-CoV-2 genomes in different states with 95% 

confidence intervals. States are identified by standard two-letter abbreviations; states in the 

same census geographic region are plotted with the same color. Error bars for takeover rates 

were limited to maxima and minima of 100 and 0 respectively. Immunity is represented by the 

proportion of the state’s population fully vaccinated two weeks prior to variant proportion 

exceeding 50%. Pearson correlation coefficient (R) and p-value test results are shown for each 

plot.  

 

Figure S4. Delta and Omicron variant takeover and infection-induced immunity in different US 

states. (A,B) Variant takeover rate in different states with 95% confidence intervals; (C,D) 

estimated initial calendar date at which a variant reached 50% of sequenced SARS-CoV-2 

genomes in different states (date of takeover); (E,F) estimated time taken for variant 

proportion to increase from 10% to 50% of sequenced SARS-CoV-2 genomes in different states 

with 95% confidence intervals. States are identified by standard two-letter abbreviations; states 

in the same census geographic region are plotted with the same color. Error bars for takeover 

rates were limited to maxima and minima of 100 and 0 respectively.  Left panel: Delta, Right 

panel: Omicron.  Immunity is represented by the proportion of the state’s population with 

identified SARS-CoV-2 infection two weeks prior to detection of the variant in the state. 

Pearson correlation coefficient (R) and p-value test results are shown for each plot.  
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