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Abstract 
 
Digital media (DM) takes an increasingly large part of children’s time, yet the long-term effect on 

brain development remains unclear. We investigated how individual effects of DM use (i.e., using 

social media, playing video games, or watching television/videos) on the development of the cortex 

(i.e., global cortical surface area), striatum, and cerebellum in children over four years, accounting for 

both socioeconomic status and genetic predisposition. We used a prospective, multicentre, 

longitudinal cohort of children from the Adolescent Brain and Cognitive Development Study, aged 9.9 

years when entering the study, and who were followed for four years. Annually, children reported their 

DM usage through the Youth Screen Time Survey and underwent brain magnetic resonance imaging 

scans every two years. Quadratic-mixed effect modelling was used to investigate the relationship 

between individual DM usage and brain development. We found that individual DM usage did not 

alter the development of cortex or striatum volumes. However, high social media usage was 

associated with a statistically significant change in the developmental trajectory of cerebellum 

volumes, and the accumulated effect of high-vs-low social media users on cerebellum volumes over 

four years was only β= -0.03, which was considered insignificant. Nevertheless, the developmental 

trend for heavy social media users was accelerated at later time points. This calls for further studies 

and longer follow-ups on the impact of social media on brain development. 

 

 

Keywords: Videogames, social media, MRI, brain, children, polygenic scores    
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Introduction 
 
Children are increasingly engaged with digital media (DM) more than ever before. For example, in 

the U.S., children aged 8-12 years, on average, spend 4 hours and 44 minutes daily on DM for 

entertainment purposes,1 in addition to its use during school and homework. This rise in usage has 

sparked concerns among parents, caregivers, and policymakers regarding its potential adverse effects 

on the developing brains of children. However, research in this domain remains inconclusive and 

somewhat contradictory. 

 

Concerning the DM's impact on cognitive outcomes, prior studies have reported both beneficial and 

detrimental associations.2-5 Similarly, a recent review on brain development simply noted that DM's 

effects can be both positive and negative.6 This inconsistency in findings can be attributed to several 

factors. First, the general term ‘digital media’ encompasses a wide range of activities, each potentially 

influencing development in distinct ways or even exerting contrasting effects. Therefore, it is crucial 

to differentiate between various digital activities, such as playing video games, watching 

television/videos, and using social media. Second, the age of the participants is a significant factor. 

For example, research by Orben et al. in 2022 showed that social media use could negatively affect 

psychological well-being during particular developmental stages, with these stages occurring at 

different times for boys and girls.7 In another study, Soares et al. found that boys who spent more time 

watching television or playing video games at 11 years old, and more time using computers at 11 and 

15 years old, showed improved working memory performance at 22 years old.8 However, this 

association was not observed in girls. Third, and perhaps most critical, is the conflation of evidence 

from cross-sectional and longitudinal studies in reviews. Cross-sectional studies can identify 

correlations but cannot establish causality. Whereas longitudinal studies may even yield opposite 

results. For example, a longitudinal study using structural equation modeling has found a negative 

correlation between time spent playing video games and intelligence.4 However, when controlling for 

baseline cognition and other background variables, the longitudinal analysis revealed that playing 

video games positively influenced changes in intelligence (β=0.17). The initial negative correlation 

between video gaming and cognitive performance was interpreted as resulting from self-selection.  

 
Longitudinal research on the effect of DM and brain development in children remains limited. A series 

of studies on a cohort of Japanese children observed that watching television increased grey matter 

volume in frontal areas,9 playing video games increased mean diffusivity in the white matter,10 and 

internet usage decreased grey matter volume in extensive brain regions.11 Although informative, this is 

a single cohort of less than 300 individuals, which varied widely in age, between ages 6 to 18. Brain 

development during this period is nonlinear, which was not accounted for in the statistical modeling. 

In 2023, Miller et al. assessed the impact of DM on functional connectivity over two years in a cohort 
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of over 4000 children.12 They reported no effects exceeding a size of 0.2, the predetermined threshold 

for significance. 

 
The ongoing debate over what constitutes a meaningful effect size continues without consensus in 

psychology and neuroscience. This issue is particularly relevant in large-scale studies like the 

Adolescent Brain Cognitive Development (ABCD) study, where statistical significance may not 

equate to a meaningful effect for the individual.13 The traditional criteria by Cohen, which categorizes 

effect sizes of 0.2 as small and 0.5 as medium, were arbitrary from the outset, with Cohen himself 

acknowledging the lack of solid evidence for these benchmarks.14 Funder and Ozer propose that effect 

sizes must be contextualized, and propose as guidelines that an r-value of 0.05 indicates a very small 

effect and 0.1 a small effect. The frequency of an event may also be crucial, as repeated events can 

accumulate effects over time, according to Abelson.15  

 

Furthermore, when interpreting effect sizes, it is essential to consider additional factors. Even a small 

effect can have significant implications if it influences various aspects of an individual's life or 

interacts positively with other variables. Habituation or counteractive responses might mitigate an 

effect's impact.16 In our analysis, we regard an annual effect size of 0.05 as meaningful. This threshold 

is deemed appropriate, considering the cumulative influence of DM and the potential for an effect on 

a general ability like attention to significantly impact schooling and everyday life. 

 
Our study aimed to investigate the individual effects of DM usage on structural brain development in 

children aged 9.9 years at baseline (T0) over four years, adjusted for age, sex, SES, scanner sites, and 

genetic predisposition. We selected global cortical surface area (CSA) as the main outcome measure 

since previous studies have shown a strong relationship between global CSA and intelligence across 

different age groups.17-22 Moreover, we used cortical surface area rather than cortical thickness 

because studies have consistently reported an association of environmental variables, such as SES, on 

cortical surface area rather than on cortical thickness.23  

 

We further investigated the individual brain structures, i.e., the volumes of the striatum and 

cerebellum, which have been implicated in cross-sectional studies of DM usage.24,25 In general, global 

CSA tends to increase during this period of childhood a part of normal development with a peak age 

at 11 years of age.26 Building upon our prior research findings,4 we hypothesized that DM usage, 

particularly playing video games, would be associated with an increase in global CSA. Since DM 

usage differs between sexes,27 we will study the effect of sex on these relationships. 
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Results 
 
Baseline characteristics 
 
Of the 11,875 children from the ABCD study cohort, 6469 children (age, mean (SD) = 9.9 (0.6) years; 

boys, n (%) = 3369 (52.1%)) fulfilled our inclusion criteria and were included at the T0 visit (i.e., 9-11 

years of age). Of these, 4610 children (age = 12.0 (0.7) years; boys = 2487 (53.9%)) were included at 

the T2 (i.e., two years later) visit, and 1697 children (age = 13.4 (0.6) years; boys = 949 (55.9%)) were 

included at the T4 (i.e., four years later) visit. 1462 children had usable data for all three-time points. 

