1 Increased disparity in routine infant vaccination during COVID-19

- 2 Christiaan H. Righolt,^{1,2,c}, Gupreet Pabla,¹, Salaheddin M. Mahmud,¹
- ³ ¹Vaccine and Drug Evaluation Centre, Department of Community Health Sciences, University of
- 4 Manitoba, 337–750 McDermot Avenue, Winnipeg MB, R3E 0T5 Canada

²Children's Hospital Research Institute of Manitoba, 513-715 McDermot Avenue, Winnipeg MB, R3E
 3P4

7 ^cAddress for correspondence: Christiaan Righolt, Vaccine and Drug Evaluation Centre, Department of

8 Community Health Sciences, University of Manitoba, 337–750 McDermot Avenue, Winnipeg MB, R3E

- 9 0T5 Canada, Christiaan.Righolt@umanitoba.ca
- 10 Short title: COVID-19 and disparity in routine infant vaccination
- 11 Key words: Vaccine uptake, vaccine coverage, immunization, delay, early childhood

12 Abbreviations: COVID-19: coronavirus disease 2019; DTaP: Diphtheria, tetanus, and acellular pertussis;

- 13 MH: Manitoba Health; MMR: measles, mumps, rubella
- 14 Funding
- 15 This work was funded by the Manitoba Medical Service Foundation (operating grant # 8-2021-03).
- 16 SMM's work is supported, in part, by funding from the Canada Research Chair Program. The opinions
- 17 presented in the report do not necessarily reflect those of the funders and the funders had no role in the
- 18 completion of the study.
- 19 Financial disclosures
- 20 CHR has received an unrestricted research grant from Pfizer for an unrelated study. GP has no financial
- 21 relationship to disclose SMM received research funding from Assurex, GSK, Merck, Pfizer, Roche and
- 22 Sanofi for unrelated studies and is/was a member of advisory boards for GSK, Merck, Sanofi and Seqirus.
- 23 Data statement
- 24 Data used in this article was derived from administrative health and social data as a secondary use. The
- 25 data was provided under specific data sharing agreements only for approved use at the Manitoba Centre
- 26 for Health Policy (MCHP). The original source data is not owned by the researchers or MCHP and as
- such cannot be provided to a public repository. The original data source and approval for use has been
- noted in the acknowledgments of the article. Where necessary, source data specific to this article or
- 29 project may be reviewed at MCHP with the consent of the original data providers, along with the required
- 30 privacy and ethical review bodies.
- 31 Ethics approval
- 32 This study was approved by the University of Manitoba Research Ethics Board and by the Manitoba
- 33 Health Health Information Privacy Committee.
- 34

35 Synopsis

36 Study question

37 How did COVID-19 and its restrictions affect routine infant vaccine uptake?

38 What's already known

- 39 We know that vaccine uptake in infants decreased during the pandemic. We do not know whether this
- 40 affected everyone equally or whether the pandemic worsened existing disparities in vaccine uptake.

41 What this study adds

- 42 Although vaccine uptake was not affected in wealthy urban neighborhoods, the reduction in uptake was
- 43 largest, and continued on a downward trend, for groups with the lowest baseline vaccine uptake. Only
- 44 two-thirds of children, instead of the 4/5th before the pandemic, in the remote, predominantly Indigenous
- 45 Northern region received a measles vaccine by their second birthday.

46

47 <u>Abstract</u>

48 Background

- 49 COVID-19 restrictions and its impact on healthcare resources have reduced routine infant vaccine uptake,
- 50 although some report that this effect was short-lived. These prior studies mostly described entire
- 51 populations, but disparities in uptake may have changed during the pandemic due to differential access to
- 52 healthcare.

53 **Objectives**

54 We aimed to examine disparities in the reduction in routine infant vaccine uptake during the COVID-19 55 pandemic in Manitoba, Canada.

56 Methods

- 57 We assessed vaccine uptake for routine infant vaccines for a pre-pandemic and pandemic subcohort. We
- assessed how the reduction in vaccine uptake differed by gender, neighborhood income quintile and
- region of residence. For each evaluation age, we limited the pandemic subcohort to children reaching this
- 60 milestone age on/before November 30, 2021.

61 **Results**

- 62 Vaccine uptake was about 5-10% lower during the pandemic. The groups most vulnerable to COVID-19
- 63 saw the largest reductions in vaccine uptake, with an ongoing downward trend throughout the pandemic.
- 64 Children in the lowest income neighborhoods saw a 17% reduction in diphtheria, tetanus, and acellular
- 65 pertussis dose 4 uptake at 24 months, 4.4-fold that of high-income neighborhoods, and an 11% reduction
- 66 in measles, mumps, rubella (MMR) vaccine uptake at 24 months, 5.6-fold that of high-income
- 67 neighborhoods. The largest reductions were for low-income Northern residents and smallest for high-
- 68 income Winnipeg residents, e.g. 16-fold larger for MMR at 24 months (79:94 pre-pandemic to 65:93
- 69 during the pandemic).

