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Abstract. Vaccination is an important epidemic intervention strategy. Resource limitations and an impera-

tive for efficient use of public resources drives a need for optimal allocation of vaccines within a

population. For a disease causing severe illness in particular members of a population, an effective

strategy to reduce illness might be to vaccinate those vulnerable with a vaccine that reduces the

chance of catching a disease. However, it is not clear that this is the best strategy, and it is gener-

ally unclear how the difference between various vaccine strategies changes depending on population

characteristics, vaccine mechanisms and allocation objective. In this paper we develop a concep-

tual mathematical model to consider strategies for vaccine allocation, prior to the establishment of

community transmission. By extending the SEIR model to incorporate a range of vaccine mecha-

nisms and disease characteristics, we simulate the impact of vaccination on a population with two

sub-groups of differing characteristics. We then compare the outcomes of optimal and suboptimal

vaccination strategies for a range of public health objectives using numerical optimisation. Our com-

parison serves to demonstrate that the difference between vaccinating optimally and suboptimally

may be dependent on vaccine mechanism, diseases characteristics, and objective considered. We find

that better resources do not guarantee better outcomes. Allocating optimally with lesser vaccine

resources can produce a better outcome than allocating good vaccine resources suboptimally, depen-

dent on vaccine mechanisms, disease characteristics and objective considered. Through a principled

model-based process, this work highlights the importance of designing effective vaccine allocation

strategies. This design process requires models that incorporate known biological characteristics,

realistic parameters based on data analysis, etc. Overall, we see that allocation of resources can be

just as crucial to the success of a vaccination strategy as the strength of resources available.

1. Introduction. Pre-epidemic vaccination is an important intervention for managing dis-

ease, and when supply is limited vaccines should be used strategically as part of pandemic

preparedness. The difference in the outcomes of various allocation strategies will depend on

the characteristics of the pathogen and on vaccine mechanisms. Understanding how these

characteristics affect both the optimal allocation strategy and the difference in outcomes be-

tween strategies is vital when planning vaccine allocation for novel pathogens or pathogen
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strains.

When new viruses emerge, decision-makers aim to design effective vaccination strategies based

on knowledge of previous pandemics and emerging information [1, 2]. For example, when vac-

cinating against influenza, there are benefits to targeting vaccination towards those most

vulnerable to disease, and targeting vaccination towards those most likely to spread disease

[3, 4]. However, these benefits are highly dependent on disease parameters as well as rela-

tive efficacy of the vaccine between population groups [5, 6]. When vaccines are available

or potential vaccines are in development for novel pathogens, modelling has been used to de-

velop optimal vaccination strategies [7, 8]. However, any strategy developed must be regularly

reevaluated as knowledge of pathogen and vaccine characteristics improves and/or new virus

variants emerge. For example, the emergence of new variants for COVID-19 in 2021, notably

the Delta and Omicron variants, have necessitated the reevaluation of current intervention

strategies. As more information became available about the characteristics of the Delta and

Omicron variants, many countries adapted their vaccination strategies to prioritise booster

doses [9, 10], partly due to decreased vaccine effectiveness against new variants.

Mathematical modelling provides the tools to quantify how vaccine mechanisms and disease

characteristics may affect the optimal impact of vaccine allocation. For simple epidemiological

models such as the SIR or SEIR model, we can calculate the threshold vaccination needed to

ensure R0 < 1 which ensures sustained transmission is not possible. While we can derive the

threshold of vaccination to ensure R0 < 1 for more complex models, the relationship between

various objectives such as total infections or deaths and R0 is no longer as simple as before.

As such, calculating the number of vaccines needed to optimise a specific objective requires

careful thought and potentially numerical methods. Realistically, we may instead compare

a range of vaccination strategies to determine which results in the best outcome for a given

objective, deeming this the optimal of the strategies considered [3, 7, 8, 11]. In general, the

choice of public health objective will impact results, so we need to consider which metrics,

such as total infections, total symptomatic infections or total deaths, are most appropriate to

minimise when optimising a vaccine allocation strategy [12].