 

The estimated time spent by these children on DM types at T0 was 0.5 hours/day for using social 

media, 0.9 hours/day for playing video games, and 2.1 hours/day for watching television/videos 

(Table 1). 

 

Compared to the T0 visit, the estimated time spent using DM types significantly increased over four 

years in the overall cohort and in boys and girls (Table 1). During the four years of the follow-up 

period (i.e., across all four annual visits), children, on average, spent 1.4 hours/day using social media, 

1.5 hours/day playing video games, and 2.2 hours/day watching television/videos. Moreover, during 

this period, boys spent more time playing video games or watching television/videos, whereas girls 

spent more time using social media or watching television/videos. 

 

As expected, parents reported less total screen time use per day in children compared to child reports 

across two visits (Table 1).  

 
Normal brain developmental trajectory 
 
Overall development followed an inverted U-shaped developmental trend for global CSA, striatum 

and cerebellum volumes between mid-childhood and early adolescence, i.e., age-related increase 

during mid-childhood and subsequently decrease during early adolescence. According to the fitted 

model, the global CSA, striatum, and cerebellum volumes peaked at 10.6, 10.9, and 15.4 years, 

respectively (Figure 1a). 

 
Sex effect on brain development 
 

To determine whether the trajectory differed between the sexes, we added interaction terms (age * 

sex; age2 * sex) to the pre-existing model. There was a significant interaction for sex with global CSA  

and cerebellum volumes, but not for striatum (eTable 2). 
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Overall, boys had larger global CSA and cerebellum volumes than girls (eTable 3; Figure 1b), but the 

peak was much earlier in girls (global CSA = 10.4 years and cerebellum = 11.9 years) than in boys 

(global CSA = 11.1 years). Cerebellum volumes increased over this age range for boys.  
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SES and cogPGS 

Overall, we observed a positive association between SES and global CSA (β = 0.08 to 0.11; p < 

0.001) (Table 2). For illustration purposes, we additionally categorized SES into quartiles and plotted 

global CSA development across them (Figure 2). Similarly, we categorized SES into three quartiles 

and studied the trend for cerebellum volumes (Table 2). Overall, children from lower levels of SES 

had lower global CSA and cerebellum volumes compared with their developing peers and had earlier 

maturation (Figure 3). 

 

No association was found between cogPGS and global CSA and the volumes of cerebellum and 

striatum. 

 

There was no significant three-way interaction found between DM usage, time, and SES on any brain 

regions studied (i.e., global CSA, and volumes of striatum and cerebellum).  

 

Interaction of DM usage and time on brain development 
 
There were multiple interactions between the average DM usage and both linear and quadratic effects 

of time on brain development (Table 2). Only the significant interactions that survived Bonferroni 

corrections (p < 0.003) will be discussed below. 

 
Social media usage 
 
We found a significant interaction between average social media usage and both linear and quadratic 

effects of time (i.e., average social media usage x time and average social media usage x time2, 

respectively) with cerebellum volume. Here, we observed a positive association of social media usage 

and time with cerebellum volumes for a linear term (β = 0.02) but a negative association of social 

media usage and time with cerebellum volumes for a quadratic term (β = -0.02) (Table 2). The 

consequence of these effects is illustrated in (Figure 3a and 3c); there is a slight difference in 

trajectory, which results in an earlier decline and lower volume at the last time-point. 

 

There was no significant interaction between social media usage and time with other brain regions 

studied (i.e., global CSA and striatum volumes) (Table 2). 

 

Playing video games 

In contrast to social media usage on brain development, we observed a significant positive interaction 

between average time spent playing video games and a quadratic effect of time (but not linear) with 

cerebellum volume (β = 0.01) (Table 2). This resulted in a trajectory with continued increase 

throughout the study period and a larger cerebellar volume at the last time-point (Figure 3b and 3d). 
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There was no significant interaction between playing video games and time in other brain regions 

studied (i.e., global CSA and striatum volumes) (Table 2). 

 

Watching television/videos 

There was no significant interaction between watching television and time with any of the brain 

regions studied (i.e., global CSA, volumes of cerebellum and striatum) (Table 2). 

 

There were no significant three-way interactions between any DM usage, time, and sex with the brain 

structures studied. Therefore, we did not carry out separate analyses for boys and girls (eTable 4). 

 

Additional analysis 

In investigating whether DM estimates preceded changes in cerebellum volume, we observed a 

negative trend for high social media users with changes in cerebellum volumes (β = -0.01; p = 0.10). 

Conversely, there was a significant positive association for high video game users with changes in 

cerebellum volumes (β = 0.02; p = < 0.001) (eTable 5).  

 

We then investigated whether social media usage at T0 could predict total changes in cerebellum 

volumes (T4 – T0) and found that social media usage at T0 was not associated with changes in 

cerebellum volumes (β = -0.03; p = 0.16) (eTable 6). The estimate (β = -0.03) thus represents the 

overall effect size of social media usage over a four-year study period. 

 

Furthermore, after excluding time spent on video chatting or texting from social media usage, we still 

found that the direction of the observed effects between average social media usage on cerebellum 

volumes remained significant, with the same effect size (β = -0.02; p=0.002). 

