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Abstract. Vaccination is an important epidemic intervention strategy. Resource limitations and an imperative13

for efficient use of public resources drives a need for optimal allocation of vaccines within a popula-14

tion. For a disease causing severe illness in particular members of a population, an effective strategy15

to reduce illness might be to vaccinate those vulnerable with a vaccine that reduces the chance of16

catching a disease. However, it is not clear that this is the best strategy, and it is generally unclear17

how the difference between various vaccine strategies changes depending on population characteris-18

tics, vaccine mechanisms and allocation objective. In this paper we develop a mathematical model to19

consider strategies for vaccine allocation, prior to the establishment of community transmission. By20

extending the SEIR model to incorporate a range of vaccine mechanisms and disease characteristics,21

we study the impact of vaccination on a population comprised of individuals at high and low risk22

of infection. We then compare the outcomes of optimal and suboptimal vaccination strategies for23

a range of public health objectives using numerical optimisation. Our comparison shows that the24

difference between vaccinating optimally and suboptimally is dependent on vaccine mechanism, dis-25

eases characteristics, and objective considered. Even when sufficient vaccine resources are available,26

allocation strategy remains important as allocating suboptimally could result in a worse outcome27

than allocating limited vaccine resources optimally. This work highlights the importance of designing28

effective vaccine allocation strategies, as allocation of resources can be just as crucial to the success29

of the overall strategy as total resources available.30

1. Introduction. Pre-epidemic vaccination is an important intervention for managing dis-31

ease, and when supply is limited vaccines should be used strategically as part of pandemic32

preparedness. The difference in the outcomes of various allocation strategies will depend on33

the characteristics of the pathogen and on vaccine mechanisms. Understanding how these34

characteristics affect both the optimal allocation strategy and the difference in outcomes be-35

tween strategies is vital when planning vaccine allocation for novel pathogens or pathogen36

strains.37
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38

When new viruses emerge, we aim to design effective vaccination strategies based on knowledge39

of previous pandemics and emerging information [1, 2]. For example, when vaccinating against40

influenza, there are benefits to targeting vaccination towards those most vulnerable to disease,41

and targeting vaccination towards those most likely to spread disease [3, 4]. However, these42

benefits are highly dependent on disease parameters as well as relative efficacy of the vaccine43

between population groups [5, 6]. When vaccines are available or potential vaccines are in44

development for novel pathogens, modelling has been used to develop optimal vaccination45

strategies [7, 8]. However, any strategy developed must be regularly reevaluated as new virus46

variants emerge. For example, the emergence of new variants for COVID-19 in 2021, notably47

the Delta and Omicron variants, have necessitated the reevaluation of current intervention48

strategies. As more information became available about the characteristics of the Delta and49

Omicron variants, many countries adapted their vaccination strategies to prioritise booster50

doses [9, 10], partly due to decreased vaccine effectiveness.51

Mathematical modelling provides the tools to quantify how vaccine mechanisms and disease52

characteristics may affect the optimal impact of vaccine allocation. For simple epidemiological53

models such as the SIR or SEIR model, we can calculate the threshold vaccination needed to54

ensure R0 < 1 which ensures sustained transmission is not possible. While we can derive the55

threshold of vaccination to ensure R0 < 1 for more complex models, the relationship between56

various objectives such as total infections or deaths and R0 is no longer as simple as before.57

As such, calculating the number of vaccines needed to optimise a specific objective requires58

careful thought and potentially numerical methods. Realistically, we may instead compare59

a range of vaccination strategies to determine which results in the best outcome for a given60

objective, deeming this the optimal of the strategies considered [3, 7, 8, 11]. In general, the61

specific public health objective considered impacts results, so we need to consider which model62

outputs, such as total infections, total symptomatic infections and total deaths, are most ap-63

propriate to minimise when optimising a vaccine allocation strategy [12].64

65

Two important areas related to pre-epidemic vaccination are predicting optimal vaccine al-66

location to prepare for potential pandemics, and designing optimal vaccine allocation strate-67

gies based on limited information from novel pandemics. To predict the optimal allocation68

strategy for potential pandemics, we want to know who to vaccinate and when to vaccinate.69