Two important areas related to pre-epidemic vaccination are exploring optimal vaccine alloca-

tion given disease characteristics and allocation objectives to prepare for potential pandemics,

and designing optimal vaccine allocation strategies based on limited information from novel

pandemics. To predict the optimal allocation strategy for potential pandemics, we want to
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know who to vaccinate and when to vaccinate. Vaccines are generally most effective when al-

located early in the outbreak and rapidly, focusing primarily on vulnerable people and highly

transmissible groups [3, 4, 6, 13, 14]. When a pandemic begins, we can apply the findings from

this literature to predict effective strategies based on what information is available. For both

influenza and COVID-19, optimal vaccine strategies depend on how transmissibility, severity

and vaccine effectiveness vary by age [4, 11, 7, 15, 16, 8]. While these analyses focus on de-

termining the optimal vaccine allocation strategy given pathogen characteristics, they do not

present a generalised understanding of difference between optimal and suboptimal strategies.

Are there certain situations where vaccine coverage should be prioritised, irrespective of who

gets vaccinated? Or are there situations where we should ensure every available vaccine is

allocated optimally?

In this paper we develop an approach to answer these vaccine allocation questions. We

develop deterministic models and consider the effects of four separate vaccine mechanisms on

a population comprised of two sub-groups with varying characteristics. We then determine the

optimal allocation strategies for this population for a variety of allocation objectives. Through

comparing the outcomes of optimal and suboptimal allocation strategies, we investigate how

disease characteristics (such as R0 and disease severity) and vaccine characteristics (such as

vaccine effectiveness and coverage) impact the differences in outcomes for various strategies.

This analysis explores how the difference in outcomes from prioritising better vaccine resources

or prioritising targeted allocation changes depending on the scenario considered.

2. Method. We define a modified SEIR model which includes two population groups, pre-

epidemic vaccination, symptomatic and asymptomatic infection, and death due to disease. We

consider vaccine mechanisms that prevent either transmission, symptomatic infection or se-

vere disease, and consider scenarios where people are vaccinated before an epidemic starts.

Through numerical simulation of our model, we aim to minimise either total infections, symp-

tomatic infections or deaths and explore how disease and vaccine characteristics affect the

outcome of a variety of vaccine allocation strategies.

2.1. Model assumptions and definition. We define our model from the following disease

progression for each population group:

• Every person is initially susceptible, and are split into unvaccinated and vaccinated

groups based on their pre-epidemic vaccination status.

• If infected, a susceptible person becomes exposed, where they are infected but not yet

infectious.
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• An exposed person will become infectious, developing either symptomatic or asymp-

tomatic disease.

• A person with symptomatic disease can either recover from disease, or die due to

infection.

• A person with asymptomatic disease will recover from disease.

Our model is described by the compartment diagram in Figure 1. We consider compartments

Xjki, where:

• X ∈ {U, V,E, I,R,D}: denotes compartment types; Unvaccinated, Vaccinated, Ex-

posed, Infected, Recovered and Dead.

• j ∈ {U, V }: denotes Unvaccinated or Vaccinated disease progression,

• k ∈ {S,A}: denotes Symptomatic or Asymptomatic infection, and

• i ∈ {1, 2}: denotes subpopulation group, denoted Group 1 and Group 2.

For example, the compartment IUS1 is comprised of people in Group 1 who were initially

unvaccinated and have developed symptomatic infection.

To illustrate the impact of vaccination on subpopulation groups with varying characteristics,

we define Group 1 as twice as susceptible to infection the Group 2 (unless otherwise stated).