 

Sensitivity analyses 
 
When we excluded children who were born preterm, had low birth weight (< 2500 g), or had ADHD 

diagnosis, 3979 children fulfilled the criteria for eligibility, and the findings of the average social 

media usage or playing video games and cerebellum volumes remained significant (eTable 7). 

 
Further, our analysis was confined to children with MRI data available across all three visits 

(n=1462), and despite this restriction, the observed effects between average social media usage or 

playing video games and cerebellum volumes remained significant (eTable 8).  
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Discussion 
 

In this large prospective cohort study, we studied the long-term effects of DM usage on the 

development of the cortex, striatum, and cerebellum across three time points spanning between mid-

childhood to adolescence, in children aged 9 to 11 years. Despite our initial hypothesis, we found that 

DM usage did not significantly alter the development of the global CSA or striatum volume. 

However, children who devote more time to playing video games had a weak increase in cerebellum 

volume during the critical developmental window of development (β = 0.01), while those who spent 

more time using social media had a subtle decrease in cerebellum volume (β= -0.02). These 

associations persisted in subsequent analysis, even when factors such as preterm birth, lower birth 

weight, or those with ADHD diagnosis, were excluded, underscoring the robustness of our findings. 

And these associations also did not differ between the sexes. However, the effect size observed for 

this association was smaller than our predefined threshold of 0.05. Moreover, in analysing the 

accumulated differences in cerebellum volumes over four years were also very small, which is likely 

not of relevance to the individual. Nevertheless, this difference was accelerated during the last year 

(Figure 2). Thus, it is relevant to conduct further research to analyse the long-term effects of social 

media on brain development.  

 

The term “social media” consists of a broad spectrum of digital tools associated with social 

interaction, including social networking sites, text messaging applications, and video chatting. 

Previous studies examining the association between social media use and functional or neural 

outcomes in both children and adolescents have often either combined all these digital tools under the 

umbrella term “social media use”,4,28 or scrutinized them separately, distinguishing between social 

media platforms (e.g., Facebook) and social communication tools (e.g., text messaging) in their 

analyses.29,30 Consistent with previous studies we first investigated the effect of social media usage on 

brain development by combining all these digital tools. We specifically included activities related to 

social media platforms and studied their singular long-term effect on cerebellum development. Even 

in this refined analysis, we still observed a persistent weak negative effect of social media usage on 

cerebellum volumes.  

 

If the negative developmental trend for the cerebellum persists, it might be of significant concern, 

particularly considering that adolescence serves as the period when many psychiatric disorders have 

their onset.31,32 Moreover, consistent findings report an association between cerebellum abnormalities 

with various psychiatric disorders, such as depression and anxiety disorders.33 In addition, the 

cerebellum is a core component of the neural circuitry underpinning many cognitive deficits 

associated with ADHD, including working memory, response inhibition, attention shifting, and 

processing of rewards and temporal information.34-37 
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The cerebellum is sensitive to environmental exposures both prenatally, as demonstrated by studies of 

maternal alcohol, maternal diabetes, hypoxia, and postnatal glucocorticoid exposure,38,39 and 

postnatally.40 In our study, we observed that children from lower SES quartiles had smaller cerebellum 

volumes, providing further for the susceptibility of the cerebellum structure to environmental 

factors.41,42 The transition from childhood to adolescence represents a critical developmental phase 

characterized by hormonal and physiological changes, including myelination, strengthening of 

synapses, and selective pruning of neurons and connections. Social media users often contend with 

constant distractions, which can significantly impact their behavior, leading to inattention 

symptoms.43 Additionally, these users can become easily diverted from tasks like reading or 

homework, etc. Moreover, the use of social media necessitates continual response to stimuli, decision-

making, and the execution of motor movements, among various other cognitive and behavioral tasks. 

Previous studies on social media usage have consistently reported negative effects on life 

satisfaction,7 overall well-being,44 and depressive symptoms,45 among adolescents. Based on these 

observations, one might speculate that a distinct window of susceptibility to emotion and frequent 

shifts in task stimuli might be key contributing factors to the observed decrease in cerebellum 

volumes. At the neuronal level, this could reflect the acceleration of the natural process of synaptic 

pruning and changes in myelination among high social media users, which would then appear as a 

decrease in cerebellum volume at a later time point. 

 

Consistent with prior research,46,47 we observed an inverted U-shaped trajectory in the development of 

the cortex during mid-childhood and adolescence, with girls reaching their peak earlier than boys. 

These findings align with histological studies suggesting continued myelination and reduction in 

synaptic density during adolescence.48,49 At a microscopic level, cortical maturation involves synaptic 

overproduction in childhood, followed by selective elimination and strengthening of connections later 

in development.50 During these stages of development, environmental exposure might guide selective 

synapse elimination in adolescence.51,52 Supporting this notion, we found that children from lower 

SES quartiles exhibited smaller global CSA across development compared to their peers. 

 

Although this is a longitudinal study with a large number of participants, the study has some notable 

limitations. First, this is an observational study, and therefore, we cannot establish causal inference. 

However, we adjusted for most of the covariates such as age, sex, SES, and genetics. Additionally, to 

mitigate selection bias, we ensured the inclusion of only one child per family. Second, the estimated 

time spent on various DM types was self-reported, introducing potential recall or accuracy bias. 

Nevertheless, it should be noted that studies have reported high test and retest reliability of self-

reported behaviors among adolescents.53 Third, the survey questionnaire utilized to capture DM usage 

from T2 visits onwards was modified compared with T0 or T1 visits in response to technological 
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advancements and the heightened usage of DM among adolescents. However, we harmonized the 

survey questionnaires from the T2 visit onwards to maintain consistency with the earlier visits. Fourth, 

the response measure for the survey questionnaire in both T0 and T1 visits was set between ‘0 and 4+ 

hours’; this is one of the major drawbacks of the ABCD questionnaire. For example, a child who spent 

four hours engaged in video games or using social media would receive the same score as a child who 

spent 12 hours, despite the significant difference in their exposure. Fifth, the ABCD questionnaire 

failed to capture information regarding the timing of DM usage, either during the day or night, thus 

impeding the exploration of the potential effects of bedtime DM usage on brain development. Finally, 

the survey questionnaires used in this study failed to capture any information regarding the genre of 

video games. Given that different activities and actions of video gaming may exert distinct impacts on 

brain development.  