Vaccines are generally most effective when allocated early in the outbreak and rapidly, focus-70

ing primarily on vulnerable people and highly transmissible groups [3, 4, 6, 13, 14]. When a71

pandemic begins, we can apply the findings from this literature to predict effective strategies72
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based on what information is available. For both influenza and COVID-19, optimal vac-73

cine strategies depend on how transmissibility, severity and vaccine effectiveness vary by age74

[4, 11, 7, 15, 16, 8]. While these analyses focus on predicting the optimal vaccine allocation75

strategy, they do not present a generalised understanding of difference between optimal and76

suboptimal strategies. Are there certain situations where vaccine coverage should be priori-77

tised, irrespective of who gets vaccinated? Or are there situations where we should ensure78

every available vaccine is allocated optimally?79

80

In this paper we determine optimal vaccination strategies for a range of vaccine mechanisms81

and strategic objectives, and compare the outcomes of optimal and suboptimal strategies.82

We take a deterministic modelling approach and consider the effects of four separate vaccine83

mechanisms on a population comprised of people at high and low risk of infection. We deter-84

mine the optimal allocation strategies for this population for a variety of allocation objectives.85

Through comparing the outcomes of optimal and suboptimal allocation strategies, we investi-86

gate how disease characteristics and vaccine characteristics (such as vaccine effectiveness and87

coverage) impact the differences in outcomes for various strategies. This analysis explores how88

the benefits of prioritising better vaccine resources over targeted allocation change depending89

on the scenario considered.90

2. Method. We define a modified SEIR model with two age classes, symptomatic and91

asymptomatic infection, and death due to disease. We consider vaccine mechanisms that92

prevent transmission, or symptomatic or severe disease, and consider scenarios where people93

are vaccinated before an epidemic starts. Through numerical simulation of our model, we aim94

to minimise either total infections, symptomatic infections or deaths and explore how disease95

and vaccine characteristics affect the outcome of various vaccine allocation strategies.96

2.1. Transmission model. To model the effects of pre-epidemic vaccination, we extend the97

SEIR model for two population groups to include vaccination, asymptomatic and symptomatic98

disease progression, and death due to disease. We define our model from the following disease99

progression:100

• Each population group is initially split into unvaccinated and vaccinated susceptibles,101

• If infected, a susceptible person becomes exposed, where they are infected but not yet102

infectious,103

• An exposed person will become infectious, developing either symptomatic or asymp-104

tomatic disease,105

• A person with symptomatic disease can either recover from disease, or die due to106
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infection,107

• A person with asymptomatic disease will recover from disease.108

We define an ODE model from these assumptions, as shown in the compartmental diagram109

in Figure 1.110

111

Figure 1: Compartmental diagram for our extended SEIR model. Initially people are either
susceptible (Ui) or vaccinated (Vi) where i ∈ {1, 2} denotes population group. Both classes
are able to become exposed (Eji) and then infected (Ijki) where j ∈ {U, V } denotes whether
they were initially unvaccinated or vaccinated and k ∈ {S,A} denotes if they experience symp-
tomatic or asymptomatic disease. From here, symptomatic people or asymptomatic can recover
from disease (Rjki) or symptomatic people can also die due to disease (Dji). For each group,
ωi denotes the probability of developing symptomatic infection and σi denotes the probabiity
of dying due to disease. We define vaccine effectiveness for each mechanism as 1 − αm for
m ∈ {1, 2, 3, 4}. We consider mechanisms: 1) reducing susceptibility, 2) reducing probability
of developing symptomatic infection, 3) reducing probability of dying due to disease, and 4)
reducing infectivity. In the force of infection λi, 1−δA denotes the reduction in infectivity due
to asymptomatic infection and LPj denotes the number of people alive in Group j.

In our model, we define compartments Xjki, where112

• X ∈ {U, V,E, I,R,D}: denotes compartment types; unvaccinated, vaccinated, ex-113

posed, infected, recovered and dead,114
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• j ∈ {U, V }: denotes unvaccinated or vaccinated disease progression,115

• k ∈ {S,A}: denotes symptomatic or asymptomatic infection, and116

• i ∈ {1, 2}: denotes population group (1: high risk of infection, 2: low risk of infection).117

118

We incorporate the varying risk of infection between population groups by assuming people119

in Group 1 (high risk) are twice as susceptible to infection than people in Group 2 (low risk).120