We define the contact matrix C to characterise the interactions between susceptible and

infectious individuals in each group:

(2.1) C =

I1 I2[ ]
S1 2 2

S2 1 1
,

where S = {Ui, Vi} denotes the susceptible compartments and I = {IUSi, IUAi, IV Si and IV Ai}
denotes the infected compartments. That is, we can define the force of infection λi(t) for each

subpopulation group i by:

(2.2) λi(t) =
2∑

j=1

∑
K∈I

aKjβCij
Kj(t)

LPj(t)

where β is the transmission rate, aKj scales β to suit the characteristics of compartment Kj ,

and LPj(t) is the number of people alive in Group j at time t.
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Figure 1: Compartmental diagram for our extended SEIR model. Initially people are either
susceptible (Ui) or vaccinated (Vi) where i ∈ {1, 2} denotes population group. Both classes
are able to become exposed (Eji) at rate and then infected (Ijki) where j ∈ {U, V } denotes
whether they were initially unvaccinated or vaccinated and k ∈ {S,A} denotes if they experi-
ence symptomatic or asymptomatic disease. From here, symptomatic people or asymptomatic
can recover from disease (Rjki) or symptomatic people can also die due to disease (Dji). As
defined in the standard SEIR model, θ denotes the rate at which people transition from exposed
to infected and γ denotes the rate at which people are removed from infected compartments.
In this model, ωi denotes the probability of developing symptomatic infection and σi denotes
the probabiity of dying due to disease. We define vaccine effectiveness for each mechanism as
1− αm for m ∈ {1, 2, 3, 4}. We consider mechanisms: 1) reducing susceptibility, 2) reducing
probability of developing symptomatic infection, 3) reducing probability of dying due to disease,
and 4) reducing infectivity. In the force of infection λi, βCij denotes the transmission rate
between a susceptible in Group i and an infected in Group j. 1 − δA denotes the reduction
in infectivity due to asymptomatic infection and LPj denotes the number of people alive in
Group j.

We choose to vary our transmission parameter β through varying the reproductive number,

R0. We calculate R0 numerically for our model by finding the largest eigenvalue of the next

generation matrix [17]. Using this calculation, we calibrate β for a given R0 value.

In this model, we assume frequency dependent transmission i.e. the transmission rate de-
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pends on the proportion of infecteds in the population as the contact rate is independent of

population size. This is preferred for modelling human populations over density dependent

transmission as we determine our contacts by social constraints, which do not necessarily scale

with population size [5]. We further assume disease progresses on a fast enough timescale that

we can ignore births and natural deaths and that the population is closed. Therefore, the total

population for each group Pi∈{1,2} is constant, but this population also includes people who

have died due to disease. To implement frequency dependent transmission, we define a new

population size LPi∈{1,2}(t) which denotes the size of the living population for each group.

This living population will change over time as people die due to disease. As people die and no

longer have contact with living people (we assume), for the same number of infected people,

the proportion of infected contacts will increase.

To investigate the effects of a range of vaccine mechanisms, we consider four vaccine mecha-

nisms [16]:

1. Reduction in susceptibility,

2. Reduction in probability of developing symptomatic infection,

3. Reduction in probability of dying due to disease, and

4. Reduction in infectivity.

We define the effectiveness of each vaccine as 1 − αm∈{1,2,3,4} ∈ [0, 1], where m denotes the

vaccine mechanism, as numbered above. An 100% effective vaccine (1−αm = 1) corresponds

to a perfect vaccine, for example if α1 = 0, vaccinated individuals are unable to be infected.

Conversely, a 0% effective vaccine (1 − αm = 0) corresponds to the vaccine having no effect.

When vaccine effectiveness is not varied, we will assume each vaccine has a baseline values

of αm = 0.75. As we only consider pre-epidemic vaccination, vaccine allocation appears in

the initial conditions for the vaccinated compartments for Groups 1 and 2 (V1 and V2). We

assume those with asymptomatic infection are less infectious than those with symptomatic

infection (this reduction in infectivity is given by the quantity 1− δA = 0.5).

From the assumptions stated above, we derive the ODEs to describe our model. In addition

to the standard SEIR model parameters, αm denotes the vaccine effectiveness, ωi denotes the

proportion of exposed individuals that become symptomatically infected, σi denotes the pro-

portion of symptomatic individuals who die due to disease, and 1−δA denotes the reduction in

infectivity for asymptomatic infecteds, all for a population group i. Furthermore, λi denotes

the force of infection, as defined by Eq. (2.2), Cij denotes the elements of the contact matrix,
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as defined by Eq. (2.1), Pj denotes the size of Group j at the beginning of the epidemic,

and LPj(t) denotes the size of the living population of Group j. Our model is hence by the

following equations for each population group i:

Unvaccinated :

dUi

dt
= −λi(t)Ui(t)(2.3)

dEUi

dt
= λi(t)Ui(t)− θEUi(t)(2.4)

dIUSi

dt
= ωiθEUi(t)− γIUSi(t)(2.5)

dIUAi

dt
= (1− ωi)θEUi(t)− γIUAi(t)(2.6)

dRUSi

dt
= (1− σi)γIUSi(t)(2.7)

dDUi

dt
= σiγIUSi(t)(2.8)

dRUAi

dt
= γIUAi(t)(2.9)

Vaccinated :

dVi

dt
= −α1λi(t)Vi(t)(2.10)

dEV i

dt
= α1λi(t)Vi(t)− θEV i(t)(2.11)

dIV Si

dt
= α2ωiθEV i(t)− γIV Si(t)(2.12)

dIV Ai

dt
= (1− α2ωi)θEV i(t)− γIV Ai(t)(2.13)

dRV Si

dt
= (1− α3σi)γIV Si(t)(2.14)

dDV i

dt
= α3σiγIV Si(t)(2.15)

dRV Ai

dt
= γIV Ai(t).(2.16)

Force of infection
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λi(t) =
2∑

j=1

βCij
IUSj(t)

LPj(t)
+ δAβCij

IUAj(t)

LPj(t)
+ α4

[
βCij

IV Sj(t)

LPj(t)
+ δAβCij

IV Aj(t)

LPj(t)

]
(2.17)

⇒ λi(t) =

2∑
j=1

βCij

LPj(t)
(IUSj(t) + δAIUAj(t) + α4 [IV Sj(t) + δAIV Aj(t)])(2.18)

Adding Eqs. (2.3)–(2.16) we find:

∑
i∈{1,2}
j∈{U,V }
k∈{S,A}

dUi

dt
+

dVi

dt
+

dEji

dt
+

dIjki
dt

+
dRjki

dt
+

dDji

dt
= 0

⇒
∑

i∈{1,2}
j∈{U,V }
k∈{S,A}

Ui(t) + Vi(t) + Eji(t) + Ijki(t) +Rjki(t) +Dji(t) =
∑

i∈{1,2}

Pi,

where we define P1 and P2 as the population sizes of Groups 1 and 2 at the beginning of the

epidemic. For our analysis we assume P1 = P2. As the epidemic progresses and people die

due to disease, we define the living population size LPi∈{1,2}(t) as:

LPi(t) = Pi −DUi(t)−DV i(t).

Given both Groups 1 and 2 start with I0 total infections each, and v1 and v2 vaccinations

respectively, Eqns (2.3)–(2.16) have the following initial conditions:

Ui(0) = Pi − vi − I0

Vi(0) = vi

Eji(0) = 0

IUki(0) =
1

2
I0

IV ki(0) = 0

Rjki(0) = 0

Dji(0) = 0,

for i ∈ {1, 2}, j ∈ {U, V } and k ∈ {S,A}. That is, we assume there are initially 2I0 infected

people with I0 infected people in each population group. For each population group all initially

infected people are unvaccinated with half symptomatic and the other half asymptomatic. In

our analysis we assume I0 = 50, that is there are 100 people initially infected across the whole
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population. Complete modelling details are given in the supplementary material.

2.2. Optimising Vaccine Allocation. To find the optimal vaccine allocation strategy,

we compute the number of vaccines allocated to each subpopulation group to minimise a

given objective function. Given we consider a finite number of vaccines (vmax) and two

subpopulation groups, the problem reduces to finding the number of vaccines allocated to

Group 1 (vopt) that minimise the objective function:

(2.19) vopt = min
v∈{1,...,vmax}

{objective function(y(v))},

where y is the output from the model Eqs. (2.3)–(2.16) with initial conditions V1(0) = v and

V2(0) = vmax − v.