 

In summary, DM usage, particularly playing video games, does not alter cortical brain development 

during the four-year window, but social media usage is weakly associated with a decrease in 

cerebellum volumes, a trend that was accelerated at later time-points. These findings should be 

continued by longer follow-up, and more detailed documentation of DM usage, but is a cause for 

concern regarding the usage of social media in children and adolescents.  
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Methods 
 
Participants 
 

The neuroimaging and behavioral data used in this study were obtained from the ABCD Study (data 

release 5.0; https://abcdstudy.org/; http://doi.org/10.15154/1523041), a longitudinal cohort of 11,875 

children born between 2005 and 2009. These children were enrolled at ages 9-11 years from 21 

research sites across the U.S. between 2016 and 2018,54 with the intention of following them for a 

period of at least 10 years. This recruitment cohort closely matches the sociodemographic 

composition of the US population of 9-11-year-old children. Most of the children were enrolled 

through local elementary and charter schools at each data-collection site. A smaller portion was 

recruited through community outreach and word-of-mouth referrals outside of the school setting. 

Twins were identified and recruited from birth registries.55,56 

 

During each visit, children accompanied by a parent/guardian, completed a series of measures. These 

included neurocognitive tests, mental and physical health questionnaires, environmental exposure data 

collection, providing biological specimens, and participating in brain imaging.54,57-61 All were asked 

for an in-person assessment session for self- or parent-report of mentioned behavioral measures and 

for biological specimen collections once a year, with brain imaging conducted biannually. For this 

study, we used data collected between September 2016 and January 2022, which included baseline 

(T0), one-year follow-up (T1), two-year follow-up (T2), three-year follow-up (T3), and four years 

follow-up (T4).
60,61 Children were excluded if they were born extremely preterm (< 28 weeks of 

gestation) or had birth weight (< 1200 g), were not proficient in English, had any neurological 

problems, had a history of seizures, or had a contraindication to undergo brain MRI scans. All 

children and their parents/guardians provided informed written consent/assent for participation, and 

the central Institutional Review Board at the University of California, San Diego approved the study 

protocols. All the research methods were performed in accordance with the relevant guidelines and 

regulations.  

 

Children who did not have relevant data on either SES, genetics, DM usage; or neuroimaging were 

excluded from the present study. Additionally, the ABCD cohort included twins and siblings, therefore 

we randomly selected one child per family to eliminate this source of bias.  

 
Neuroimaging 
 
Children underwent brain MRI scans on 3-Tesla scanner platforms (Siemens Prisma, Philips, or 

General Electric 750) using a standard adult-sized head coil at three different time points over a span 

of four years (i.e., T0, two years later (T2), and four years later (T4)). A standardized protocol for 

scanning was used to harmonize the scanning sites and MRI scanners. Three-dimensional T1-
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weighted images (1-mm isotropic) were acquired using a magnetization-prepared rapid acquisition 

gradient-echo (MP-RAGE) sequence and processed using FreeSurfer software (version 5.3.0).62 All 

the pre-processed images were quality-checked according to the ABCD protocol, as described 

earlier,39 and children with excessive head motion or poor image quality were excluded from the 

current study. In brief, all the imaging data and FreeSurfer outputs were evaluated by the ABCD Data 

Analysis, Informatics, and Resource Center (DAIRC) image processing pipeline for real-time motion 

detection and correction.54,57 In addition, FreeSurfer output was rated manually by a trained technician 

for the following errors: motion, homogeneity, white-matter underestimation, pial overestimation, and 

magnetic susceptibility artifacts; and were rated from 0 to 3 (0=absent, 1=mild, 2=moderate, and 

3=severe). As per the ABCD study recommendation, we excluded children with poor scan quality, did 

not pass manual quality check, or with any incidental findings. 

 

The Destrieux atlas was used to calculate total brain volumes and global cortical surface area (CSA), 

while the ASEG atlas was used to segment both striatum and cerebellum volumes.57,62,63 

 

Covariates 

 
Socioeconomic status 
 
SES was defined as the first principal component from a probabilistic principal component analysis 

(PCA), capturing 65% of the variance in total household income, highest parental education, and 

neighbourhood quality. Children missing more than one of these SES measures were excluded. 

Household income was determined by the combined annual income of all family members over the 

past 12 months, categorized as less than $49,999 (1), $50,000–74,999 (2), $75,000–99,999 (3); 

$100,000–199,999 (4); and greater than $200,000 (5). Parental education was categorized into middle 

school or less (1), some high school (2), high school graduate (3), some college/associate degree (4), 

bachelor’s degree (5), master's degree (6), or professional degree (7). The neighbourhood quality was 

determined using the area deprivation index, calculated from the American Community Survey using 

the address of the primary residency.64 The SES composite and each subcomponent were normalized 

(mean=0, SD=1). 

 
Polygenic Score Derivation and Analyses 
 
Genotyping, quality control, and imputation 
 
Saliva samples were collected from all the children during the T0 visit and genotyped using Rutgers 

University Cell and DNA repository using the Smokescreen array consisting of 646,247 genetic 

variants.65 
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Quality control, imputation, and genetic PCA were performed by the National Bioinformatics 

Infrastructure Sweden (NBIS). The following pre-processing steps were conducted. Briefly, single 

nucleotide polymorphisms (SNPs) with call rates < 98% or minor allele frequencies (MAFs) < 1% 

were excluded before imputation. Individuals with high rates of missingness (> 2%) and absolute 

autosomal heterozygosity > 0.2 were excluded, resulting in 10,069 children and 430,622 genetic 

variants. Haplotypes were prephased using SHAPEIT2, and genetic markers were imputed using 

IMPUTE4 software. 