From this assumption, we define a contact matrix C:121

(2.1) C =

I1 I2[ ]
S1 2 2

S2 1 1
,122

where Group 1 is high risk and Group 2 is low risk, S denotes the susceptible groups (Si and123

Vi) and I denotes the infected groups (ISSi, ISAi, IV Si and IV Ai).124

125

To investigate the effects of a range of vaccine mechanisms, we consider four vaccine mecha-126

nisms [16]:127

1. Reduction in susceptibility,128

2. Reduction in probability of developing symptomatic infection,129

3. Reduction in probability of dying due to disease, and130

4. Reduction in infectivity.131

132

We define the effectiveness of each vaccine as 1− αm∈{1,2,3,4} ∈ [0, 1], corresponds to the vac-133

cine number as defined above. An 100% effective vaccine (1−αm = 1) corresponds to a perfect134

vaccine, for example if α1 = 0, vaccinated individuals are unable to be infected. Conversely,135

a 0% effective vaccine (1 − αm = 0) corresponds to the vaccine having no effect. As we only136

consider pre-epidemic vaccination, vaccine allocation appears in the initial conditions for the137

vaccinated compartments for Groups 1 (high risk) and 2 (low risk).138

139

In this model, we assume frequency dependent transmission i.e. the transmission rate de-140

pends on the proportion of infecteds in the population as the contact rate is independent of141

population size. This is preferred for modelling human populations over density dependent142

transmission as we determine our contacts by social constraints, which do not necessarily143

scale with population size [5]. We further assume progress on a fast enough timescale that144

we can ignore births and natural deaths and that the population is closed. Therefore, total145
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population for each group Pi∈{1,2} is constant, but this population also includes people who146

have died due to disease. To implement frequency dependent transmission, we define a new147

population size LPi∈{1,2}(t) which denotes the size of the living population for each group.148

This living population will change over time as people die due to disease. As people die and no149

longer have contact with living people (we assume), for the same number of infected people,150

the proportion of infected contacts will increase.151

152

From the assumptions stated above, we derive the ODEs to describe our model. In addition153

to the standard SEIR model parameters and the vaccine effectiveness parameters αm, ωi de-154

notes the proportion of exposed individuals that become symptomatically infected, σi denotes155

the proportion of symptomatic individuals who die due to disease, and 1 − δA denotes the156

reduction in infectivity for asymptomatic infecteds, all for a population group i. Furthermore,157

[Cij ] denotes the elements of the contact matrix as defined in Eq. (2.1), Pj denotes the size of158

Group j at the beginning of the epidemic, and LPj(t) denotes the size of the living population159

of Group j. Our model is hence by the following equations for each population group:160

161

Unvaccinated :162

dUi

dt
= −λi(t)Ui(t)(2.2)163

dEUi

dt
= λi(t)Ui(t)− θEUi(t)(2.3)164

dIUSi

dt
= ωiθEUi(t)− γIUSi(t)(2.4)165

dIUAi

dt
= (1− ωi)θEUi(t)− γIUAi(t)(2.5)166

dRUSi

dt
= (1− σi)γIUSi(t)(2.6)167

dDUi

dt
= σiγIUSi(t)(2.7)168

dRUAi

dt
= γIUAi(t)(2.8)169

170

Vaccinated :171

This manuscript is for review purposes only.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.30.22277126doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.30.22277126
http://creativecommons.org/licenses/by-nc-nd/4.0/


7

dVi

dt
= −α1λi(t)Vi(t)(2.9)172

dEV i

dt
= α1λi(t)Vi(t)− θEV i(t)(2.10)173

dIV Si

dt
= α2ωiθEV i(t)− γIV Si(t)(2.11)174

dIV Ai

dt
= (1− α2ωi)θEV i(t)− γIV Ai(t)(2.12)175

dRV Si

dt
= (1− α3σi)γIV Si(t)(2.13)176

dDV i

dt
= α3σiγIV Si(t)(2.14)177

dRV Ai

dt
= γIV Ai(t).(2.15)178

179

Force of infection180

λi(t) =
2∑

j=1

βCij
IUSj(t)

LPj(t)
+ δAβCij

IUAj(t)

LPj(t)
+ α4

[
βCij

IV Sj(t)

LPj(t)
+ δAβCij

IV Aj(t)

LPj(t)