We consider three objective functions:

1. Total infections: ∑
i∈{1,2}
j∈{U,V }
k∈{S,A}

Rjki(∞) +Dji(∞)

2. Total symptomatic infections:

∑
i∈{1,2}
j∈{U,V }

RjSi(∞) +Dji(∞)

3. Total deaths: ∑
i∈{1,2}
j∈{U,V }

Dji(∞)

where X(∞) := lim
t→∞

X(t) denotes the size of compartment X at the end of the epidemic.

We aim to compare optimal and suboptimal strategies as we vary disease and vaccine char-

acteristics. To calculate the optimal strategy for any set of parameter values, we use the

MATLAB function fmincon to find the proportion of vaccines allocated to each group that

minimises the objective (total infections, total symptomatic infections, or total deaths). We

found the optimal strategies for our model prioritised vaccinated one group over another.

Using this optimal strategy, we compute sub-optimal strategies by varying the proportion of

vaccines allocating to each group. In particular, we define a “poor strategy” as prioritising
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vaccination for the opposite group to the optimal strategy. We also define an “uniformed

strategy” as vaccinating each group equally.

When varying parameters in our model, we vary some continuously, and choose discrete ex-

amples for others. For continuously varying parameters, we compare the given objective for

the optimal strategy, uninformed strategy and poor strategy. For parameters where we have

chosen specific discrete examples, we compare a variety of strategies, chosen by varying the

proportion of vaccines allocated to each group.

The results presented were generated using MATLAB 9.10, and our model was simulated

using ode45.

3. Results. We present our results to investigate the following questions:

1. How do disease characteristics lead to variation in the differences in outcomes between

optimal and suboptimal vaccination strategies?

2. How does the difference in outcome between optimal and suboptimal strategies depend

on vaccine effectiveness and coverage?

When examining our results, it is useful to think about the direct and indirect effects of var-

ious parameters or vaccine mechanisms. We use “direct effects” to mean mechanisms that

impact only vaccinated individuals, for example if the vaccine reduces the probability of hos-

pitalisation. Conversely, we use “indirect effects” to refer to mechanisms that impact both

vaccinated and unvaccinated individuals due to the vaccine’s impact on disease transmission,

for example if vaccination results in reduced contagiousness.

The figures in Sections 3.1 and 3.2 show different types of parameters, either varied contin-

uously or discretely. For certain parameters, such as R0 or αi, we can consider continuous

variation when comparing the outcomes of vaccination strategies. These figures (Figures 2a,

3a and 3c), show straight and dotted lines to represent how the optimal, poor, and uniformed

strategies perform as we vary our considered parameter. However, for some parameters, such

as σi and vaccine coverage, we instead vary the parameters discretely. In this case, we choose

discrete parameter values and consider the outcomes of a range of vaccination strategies (de-

fined by assigning vaccines to each group in varying proportions) given these parameters. In

these figures (Figures 2b, 3b and 3c) we use circles to represent the outcome of a single vacci-

nation strategy. The range of these circles for each discrete parameter value gives us insight

into the difference between the best and worst strategies for each scenario.
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In the following sections we provide a subset of modelling results, deliberately chosen to

explore interesting aspects of our modelling. However, we also provide the complete set of

model results in the supplementary material. The figures in section 2 of the supplementary

material show how the outcomes of various vaccine strategies differ for all combinations of

vaccine mechanism, allocation objective and considered parameter values.

3.1. Varying disease characteristics. Here we present results that consider how the dif-

ference between optimal and suboptimal strategies is dependent on disease characteristics for

various vaccine mechanisms and allocation objectives. We consider vaccination strategies for

a 75% effective vaccine with 50% vaccine coverage. These values have been chosen deliber-

ately to demonstrate the effects of varying disease characteristics and are broadly reasonable

in terms of typical vaccine effectiveness measures for respiratory diseases [18, 19, 20]. As we

assume Group 1 and Group 2 are the same size, 50% vaccine coverage provides interesting

results as it gives us the potential to vaccinate the entirety of one population group. Unless

otherwise stated, we assume a total population of size of N = 10000, with 5000 people in each

group (P1 = P2 = 5000).

The plots in Figure 2 show the effects of varying a parameter that affects transmission (repro-

duction number: R0) and another that affects infection characteristics (probability of dying

due to infection: σ) on the difference between optimal and suboptimal allocation strategies.