 

We utilized the 1000 Genomes haplotypes—Phase 3 integrated variant set release in NCBI build 37 

(hg19) coordinates as reference populations. This dataset consists of 2504 samples and 5008 

haplotypes from Europeans, Africans, East Asians, Southern Asians, and Americans 

(https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html). We used this imputation since it 

provides better concordance in diverse human populations.66,67 After that, genotypes with an INFO 

score < 0.3 or MAF < 0.001% were excluded, which yielded 40,637,119 SNPs in a total of 10,069 

children. 

 

The PCA module, as implemented in RICOPILI,68 was used to check for outliers and control 

population structure. SNPs were pruned so that there was little linkage disequilibrium (LD) between 

SNPs (R2�<�0.2, 200 SNP window: Plink–indep-pairwise 200 100 0.2). LD pruning was repeated 

until 100�K SNPs were reached. The resulting SNPs were then projected into the PCA.69,70 We 

utilized the first 20 principal components (20PCs) from the genetic PCA. 

 
cogPGS calculation 
 
We created polygenic scores for cognitive performance (cogPGS) in each child using PRSice-2,71 

which involved summing the effect sizes of thousands of SNPs (weighted by the presence of effect 

alleles in each child). These SNPs were discovered by large genome-wide association studies (GWAS) 

on educational attainment, mathematical ability, and general cognitive ability.72 Details regarding the 

effect sizes and p values of their SNPs can be assessed through the Social Science Genetics 

Association Consortium (https://www.thessgac.org/data).  

 

We utilized the data provided by the consortium from a multitrait analysis of GWAS,73 which, in our 

case, represents a joint polygenic score focused on a GWAS of cognitive performance and 

complemented by information from a GWAS on educational attainment, a GWAS on the highest-level 

math class completed, and a GWAS on self-reported math ability. This joint analysis is ideal because 

pairwise genetic correlations of these traits were high,72 and these GWAS had hundreds of thousands 

of individuals. Such a large sample size allows new studies to detect effects in samples of a few 

hundred individuals with 80% statistical power. 
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To construct the cogPGS, we performed clumping and pruning to remove nearby SNPs that are 

correlated with each other. The clumping sliding window was 250 kb, with the linkage disequilibrium 

clumping set to r2 > 0.25. We included the weightings of all SNPs, regardless of their p-value from the 

GWAS (p = 1.00 threshold), resulting in 5255 SNPs. Finally, we normalized (mean=0, SD=1) the 

cogPGS to fairly compare their effects on different phenotypes. For the present study, we used 

cogPGS to reflect the genetic predisposition of cognitive performance and included 20 genetic 

principal components (PCs) to account for the possibility of population stratification within the Add 

Health European-ancestry subsample in the same model. 

 

Exposure 
 
Digital media usage 
 
The estimated time spent on individual DM usage (i.e., using social media, playing video games, or 

watching television/videos) was assessed at all annual visits (i.e., T0, one year later (T1), T2, three 

years later (T3), and T4) using the self-reported Youth Screen Time Survey. 

 
Self-report survey 
 
At each visit, children reported the number of hours they spent on a typical weekday (i.e., Monday to 

Friday during the school year and holiday/school breaks) as well as weekend days (i.e., Saturday and 

Sunday). These hours were categorized by device, media platform, or activity excluding the number 

of hours spent on school-related work. Specifically, they reported the number of hours dedicated to 

the following activities:  

(1) watching television or movies,  

(2) watching videos (e.g., YouTube),  

(3) playing video games on a computer, console, phone, or another device (e.g., Xbox, PlayStation, 

iPad),  

(4) Texting on a cell phone, tablet, or computer (e.g., Google Chat, WhatsApp),  

(5) Visiting social networking sites (e.g., Facebook, Twitter, Instagram), and  

(6) Using video chat (e.g., Skype, FaceTime). 

 

To be consistent with our earlier study,4 we categorized DM usage as follows: (a) using social media 

(4+5+6), (b) playing video games (3), or (c) watching television/videos (1+2). The response options 

included were none - ‘0’, < 30 minutes - ‘0.25’, 30 minutes – ‘0.5’, 1 hour – ‘1’, 2 hours – ‘2’, 3 hours 

– ‘3’, or > 4 hours – ‘4’. 
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To calculate the average hours spent per day for individual DM usage, the following formula was 

used: [(total number of hours spent on a weekday * 5) + (the total number of hours on a weekend day 

* 2)]/7. 

 

For both the T0 and T1 visits, data were collected using the same categorical scale as described above. 

However, starting from T2, modifications were made to the Youth Screen Time Survey to 

accommodate the increasing DM usage among school-aged children. The time spent watching 

television was changed into ‘watching or streaming videos or movies’, while watching videos (such as 

YouTube) was changed into ‘watching or streaming videos or live streaming (such as YouTube, 

Twitch)’. Then, these categories were merged into a single category named ‘watching 

television/videos’. ‘Video chatting, visiting social media apps, and texting cell phone’ were combined 

into a broader category called ‘using social media’. The activities ‘editing photos and videos’ and 

‘searching or browsing the internet’ were excluded as they were not present in the T0 data. Playing 

video games was further divided into two subcategories, i.e., ‘time spent on single-player’ and ‘time 

spent on multi-player’, which were combined as ‘playing video games’. 

 

Additionally, the response format was changed from categorical to continuous, with response options 

including 0 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 1.5 hours, 2 hours, 2.5 hours, 3 

hours, and every additional hour up until 24 hours.  

To ensure consistency across all time points, we standardized the T2, T3, and T4 visit data to align with 

the T0 and T1 visit data. As a result, the data from the T2, T3, and T4 visits were recoded to match the 

categories used in the T0 and T1 visits. The recoding involved transforming the continuous response 

options into the following categories: none -‘0’, < 30 minutes -‘0.25’, 30 minutes – ‘0.5’, 1 hour – ‘1’, 

1.15 hours – ‘1.25’, 1.30 hours – ‘1.5’, 2 hours – ‘2’, 2.15 hours – ‘2.25’, 2.30 hours – ‘2.5’, 3 hours – 

‘3’, 3.15 hours – ‘3.25’, 3.30 hours – ‘3.5’, and > 4 hours – ‘4’. 