]
(2.16)181

⇒ λi(t) =

2∑
j=1

βCij

LPj(t)
(IUSj(t) + δAIUAj(t) + α4 [IV Sj(t) + δAIV Aj(t)])(2.17)182

183

Adding Eqs. (2.2)–(2.15) we find:184

∑
i∈{1,2}
j∈{U,V }
k∈{S,A}

dUi

dt
+

dVi

dt
+

dEji

dt
+

dIjki
dt

+
dRjki

dt
+

dDji

dt
= 0185

⇒
∑

i∈{1,2}
j∈{U,V }
k∈{S,A}

Ui(t) + Vi(t) + Eji(t) + Ijki(t) +Rjki(t) +Dji(t) =
∑

i∈{1,2}

Pi,186

187

where we define P1 and P2 as the population sizes of Groups 1 and 2 at the beginning of the188

epidemic. For our analysis we assume P1 = P2. As the epidemic progresses and people die189

due to disease, we define the living population size LPi∈{1,2}(t) as:190

LPi(t) = Pi −DUi(t)−DV i(t).191

Given both Groups 1 and 2 start with I0 infections each, and v1 and v2 vaccinations respec-192
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tively, Eqns (2.2)–(2.15) have the following initial conditions:193

Ui(0) = Pi − vi − I0194

Vi(0) = vi195

Eji(0) = 0196

IUki(0) =
1

2
I0197

IV ki(0) = 0198

Rjki(0) = 0199

Dji(0) = 0,200
201

for i ∈ {1, 2}, j ∈ {U, V } and k ∈ {S,A}. That is, we assume there are initially 2I0 infected202

people with I0 infected people in each population group. For each population group all initially203

infected people are unvaccinated with half symptomatic and the other half asymptomatic,204

which is why IUki(0) is equal to 1
2I0 for k ∈ {S,A}. In our analysis we assume I0 = 50.205

Complete modelling details are given in the supplementary material.206

2.2. Optimising Vaccine Allocation. To find the optimal vaccine allocation strategy, we207

compute the number of vaccines allocated to each population group to minimise a given208

objective function. Given we consider a finite number of vaccines (vmax) and two population209

groups, the problem reduces to finding the number of vaccines to allocate to Group 1 (vopt)210

to minimise the objective function:211

(2.18) vopt = min
v∈{1,...,vmax}

{objective function(y(v))},212

where y is the output from the model Eqs. (2.2)–(2.15) with initial conditions V1(0) = v and213

V2(0) = vmax − v.214

215

The three objective functions that we consider are:216

1. Total infections:217 ∑
i∈{1,2}
j∈{U,V }
k∈{S,A}

Rjki(∞) +Dji(∞)218

2. Total symptomatic infections:219
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∑
i∈{1,2}
j∈{U,V }

RjSi(∞) +Dji(∞)220

3. Total deaths:221 ∑
i∈{1,2}
j∈{U,V }

Dji(∞)222

where X(∞) := lim
t→∞

X(t) denotes the size of compartment X at the end of the epidemic.223

224

We aim to compare optimal and suboptimal strategies for discrete and continuous variables.225

For discrete variables, we will compare the outcomes of a variety of strategies generated by226

allocating all vaccines in varying proportions to each group. For continuous variables, we will227

compare the outcome of the optimal strategy with the outcomes of vaccinating each group228

equally (an uninformed strategy) and vaccinating poorly. We calculate the poor strategy by229

comparing the outcome of a variety of strategies and selecting the worst. For example, if the230

optimal strategy prioritises vaccinating for Group 1 (high risk) and a poor strategy was found231

to prioritise vaccinating for Group 2 (low risk), our three comparison strategies are:232

1. Optimal strategy: prioritise vaccinating Group 1,233

2. Uninformed strategy: vaccinate Groups 1 and 2 equally,234

3. Poor strategy: prioritise vaccinating Group 2.235

236

The results presented here were generated using MATLAB 9.10. The model was simulated237

using ode45 and as the optimisation problem reduces to one dimension, the optimal strategy238

was computed using fmincon.239

3. Results. We present our results through the following analysis:240

1. How do disease characteristics lead to variation in the differences in outcomes between241

optimal and suboptimal vaccination strategies?242

2. How does the difference in outcome between optimal and suboptimal strategies depend243

on vaccine effectiveness and coverage?244

When examining our results, it is useful to think about the direct and indirect effects of var-245

ious parameters or vaccine mechanisms. We use “direct effects” to mean mechanisms that246

impact only vaccinated individuals, for example if the vaccine reduces the probability of hos-247

pitalisation. Conversely, we use “indirect effects” to refer to mechanisms that both vaccinated248
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and unvaccinated individuals, for example if a vaccine results in reduced transmission.249