Note that Figures 2a and 2b have different allocation objectives as we are looking to compare

how their respective objectives change between vaccination strategies as we vary parameter

values.

We consider the effect of varying R0 on the difference in outcomes between strategies as shown

in Figure 2a. There are two regions in this figure defined by a critical value R′
0 ≈ 2.5: low

R0 (R0 < R′
0) and high R0 (R0 > R′

0). For low R0, there are few secondary infections (due

to vaccination), and so the total infections is dominated by the number of initially infected

people (I0). In our model, I0 = 20, and so the curves in Figure 2a are initially convex, which

is not seen in typical final size curves due to the assumption of very small I0 (I0 ≈ 1% of the

total population). For high R0 we recover the typical final size curve.

Qualitatively, we see a difference in outcome for all strategies as we vary R0. While the dif-

ference in outcome for high and low R0 depends on the strategy we choose, for all strategies

total infections are monotonically increasing with R0. The importance of choosing the optimal

strategy also varies with R0, with the largest differences between the optimal and poor strate-
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(a) Total infections for a vaccine that re-
duces susceptibility by 75% with 50% coverage
for three allocation strategies as we continu-
ously vary R0.

(b) Total deaths for a vaccine that reduces
the probability of severe disease by 75% with
50% coverage for a range of allocation strate-
gies as we vary the probability of dying due to
infection (σ) for each population group. Each
circle corresponds to a new vaccination strat-
egy, which we vary by changing the proportion
of each group vaccinated.

Figure 2: Comparing the differences between strategies for varying vaccine mechanisms and
allocation objectives as we vary R0 and the probability of dying due to infection σ. Note the
different allocation objectives for each figure.

gies being when R0 is between 1 and 2. At R0 = R′
0, the outcomes of the optimal, uninformed

and poor strategy overlap as the optimal strategy changes from prioritising vaccination for

Group 1 to prioritising vaccination for Group 2. As R0 approaches the critical value of R′
0,

more people in Group 1 will be infected despite vaccination, closing the gap between the total

infections from optimal and suboptimal strategies (more details can be found in the supple-

mentary material). As R0 increases above 5, the outcome for all strategies gets consistently

worse and the difference between strategies decreases.

In contrast, we consider the effect of varying the probability of dying due to infection (σ) for

each population group on the difference in outcomes between strategies, shown in Figure 2b.

We consider three scenarios σi: σ1 > σ2, σ1 = σ2, and σ1 < σ2. The biggest difference in

outcomes of strategies happens when σ1 ̸= σ2. When σ1 = σ2, the only factor influencing

the difference in deaths between population groups is their relative susceptibility (as defined

previously). Hence, while there is a difference in the number of people infected in each pop-
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ulation group, vaccination will reduce the probability of dying due to disease to the same

value for each group. However, when σ1 ̸= σ2, one group is more likely to die due to disease.

Therefore, vaccinating the group more likely to die due to disease will reduce more deaths than

vaccinating the other group, widening the gap between the outcomes of alternative strategies.

For parameters with only direct effects, such as σi, vaccination only affects vaccinated people.

The difference between outcomes of allocation strategies is therefore dependent on how the

parameters for each group compare to one another, and is not influence by the non-linear

infection dynamics.

The two examples presented in Figure 2 demonstrate how direct and indirect affects of vac-

cination impact the differences in outcomes between optimal and suboptimal strategies. For

parameters affecting transmission (e.g. R0) the difference between outcomes of strategies is

dependent on the value of the parameter itself. This is due to its affect on transmission for

both population groups. However, for parameters affecting individual infection (e.g. σi) the

difference between outcomes of strategies is dependent on the relative parameter values be-

tween each population group. The biggest differences between outcomes of strategies will occur

where there is large disparity in the parameter between groups, and the smallest difference

when both groups are equal.

3.2. Varying vaccine characteristics. We now consider an example population to demon-

strate how vaccine effectiveness and coverage affect the differences in outcomes between alloca-

tion strategies. We define Group 1 to be more susceptible, more likely to develop symptomatic

disease and more likely to die due to disease, and Group 2 to be less susceptible, less likely to

develop symptomatic disease and less likely to die due to disease.