 

There were good test-retest correlations between individual DM usage across different time points, 

with r-values ranging from 0.24 to 0.56 (eFigure 1). 

 
Parent-reported survey 
 
Caregivers/parents were asked to report the number of hours spent by their child on a typical weekday 

and weekend day engaging in total on watching television, shows or videos, texting or chatting, 

playing games, or visiting social networking sites (Facebook, Twitter, Instagram), excluding the 

number of hours spent on school-related work during T0 and T1 visits. Parents provided the total 

estimated time spent on these activities in both hours and minutes for weekdays and weekends. To 

calculate the average hours of screen time per day, we used the following: [(total number of hours 

spent on a weekday * 5) + (the total number of hours on a weekend day * 2)]/7. 
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Furthermore, we assessed the agreement between caregivers/parents and child reports regarding the 

estimated amount of time spent on total screen activities (i.e., watching television/videos, playing 

video games, or engaging in social media) during the T0 visit, using a correlation coefficient and 

found it to be 0.37, indicating fair agreement between caregivers/parents and children. To obtain the 

child’s report on the estimated screen time at T0, we summed the time spent watching 

television/videos, playing video games, or using social media.  

 

We opted to use the self-reported surveys completed by the children rather than relying on 

caregivers/parents.74,75 Since caregivers/parents may not be fully aware of specific types of DM used 

by their children, including those aged 9-11 years and older, who often use DM without supervision, 

such as in their bedrooms at night. Consequently, children may provide more accurate reports of their 

estimated time spent on each type of DM usage. There is also substantial evidence showing that 

children as young as six years old can reliably report on their own health.75 

 

In light of the COVID-19 lockdown, it is probable that these children could spend more time using 

DM than anticipated at T0. This effect was more pronounced in a US-based study, which reported a 

two-fold increase in the estimated time spent on DM usage during the COVID-19 lockdown 

compared to the pre-pandemic period.76 Therefore, to account for an increase in estimated time spent 

using DM among children between T0 and T4, we used the average estimated time spent for individual 

DM usage, rather than relying solely on data from either T0 or T4 for the longitudinal analyses. The 

average estimated time spent for individual DM usage was calculated by averaging the estimated time 

spent for each type of DM usage across all time points. 

 
Outcomes 
 
These predefined outcomes included the global CSA and the volumes of the striatum and cerebellum. 

We defined the striatum by combining the volumes of the caudate nucleus, putamen, and accumbens. 

As for the cerebellum, we combined the volumes of both grey and white matter structures of the 

cerebellum. Both striatum and cerebellum volumes were adjusted for the total brain volumes. In these 

analyses, we considered both the left and right hemispheres together. 

 
Statistical analysis 
 
Descriptive statistics including means and standard deviations (SDs) were calculated.  

The first research question aimed to assess whether individual DM usage altered (i.e., increased or 

decreased) brain development over four years. 
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To address this question, we first inspected the developmental trends of brain structures (i.e., global 

CSA, cerebellum, and striatum) between mid-childhood and early adolescence, which are not always 

linear. Earlier studies on brain development have reported both linear and quadratic trends between 

childhood and adolescence.77-80 To do so, we compared the default linear model to a complex 

quadratic model to identify whether adding the quadratic age effect significantly improved the 

goodness of fit for the global CSA, cerebellum, and striatum. In both these models, we adjusted for 

SES, polygenic scores cogPGS, and 20PCs. We assessed the fit of the models based on the Akaike 

Information Criterion (AIC) and Bayesian Information Criterion (BIC). The model with lower AIC 

and BIC values was considered a better fit (at least by 10 points less than the other model) (eTable 

1).81 The log-likelihood ratio test (χ2) was additionally run to confirm the results. 

 

When we examined the models, the quadratic model fitted the data well and was subsequently used 

for further analysis. In addition, age-related change in the peak location along with sex effect was 

assessed. Peak age for each brain structure was calculated using the first derivative of the quadratic 

equations. 

 

We constructed a quadratic mixed-effect model to investigate the relationship between individual DM 

usage and brain structures over time. The model (equation 1) was adjusted for various factors: age at 

baseline (mean-centered to reduce multicollinearity), SES, cogPGS, 20 PCs, and sex assigned at birth 

as fixed effects, and study sites were included as random effects.  

 

To test the long-term effect of DM usage on brain development with time (as outcomes of interest), 

we included a two-way interaction with average DM usage and time as both linear and quadratic 

terms (i.e., average DM usage x Time; average DM usage x Time2). Furthermore, to account for SES 

and cogPGS effects on brain development over time, we included three-way interactions in the same 

model (i.e., for SES, average DM usage x Time x SES; and average DM usage x Time2 x SES; for 

cogPGS, average DM usage x Time x cogPGS; and average DM usage x Time2 x cogPGS). Both the 

intercepts and the slopes were used as random-effects terms, allowing children to start at different 

levels of surface area/volumes. The ‘lmer’ function of package lme4 in R software was used to fit the 

model, and the restricted maximum likelihood method was used to estimate the model parameters.82,83 
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β0 represents the intercept; 
β represents the parameter estimate 
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�������  represents the polygenic scores for cognitive performance of a child i; 
 ���  represents the effect of time (denotes the follow-up time for child i at visit j, fitted as a continuous 

measure in years; 
 ��	�  sex of a child, dummy coded (1=M, 0=F); 

 
���  age of child i as a continuous measure at baseline; 
����  represents the socioeconomic status for child i; 



�������  represents the ancestry differences in genetic structure that could bias the findings; 
�� ������  represents the amount of average estimated time spent for child i, fitted as a continuous 

measure; 
��� and ���  are the random effects, and 

��� is the random error term at the jth time point for child i. 
 

To determine the effect of sex-related differences on the relationships between DM usage and brain 

development, we added an interaction effect of sex (i.e., average DM usage x Time x sex; and average 

DM usage x Time2 x sex) to the pre-existing model (equation 2). 