In the following sections we provide a subset of model results, which explore interest aspects250

of our model. However, we also provide a complete set of model results in the supplementary251

material.252

3.1. Varying disease characteristics. Here we present results that consider how the dif-253

ference between optimal and suboptimal strategies is dependent on disease characteristics for254

various vaccine mechanisms and allocation objectives. We consider vaccination strategies for255

a 75% effective vaccine with 50% vaccine coverage. These values have been chosen arbitrar-256

ily to demonstrate the effects of varying disease characteristics. As we assume Group 1 and257

Group 2 are the same size, 50% vaccine coverage provides interesting results as it gives us the258

potential to vaccinate the entirety of one population group. Furthermore, we are interested259

in relatively effective vaccines, but still want to capture their imperfection and so we choose260

an effectiveness of 75%. Unless otherwise stated, we assume a total population of size of261

N = 10000, with 5000 people in each group (P1 = P2 = 5000).262

263

The plots in Figure 2 show the effects of varying a parameter that affects transmission (R0)264

and another that affects infection characteristics (σ) on the difference between optimal and265

suboptimal allocation strategies.266

267

We consider the effect of varying R0 on the difference in outcomes between strategies as shown268

in Figure 2a. Mathematically, there are two points of interest in this figure, the initial con-269

vexity of all the strategies and the point where the outcomes of the strategies meet. For low270

R0, we see convex curves for each of the considered strategies due to the infection curves271

being dominated by the decay of initially infected people, rather than new infections. As R0272

increases, we recover the shape of a standard final size curve as our epidemic takes off (in spite273

of vaccination). Our second point of interest is where the outcomes of the three considered274

strategies meet, where we define R0 = R′
0 ≈ 2.5. For R0 < R′

0, the optimal strategy is to vac-275

cinate Group 1 and the poor strategy is to vaccinate Group 2. For R0 > R′
0 we find that the276

optimal strategy is to vaccine Group 2 and the poor strategy is to vaccinate Group 1. Hence, as277

we approach R0 = R′
0, our optimal and poor strategies approach one another before swapping.278

279

Qualitatively, we see a difference in outcome for all strategies as we vary R0. While the dif-280

ference in outcome for high and low R0 depends on the strategy we choose, for all strategies281

total infections are monotonically increasing with R0. The importance of choosing the opti-282

mal strategy also varies with R0, with the largest differences between the optimal and poor283
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(a) Total infections for a vaccine that reduces
susceptibility by 75% with 50% coverage for
three allocation strategies as we continuously
vary R0.

(b) Total deaths for a vaccine that reduces the
probability of severe disease by 75% with 50%
coverage for a range of allocation strategies as
we vary the probability of dying due to infec-
tion (σi) for each population group.

Figure 2: Comparing the differences between strategies for varying vaccine mechanisms and
allocation objectives as we vary R0 and σi.

strategies being when R0 is between 1 and 2. While as R0 increases above 5, the outcome for284

all strategies gets consistently worse and the difference between strategies decreases.285

Figure 2b shows how differences in outcomes between strategies change as we vary the prob-286

ability of dying due to infection for each population group (σi∈{1,2}). We consider three287

scenarios σi: σ1 > σ2, σ1 = σ2, and σ1 < σ2. The biggest difference in outcomes of strategies288

happens when σ1 ̸= σ2. When σ1 = σ2, the only factor influencing the difference in deaths289

between population groups is their relative susceptibility (as defined previously). Hence, while290

there is a difference in the number of people infected in each population group, vaccination291

will reduce the probability of dying due to disease to the same value for each group. However,292

when σ1 ̸= σ2, one group will be more likely to die due to disease. Therefore, vaccinating the293

group more likely to die due to disease will reduce more deaths than vaccinating the other294

group, widening the gap between the outcomes of various strategies. For parameters with only295

direct effects, such as σi, vaccination only affects vaccinated people. The difference between296