Figure 3 compares the differences between allocation strategies for various vaccine mecha-

nisms and allocation objectives as we vary vaccine effectiveness and coverage. Figures 3a and

3b show the total infections for vaccines that affect transmission as vaccine effectiveness and

coverage are varied. For the considered parameters, the optimal strategy changes from priori-

tising vaccination for Group 2 to prioritising vaccination for Group 1 at 63% effectiveness (3a).

For both vaccine effectiveness and coverage, as we saw in Figure 2a, as we increase our vaccine

parameter we reduce our objective for all allocation strategies. As the vaccine tends towards

becoming 100% effective, or there is high coverage (80%), the optimal strategy produces a

much better result than other strategies. However, for lower effectiveness and coverage, in-

creasing either parameter decreases our objective for all strategies. This demonstrates that,

under the assumptions of our model, securing better vaccines or more vaccines will work to
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(a) Total infections for a vaccine that re-
duces susceptibility for three allocation strate-
gies as we vary vaccine effectiveness.

(b) Total infections for a vaccine that re-
duces infectivity for a range of allocation
strategies as we vary vaccine coverage. Each
circle corresponds to a new vaccination strat-
egy, which we vary by changing the proportion
of each group vaccinated. Note the change in
axis scale due to limited effect from a vaccine
that reduces infectivity.

(c) Total symptomatic infections for a
vaccine that reduces the probability of develop-
ing symptomatic infection for three allocation
strategies as we vary vaccine effectiveness.

(d) Total deaths for a vaccine that reduces
the infection fatality rate for a range of allo-
cation strategies as we vary vaccine coverage.
Each circle corresponds to a new vaccination
strategy, which we vary by changing the pro-
portion of each group vaccinated.

Figure 3: Comparing the differences between strategies for varying vaccine mechanisms and
allocation objectives as we vary vaccine effectiveness and coverage. Each figure gives an ex-
ample of how the difference between the outcomes of optimal and suboptimal strategies change
between vaccine mechanisms that impact transmission, and mechanisms that affect individual
infection. Note the different allocation objectives for each figure, and the reduced scale for
Figure 3b.
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decrease our objective, even under a suboptimal strategy.

Figures 3c and 3d show how total symptomatic infections and total deaths for vaccines that

affect individual infection vary and we change vaccine effectiveness and coverage. In Figure

3d the difference between optimal and suboptimal strategies is much smaller for 20% and 80%

coverage than 50% as there are fewer ways to allocate vaccines for 20% and 80% coverage than

for 50% coverage. As vaccine effectiveness and coverage increase, there is a large reduction in

outcome for optimal (and close to optimal) strategies, but a much smaller improvement for

poor strategies. As vaccination only impacts infected people, vaccinating the less vulnerable,

who are already unlikely to experience symptomatic or severe disease, does little to reduce

an objective focused on these infection characteristics. Unlike a vaccine affecting transmis-

sion, where increasing quality or quantity of vaccines works to decrease the objective for all

strategies, here there is only a sizeable reduction for the best strategies. This indicates that

strategy remains important even when effective vaccines and high coverage is available. Our

model results demonstrate that allocating poorly with an effective vaccine or high coverage

could result in a much worse outcome than allocating well with an ineffective vaccine or lower

vaccine coverage.

For our model and the parameters we chose, the difference between optimal and suboptimal

strategies varies as we change vaccine effectiveness and coverage based on both vaccine mech-

anism and allocation objective. If a vaccine mechanism affects transmission, this will impact

the total number of infections, and therefore also the total symptomatic infections and total

deaths resulting from these infections. Hence for any of these objectives, increasing vaccine

effectiveness or coverage will result in a better outcome for all strategies. However, if a vaccine

mechanism only results in direct effects, this will only impact objectives associated with the

mechanism. For example, a vaccine that only reduces the probability of dying due to disease

will have no impact on total infections or total symptomatic infections. When the vaccine

mechanism does impact an objective, increasing vaccine effectiveness and coverage is only

effective when an optimal, or close to optimal, strategy is employed.