70 Conclusions

- 71 While privileged children have similar high vaccine uptake as before the pandemic, children in
- 72 populations hardest hit by COVID-19 continue seeing concerning reductions in routine infant vaccination.
- 73 It is imperative that infant vaccination rates are increased, especially in communities with lower
- socioeconomic status, as a failure to do so could lead to persistent rebound epidemics in the most
- vulnerable populations.
- 76

77 Introduction

- 78 COVID-19 restrictions and its impact on healthcare resources have reduced routine infant vaccine
- ⁷⁹ uptake,^{1,2} although some report that this effect was short-lived.³ Many studies examined the population as
- 80 a whole, but disparities (by socioeconomic status) in uptake may have changed during the pandemic due
- 81 to differential access to healthcare. We examined the disparity and reduction of these vaccinations in
- 82 Manitoba, a Canadian province with 1.3 million residents.

83 <u>Methods</u>

- 84 Manitoba Health (MH) is the publicly funded health insurance agency providing comprehensive health
- 85 insurance to the province's residents. Coverage is universal, with no eligibility distinction based on age or
- ⁸⁶ income, and participation rates are very high (>99%).⁴ Insured services include hospital, physician and
- 87 preventive services including vaccinations. MH maintains several centralized, administrative electronic
- 88 databases that are linkable using a unique personal health identification number (PHIN). The
- 89 completeness and accuracy of these databases are well established.^{5,6}
- 90 The MH Population Registry (MHPR) tracks addresses and dates of birth, death and health insurance
- 91 coverage for all insured persons. The Manitoba Immunization Monitoring System (MIMS) and its
- 92 successor the Public Health Information Management System (PHIMS) is the population-based province-
- 93 wide registry that contains records of all childhood vaccinations administered in Manitoba since 1988 and
- all adult vaccinations since 2000.⁷ Infant vaccination is primarily performed by physicians in Winnipeg,
- the main urban center in the province housing over half the population, and by public health nurses
- 96 outside of Winnipeg. Information, including vaccine type and administration date, is captured either
- 97 through direct data entry (for vaccines administered by public health staff) or through physician claims.
- 98 Validation studies have shown high completeness and accuracy of MIMS data, with less than 2% of
- 99 vaccinations coded incorrectly, and accurate service dates recorded 98% of the time.⁷
- 100 We identified a *study cohort* of all children born in Manitoba between January 2017 and November 2020
- 101 from the MHPR. We split this study cohort into 3 subcohorts based on the start of the COVID-19 related
- 102 restrictions in Manitoba on March 15, 2020 as well as the vaccine recommendation age and the evaluation
- age at which vaccine uptake was determined (Figure 1). The *pre-pandemic subcohort* consisted of
- 104 children who reached the evaluation age before the start of restrictions. The *pandemic subcohort*
- 105 consisted of children who reached the vaccine recommendation age after the start of restrictions. The
- 106 *intermediate subcohort* consisted of children born between these subcohorts.
- 107 We linked these subcohorts to MIMS/PHIMS to assess vaccine uptake for routine infant vaccines (Table
- 108 S1). We assessed how the reduction in vaccine uptake differed by gender, neighborhood income quintile
- 109 (obtained from the 2016 Canadian census) and region of residence. For each evaluation age, we limited
- 110 the pandemic subcohort to children who reached this evaluation age (12, 18, or 24 months) on/before
- 111 November 30, 2021 and who resided in Manitoba from birth to the evaluation age to ensure their
- 112 vaccination record was complete.
- 113 <u>Results</u>
- 114 Vaccine uptake was about 5-10% lower during the pandemic (Table 1, Table S2), affecting boys and girls
- similarly. Uptake in the intermediate subcohort was mostly similar to the pre-pandemic subcohort (Table
- 116 S3). The groups most vulnerable to $COVID-19^8$ saw the largest reductions in vaccine uptake, with an
- 117 ongoing downward trend throughout the pandemic (Figure 2). Children in the lowest income
- neighborhoods saw a 17% reduction in diphtheria, tetanus, and acellular pertussis (DTaP) dose 4 uptake
- at 24 months, 4.4-fold that of high-income neighborhoods, and an 11% reduction in measles, mumps,
- 120 rubella (MMR) vaccine uptake at 24 months, 5.6-fold that of high-income neighborhoods. Uptake

reductions were largest in the ~75% Indigenous Northern region: 6-fold that of Winnipeg, which houses
 >50% of Manitobans, for MMR at 24 months.