outcomes of allocation strategies is therefore dependent on how the parameters for each group297

compare to one another.298

299

The two examples presented in Figure 2 demonstrate how direct and indirect affects of vac-300
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cination impact the differences in outcomes between optimal and suboptimal strategies. For301

parameters affecting transmission (e.g. R0) the difference between outcomes of strategies is302

dependent on the value of the parameter itself. This is due to its affect on transmission303

for both population groups. However, for parameters affecting individual infection (e.g. σi)304

the difference between outcomes of strategies is dependent on the relative parameter values305

between each population group. The biggest differences between outcomes of strategies will306

occur with there is large disparity in the parameter between groups, and the smallest difference307

when both groups are equal.308

3.2. Varying vaccine characteristics. We now consider an example population to demon-309

strate how vaccine effectiveness and coverage affect the differences in outcomes between alloca-310

tion strategies. We define Group 1 to be more susceptible, more likely to develop symptomatic311

disease and more likely to die due to disease, and Group 2 to be less susceptible, less likely to312

develop symptomatic disease and less likely to die due to disease.313

314

Figure 3 compares the differences between allocation strategies for various vaccine mechanisms315

and allocation objectives as we vary vaccine effectiveness and coverage.316

317

Figures 3a and 3b show the total infections for vaccines that affect transmission as vaccine318

effectiveness and coverage are varied. For the considered parameters, the optimal strategy319

changes from prioritising vaccination for Group 2 to prioritising vaccination for Group 1 at320

63% effectiveness (3a). For both vaccine effectiveness and coverage, as we saw in Figure 2a, as321

we increase our vaccine parameter we reduce our objective for all allocation strategies. As the322

vaccine tends towards becoming 100% effective, or there is high coverage (80%), the optimal323

strategy produces a much better result than other strategies. However, for lower effectiveness324

and coverage, increasing the either parameter decreases our objective for all strategies. This325

demonstrates that, in our model, securing better vaccines or more vaccines will work to de-326

crease our objective, even under a suboptimal strategy.327

328

Figures 3c and 3d show how total symptomatic infections and total deaths for vaccines that329

affect individual infection vary and we change vaccine effectiveness and coverage. In Figure330

3d the difference between optimal and suboptimal strategies is much smaller for 20% and 80%331

coverage than 50% as there are fewer ways to allocate vaccines for 20% and 80% coverage than332

for 50% coverage. As vaccine effectiveness and coverage increase, there is a large reduction333

in outcome for optimal (and close to optimal) strategies, but a much smaller improvement334

for poor strategies. As vaccination only impacts infected people, vaccinating the less vul-335
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(a) Total infections for a vaccine that reduces
susceptibility for three allocation strategies as
we vary vaccine effectiveness.

(b) Total infections for a vaccine that reduces
infectivity for a range of allocation strategies
as we vary vaccine coverage. Note the change
in axis scale due to limited effect from a vac-
cine that reduces infectivity.

(c) Total symptomatic infections for a vaccine
that reduces the probability of developing symp-
tomatic infection for three allocation strategies
as we vary vaccine effectiveness.

(d) Total deaths for a vaccine that reduces the
infection fatality rate for a range of allocation
strategies as we vary vaccine coverage.

Figure 3: Comparing the differences between strategies for varying vaccine mechanisms and
allocation objectives as we vary vaccine effectiveness and coverage.

nerable, who are already unlikely to experience symptomatic or severe disease, does little336

to reduce an objective focused on these infection characteristics. Unlike a vaccine affecting337

transmission, where increasing quality or quantity of vaccines works to decrease the objective338

for all strategies, here there is only a sizeable reduction for the best strategies. This indicates339

that strategy remains important even when effective vaccines and high coverage is available.340
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For our model, allocating poorly with an effective vaccine or high coverage could result in a341

much worse outcome than allocating well with an ineffective vaccine or lower vaccine coverage.342