 

��� � �� � ������	
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�
�� �  #�� �  #�� ! ��� � $�� ----2 

 

Considering the numerous statistical tests conducted, the Bonferroni corrections were applied to 

control for Type-1 error.84 In total, we performed three individual DM usage models (i.e., using social 

media, playing video games, watching television/videos) for three brain structures analyzed in the 

overall cohort as well as for sex, resulting in a total of 18 tests. P < 0.003 was considered statistically 

significant. 

 

An additional analysis was conducted to investigate whether the estimates of DM preceded changes in 

cerebellum volume. A linear model was employed to ascertain whether the average social media usage 

of the first two time points (i.e., (T0 + T1)/2) could predict later changes in cerebellum volumes 

between T2 and T4, while adjusting for the aforementioned covariates (i.e., age at baseline, SES, 

cogPGS, 20 PCs, and sex assigned at birth as fixed effects, and study sites as random effects). 

Subsequently, the same analysis was repeated using the average time spent playing video games 

during the first two time points in cerebellum volumes. We then investigated whether social media 

usage at T0 could predict the changes in cerebellum volumes (T4 – T0) over the study period, while 

adjusting for prespecified covariates as mentioned above. In addition, we explored whether excluding 

time spent on video chatting or texting from social media usage would alter the results (equation 1; 

Table 2). 

 

We ran multiple robustness tests to validate our findings and they were uncorrected. Firstly, we 

excluded children who were born preterm (< 37 weeks), had low birth weight (< 2500 g) or had a 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 4, 2024. ; https://doi.org/10.1101/2022.07.01.22277142doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.01.22277142
http://creativecommons.org/licenses/by-nc/4.0/


 20

diagnosis of ADHD. Those born preterm or with low birth weight tend to have altered developmental 

trajectories.85-87 Similarly, children with ADHD have delayed maturation, which might affect our 

findings.88 Secondly, we restricted our analysis by including children with MRI data for all three-time 

points.  

 

The gestation length and birth weight of each child were reported by caregivers/parents through a self-

reported questionnaire. The presence of ADHD symptoms in the child, whether in the past or 

currently, was assessed through caregivers/parents reports using the computerized Kiddie-Structured 

Assessment for Affective Disorders and Schizophrenia (KSADS) during the T0 visit. This tool is based 

on a well-studied and validated tool, both in research and clinical settings. Diagnoses of ADHD were 

made in accordance with DSM-5 criteria, which require an endorsement of six or more symptoms of 

inattention or hyperactivity-impulsivity.   
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The ABCD data repository grows and changes over time. The ABCD data used in this report came 

from ABCD (data release 5.0; https://abcdstudy.org/; http://doi.org/10.15154/1523041).  
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Figures 
 
 

 
 
Figure 1. a, Plots representing the quadratic effects of age (years) predicting global cortical surface area, 
striatum and cerebellum volumes in the overall cohort, adjusted for sex, socioeconomic status, sex, polygenic 
scores for cognitive performance, and 20 principal components, and the grey shade around the regression lines 
corresponds to a 95% confidence interval of the intercept; b, sex-stratified developmental trend adjusted for the 
same covariates as mentioned above. The dots represent the peak age, estimated by the first derivative. The y-
axis represents brain structures. 
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Figure 2. Developmental trajectories and socioeconomic status, (a) global cortical surface area, and (b and c) 
cerebellum (presented as adjusted and unadjusted for total brain volumes (TBV)). For visual purposes, we 
present in age (years). socioeconomic status (SES) is categorized into quartiles using ggpredict [quart2] function 
in R.89 Children from low levels of socioeconomic status had a relatively smaller global cortical surface area or 
cerebellum volumes and accelerated maturation of the brain compared to their developing peers. Abbreviations: 
SES, socioeconomic status. 
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Figure 3 Relationship between digital media usage and cerebellum development over time. The interactions 
presented in (a and c) social media usage (b and d) playing video games, and time2 on the cerebellum 
development; however, they are presented in age (years) for visual purposes. Digital media usage is categorized 
based on quartiles using ggpredict [quart2] function in R.89 Children who spent a longer time on social media 
usage (a and c) had a decrease in cerebellum volume. Similar findings were seen for those who spent on mean 
levels. In contrast, children who spent a longer time playing video games (b and d) had an increase in 
cerebellum volume. 
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Tables 
 
Table 1 Descriptive characteristics of the sample  
 

Variables Overall Boys Girls 
N at T0 6469 3369 3100 
Age, years at T0 9.9 (0.6) 9.9 (0.6) 9.9 (0.6) 
Socioeconomic status 0.01 (0.99) 0.03 (0.94) -0.02 (1.00) 
Polygenic score 0.02 (1.00) 0.04 (0.98) -0.003 (1.02) 
Digital media usage 
Using social media    

T0 0.49 (1.06)a 0.39 (0.95)a 0.56 (1.09)a 
T1 0.84 (1.49)b 0.66 (1.31)b 0.99 (1.59)b 
T2 1.22 (1.33)c 0.89 (1.16)c 1.47 (1.38)c 
T3 1.87 (1.45)d 1.47 (1.35)d 2.22 (1.45)d 
T4 2.50 (1.45) 2.19 (1.49) 2.76 (1.36) 

    
Watching television/videos    

T0 2.13 (1.69)a 2.20 (1.72)a 2.05 (1.65)a 
T1 2.36 (1.77)b 2.44 (1.80)b 2.26 (1.73)b 
T2 2.21 (1.24) 2.24 (1.24) 2.13 (1.23) 

    
Playing video games    

T0 0.95 (1.06)a 1.24 (1.15)a 0.64 (0.84)a 
T1 1.15 (1.18)b 1.50 (1.23)b 0.78 (0.99)b 
T2 1.48 (1.39)c 1.94 (1.37)c 0.93 (1.19)c 
T3 1.81 (1.47)d 2.33 (1.36)d 1.21 (1.35)d 
T4 2.00 (1.57) 2.53 (1.40) 1.37 (1.51) 

    
Average estimated time spent over 
four years on 

   