4. Discussion. Our results demonstrate that the difference between outcomes of vaccine

allocation strategies depends on both disease and vaccine characteristics. The difference in

outcomes between strategies is dependent on whether a considered parameter directly or indi-

rectly impacts the outcome. For the former the difference between strategies depends heavily

on the parameter value itself (e.g. the value of R0), whereas for the latter the difference

depends on the how a parameter compares between population groups (e.g. which group is
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at higher risk of severe disease). Furthermore, a vaccine with direct effects will only impact

vaccinated people, and so in our model poor vaccine resources allocated well can result in

a better outcome than good vaccine resources allocated poorly. Conversely, if vaccination

indirectly effects the outcome, better vaccine resources will result in a better outcome for

all strategies. These findings emphasise the importance of identifying the direct and indirect

effects of vaccination when determining allocation strategy.

By investigating allocation strategies for individual vaccine mechanisms and objectives, we

lay foundations for a model that considers multi-mechanism or multi-objective strategies.

When designing vaccine strategies with little knowledge about the specifics of the vaccine,

modelling often assumes individual mechanisms, or simply that a vaccine provides reduced

susceptibility [7, 15, 16]. When vaccines eventually become available and are observed to

have multiple characteristics – against susceptibility, infectivity, and/or disease for example –

appropriate mechanisms are built into models and parameterised using effectiveness parame-

ters derived from epidemiological/clinical data [21, 22, 20]. Our model incorporates multiple

possible vaccine mechanisms, however we restrict our analysis to the impact of each separately.

Furthermore, we consider objectives that are not strictly independent of one another. Due

to our model assumptions, reducing infections leads to a reduction in symptomatic infec-

tions which further leads to a reduction in deaths. However, by considering the impacts of

vaccination on transmission or individual infection, we can determine the impact of various

disease and vaccine characteristics on the outcome of independent objectives. To consider

allocation strategies for multiple objectives would require development of a single objective

through weighting individual objectives based on importance. The impact of vaccination on

this overarching objective could then be thought of in terms of the impact of vaccination on

each individual part, as described in our results.

Our model was designed to explore the importance of different vaccine mechanisms. However,

it was not intended to, nor does it describe any one specific realistic scenario. In our model,

we assumed SEIR dynamics and divided the population into two sub-groups with differing

characteristics. To model a more realistic scenario, we would likely need to extend our model

to capture a more complex population and transmission structure. In particular, we assumed

constant vaccine effectiveness across our population, but age dependent vaccine effectiveness

has been observed, for example for influenza vaccines [23]. When considered in the model, this

may alter not only the optimal vaccination strategy, but also the difference between optimal
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and suboptimal strategies [3, 16, 24]. The simplicity of our model allows us to analyse the

differences in outcomes between optimal and suboptimal strategies, and identify important

considerations for applied studies. Of course, more information and a model incorporating

observed heterogeneities would be required to produce results for any vaccination scenario

against a particular disease.

By investigating how various factors impact the outcomes of vaccination strategies in our

model, we explore the idea of prioritising vaccine allocation over ascertainment. When new

scenarios arise, such as new vaccines available or new variants appearing, our results allows us

to compare how allocation strategies differ in this new scenario compared to an old scenario.

Is it still worth sourcing more vaccines with the current allocation strategy or will increased

coverage only improve the outcome if we vaccinate more effectively? How great are the ben-

efits from allocating vaccines optimally now that our vaccine is less effective against a new

variant? Do suboptimal strategies perform similarly? Our modelling shows that investigating

how individual disease and vaccine characteristics impact the difference in outcomes between

vaccination strategies is essential when considering development of, or updates to, vaccine

policies. Regular reassessment of vaccine allocation as information on an emerging disease

becomes available is important, reinforcing the need to carefully consider allocation strategy

when distributing vaccines.

Code availability. The MATLAB code used to generate all results in this manuscript is

available online https://github.com/iabell/vaccine allocation.

Supplementary materials. Additional figures and model details can be found in the sup-

plementary materials.
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