343

For our model and the parameters we chose, the difference between optimal and suboptimal344

strategies varies as we change vaccine effectiveness and coverage based on both vaccine mech-345

anism and allocation objective. If a vaccine mechanism affects transmission, this will impact346

the total number of infections, and therefore also the total symptomatic infections and total347

deaths resulting from these infections. Hence for any of these objectives, increasing vaccine348

effectiveness or coverage will result in a better outcome for all strategies. However, if a vaccine349

mechanism only results in direct effects, this will only impact objectives associated with the350

mechanism. For example, a vaccine that reduces the probability of dying due to disease will351

have no impact on total infections or total symptomatic infections. When the vaccine mecha-352

nism does impact an objective, increasing vaccine effectiveness and coverage is only effective353

when an optimal, or close to optimal, strategy is employed.354

4. Discussion. Our results demonstrate that the difference between outcomes of vaccine355

allocation strategies depends on both disease and vaccine characteristics. The difference in356

outcomes between strategies is dependent on whether a considered parameter directly or in-357

directly impacts the outcome. For the former the difference between strategies is dependent358

heavily on the parameter value itself, whereas for the latter the difference is dependent on359

the relative values of the parameter between population groups. Furthermore, a vaccine with360

direct effects will only impact vaccinated people, and so in our model poor vaccine resources361

allocated well can result in a better outcome than good vaccine resources allocated poorly.362

Conversely, if vaccination indirectly effects the outcome, better vaccine resources will result363

in a better outcome for all strategies. These findings emphasise the importance of identifying364

the direct and indirect effects of vaccination when determining allocation strategy.365

366

By investigating allocation strategies for individual vaccine mechanisms and objectives, we367

lay foundations for a model that considers multi-mechanism or multi-objective strategies.368

When designing vaccine strategies with little knowledge about the specifics of the vaccine,369

modelling often assumes individual mechanisms, or simply a vaccine that provides protection370

[7, 15, 16]. When vaccines eventually become available and are observed to include multiple371

mechanisms, these mechanisms are built into models through using effectiveness parameters372

from data [17, 18, 19]. Our model incorporates multiple possible vaccine mechanisms, however373

we restrict our analysis to the impact of each separately.374

375
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Furthermore, in this paper we have considered objectives that are not strictly independent376

of one another. Due to our model assumptions, reducing infections leads to a reduction in377

symptomatic infections which further leads to a reduction in deaths. However, by consider-378

ing the impacts of vaccination on transmission or individual infection, we can determine the379

impact of various disease and vaccine characteristics on the outcome of independent objec-380

tives. To consider allocation strategies for multiple objectives would require development of381

a single objective through weighting individual objectives based on importance. The impact382

of vaccination on this overarching objective could then be thought of in terms of the impact383

of vaccination on each individual part, as described in our results.384

While our model is sufficient to start learning about the importance of different vaccine mecha-385

nisms, it may not describe specific, realistic scenarios. In our model, we assume SEIR dynamics386

and divide the population into people with high and low risk to infection. To model a more387

realistic scenario, we would likely need to extend our model to capture a more complex pop-388

ulation and transmission structure. In particular, we assumed constant vaccine effectiveness389

across our population, but age dependent vaccine effectiveness has been observed, for example390

for influenza vaccines [20]. When considered in the model, this could alter not only the op-391

timal vaccination strategy, but also the difference between optimal and suboptimal strategies392

[3, 16, 21]. While the simplicity of our model allows us to analyse the differences in outcomes393

between optimal and suboptimal strategies, more information and a model incorporating ob-394

served heterogeneities are needed to produce results for a realistic vaccination scenario.395

396

By investigating how various factors impact the outcomes of vaccination strategies in our397

model, we explore the idea of prioritising vaccine allocation over ascertainment. When new398

scenarios arise, such as new vaccines available or new variants appearing, our results allows399

us to compare how allocation strategies differ in this new scenario compared to an old sce-400

nario. Is it still worth sourcing more vaccines with the current allocation strategy or will401

increased coverage only improve the outcome if we vaccinate more effectively? How great are402

the benefits from allocating vaccines optimally now that our vaccine is less effective against403

a new variant? Do suboptimal strategies perform similarly? Our results show that investi-404

gating how individual disease and vaccine characteristics impact the difference in outcomes405

between vaccination strategies allows the reassessment of vaccine allocation as information on406

an emerging disease becomes available and reinforces the need to carefully consider allocation407

strategy when distributing vaccines.408

409
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Code availability. The MATLAB code used to generate all results in this manuscript is410

available online https://github.com/iabell/vaccine allocation.411

Supplementary materials. Additional figures and model details can be found in the sup-412

plementary materials.413
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