Using social media 1.35 (0.95) 1.12 (0.87) 1.60 (0.99) 
Watching television/videos 2.24 (1.27) 2.30 (1.28) 2.16 (1.25) 
Playing video games 1.47 (1.02) 1.91 (0.96) 0.98 (0.86) 
Playing mature video games at T0 0.53 (0.84) 0.76 (0.94) 0.27 (0.60) 
Watching mature movies at T0 0.34 (0.60) 0.38 (0.62) 0.30 (0.58) 
Total screen time – reported by 
children at 

T0 

 

T1 

 

 
 

3.60 (2.93) 
 

4.32 (3.38) 

 
 

3.86 (2.99) 
 

4.58 (3.33) 
 

 
 

3.27 (2.76) 
 

4.03 (3.42) 

Total screen time – reported by 
parents at 

T0 

 

T1 

 

 
 

2.90 (2.32) 
 

3.17 (2.62) 

 
 

3.04 (2.37) 
 

3.28 (2.58) 

 
 

2.73 (2.23) 
 

3.05 (2.65) 

Data are presented as the mean (standard deviation). Abbreviations: T0, baseline visit; T1, first-year visit; T2, 
second-year visit, T3, third-year visit; and T4, fourth-year visit. A two-sample t-test was carried out to determine 
the differences between the visits.  
Superscripts: a, significant differences between T0 and T1; b, significant differences between T1 and T2; c, 
significant differences between parent and child reported at T0; d, significant differences between parent and 
child reported at T1; and e, significant differences between parent and child reported at T2. The average 
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estimated time spent over two years is calculated by the average across all three annual visits. The total screen 
time reported by children is calculated by summing the estimated time spent on individual digital media types. 
For example, total screen time at T0 is calculated by summing the estimated time spent using social media, 
watching television and videos, and playing video games at T0.
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Table 2 Association between individual digital media exposure and brain outcomes in children aged 9-11 years with 4 years of follow-ups. 
 

Brain regions Social media 
usage 

Time 
(linear) 

Time 
(Quadrant) 

SES cogPGS Social media usage 
x Time 

Social media usage 
x Time2  

 
 β (SE) p β (SE) P β (SE) p β (SE) P β (SE) P β (SE) P β (SE) P 

Global cortical 
surface area 

(mm2) 

0.001 
(0.001) 

0.67 0.04 
(0.001) 

< 
0.001 

-0.03 
(0.01) 

 

<0.001 0.11 
(0.02) 

<0.001 0.05 
(0.02) 

0.005 0.001 
(0.006) 

0.36 -0.01 
(0.004) 

0.004 

Striatum 

Volume (mm3) 

-0.007 
(0.01) 

0.49 -0.02 
(0.01) 

0.11 -0.004 
(0.005) 

0.42 0.01 
(0.02) 

0.43 -0.01 
(0.02) 

0.40 -0.007 
(0.006) 

0.91 0.001 
(0.003) 

0.96 

Cerebellum 

Volume (mm3) 

0.02 
(0.01) 

0.10 0.09 
(0.008) 

<0.001 0.01 
(0.005) 

0.04 0.05 
(0.02) 

0.004 -0.002 
(0.02) 

0.98 0.02 
(0.005) 

<0.001 -0.02 
(0.003) 

<0.001 

               
 Playing video 

games 
Time 

(linear) 
Time 

(Quadrant) 
SES cogPGS Playing video 

games x Time 
Playing video 
games x Time2 

 β (SE) p β (SE) P β (SE) p β (SE) P β (SE) P β (SE) P   
Global cortical 

surface area 
(mm2) 

-0.04 
(0.01) 

<0.001 0.03 
(0.01) 

0.001 -0.05 
(0.01) 

<0.001 0.08 
(0.02) 

<0.001 0.03 
(0.02) 

0.16 -<0.001 
(0.005) 

0.95 0.008 
(0.003) 

0.01 

Striatum 

Volume (mm3) 

-0.01 
(0.01) 

0.16 -0.001 
(0.01) 

0.71 -0.01 
(0.01) 

0.10 0.02 
(0.02) 

0.20 -0.009 
(0.02) 

0.59 -0.01 
(0.006) 

0.07 0.004 
(0.003) 

0.16 

Cerebellum 

Volume (mm3) 

0.006 
(0.009) 

0.49 0.12 
(0.008) 

<0.001 -0.02 
(0.005) 

<0.001 0.06 
(0.02) 

0.002 -0.006 
(0.02) 

0.69 -0.008 
(0.005) 

0.07 0.01 
(0.003) 

<0.001 

               
 Watching 

television 
Time 

(linear) 
Time 

(Quadrant) 
SES cogPGS Watching television 

x Time 
Watching television 

x Time2 

 β (SE) p β (SE) p β (SE) p β (SE) P β (SE) P β (SE) P β (SE) P 
Global cortical 

surface area 
(mm2) 

-0.03 
(0.008) 

<0.001 0.04 
(0.01) 

0.001 -0.04 
(0.006) 

 

<0.001 0.08 
(0.02) 

<0.001 0.04 
(0.02) 

0.05 -0.003 
(0.004) 

0.50 -0.001 
(0.002) 

0.63 

Striatum -0.02 0.03 -0.03 0.03 0.003 0.62 0.02 0.28 -0.005 0.78 -0.003 0.54 -0.002 0.30 
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Volume (mm3) (0.001) (0.01) (0.007) (0.02) (0.02) (0.005) (0.002) 
Cerebellum 

Volume (mm3) 

0.007 
(0.007) 

0.33 0.08 
(0.009) 

<0.001 0.006 
(0.006) 

0.34 0.03 
(0.02) 

0.11 0.03 
(0.02) 

0.10 0.01 
(0.003) 

0.007 -0.006 
(0.002) 

0.02 

P values presented are uncorrected for multiple comparisons. The main effects that survived a number of tests were highlighted (p < 0.05/18 = 0.0027). 
Abbreviations: SES, socioeconomic status; cogPGS, polygenic scores for cognitive performance. 
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