123 Disparity by income increased in each region (Table S4): The lower the neighborhood income quintile,

124 the higher was the reduction in vaccine uptake. Regions with lower pre-pandemic vaccine uptake saw the

125 largest reductions during the pandemic. The largest reductions were for low-income Northern residents

and smallest for high-income Winnipeg residents, e.g., 16-fold larger for MMR at 24 months (79:94 pre-

- pandemic to 65:93 during the pandemic; Table S4). Although reductions were small and rebounded in
- 128 Winnipeg and high-income neighborhoods (Figure 2), low-income neighborhoods and other regions, most
- 129 notably the Northern region, were on a continuous downward trend in vaccine uptake. These trends held
- 130 across all vaccines.
- 131 Discussion
- 132 Reductions in routine infant vaccine uptake were largest, and continued on a downward trend, for groups
- 133 with the lowest baseline vaccine uptake. COVID-19-related reassignment of public health nurses, who
- 134 provide infant vaccination outside of Winnipeg, may explain some of these differences in vaccine uptake.
- 135 In Quebec, overall vaccination rates rebounded quickly after an initial reduction;³ in Ontario, vaccine
- 136 uptake reduced and remained lower during the pandemic.⁹ Neither of these other studies explicitly
- 137 accounted for the intermediate subcohort or showed the precipitous and continuous decline we observed
- 138 for the most vulnerable infants. A Louisiana study found that disadvantaged children (Medicaid
- beneficiaries in low-income households) had a 30% drop in vaccinations during the initial COVID-19
- 140 restrictions,¹⁰ but did not include a comparison with children in high-income households to compare with
- 141 our observed increase in disparity. As other jurisdictions face similar disparities in access to healthcare,¹¹
- 142 it is likely that similar differential reductions in vaccine uptake occurred elsewhere.
- 143 Confounding is unlikely to bias these results, as most children in this analysis were conceived before the
- 144 first case of COVID-19 in Manitoba. Any potential (differential) changes in birth rates due to COVID-19
- and its restrictions would occur for births after 2020. This study is limited by the completeness and
- 146 timeliness of this data, although the quality of these databases are well-established.⁵
- 147 In conclusion, while privileged children have similar high vaccine uptake as before the pandemic,
- 148 children in populations hardest hit by COVID-19 continue seeing concerning reductions in routine infant
- 149 vaccination. Because current vaccine uptake is lower than the herd immunity threshold for many vaccine-
- 150 preventable diseases, it is imperative that infant vaccination rates are increased, especially in communities
- 151 with lower socioeconomic status, as a failure to do so could lead to persistent rebound epidemics in the
- 152 most vulnerable populations.
- 153

- 154 <u>Acknowledgements</u>
- 155 The authors acknowledge the Manitoba Centre for Health Policy for use of data contained in the
- 156 Manitoba Population Research Data Repository under project #2021-015 (HIPC #2020/2021–73, REB #
- 157 HS24593(H2021:026). The results and conclusions are those of the authors and no official endorsement
- 158 by the Manitoba Centre for Health Policy or Manitoba Health is intended or should be inferred. Data used
- 159 in this study are from the Manitoba Population Research Data Repository housed at the Manitoba Centre
- 160 for Health Policy, University of Manitoba and were derived from data provided by Manitoba Health.
- 161 <u>Author contributions</u>
- 162 CHR conceptualized and designed the study, oversaw the analysis, drafted the initial manuscript, and
- 163 reviewed and revised the manuscript. GP performed the analysis, and reviewed and revised the
- 164 manuscript. SMM conceptualized and designed the study, and reviewed and revised the manuscript.
- 165

- 166 Figure caption
- 167 **Figure 1.** Study cohort and subcohorts based on the start of the COVID-19 related restriction in Manitoba
- 168 (on March 15, 2020), the age at which the vaccine is recommended (Table S1), and the evaluation age for
- 169 vaccine uptake.
- 170 Figure 2. Vaccine uptake (percentage of the population) of DTaP (diphtheria, tetanus, and acellular
- 171 pertussis) dose 3 at 12 months and dose 4 at 24 months, and MMR (measles, mumps, rubella) dose 1 at 18
- and 24 months by neighborhood income quintile (A) and regional health authority (B) according to month
- 173 of birth. Winnipeg is the main urban center of Manitoba, housing >50% of the provincial population;
- 174 Northern Manitoba is a remote, predominantly (~75%) Indigenous region.
- 175

176 <u>References</u>

- 1 McDonald HI, Tessier E, White JM, Woodruff M, Knowles C, Bates C, et al. Early impact of the
 coronavirus disease (COVID-19) pandemic and physical distancing measures on routine childhood
 vaccinations in England, January to April 2020. *Eurosurveillance* 2020;25:2000848.
- 2 Shet A, Carr K, Danovaro-Holliday MC, Sodha SV, Prosperi C, Wunderlich J, et al. Impact of the
 SARS-CoV-2 pandemic on routine immunisation services: Evidence of disruption and recovery from
- 182 170 countries and territories. *The Lancet Global Health* 2022;10:e186–e194.
- 183 3 Kiely M, Mansour T, Brousseau N, Rafferty E, Paudel YR, Sadarangani M, et al. COVID-19 pandemic
 184 impact on childhood vaccination coverage in Quebec, Canada. *Human Vaccines &* 185 *Immunotherapeutics* 2021;0:1–8.
- 4 Martens P, Nickel N, Lix L, Turner D, Prior H, Walld R, et al. *The cost of smoking: A Manitoba study*.
 Winnipeg: Manitoba Centre for Health Policy; 2015.
- 5 Roos LL, Mustard CA, Nicol JP, McLerran DF, Malenka DJ, Young TK, et al. Registries and administrative data: Organization and accuracy. *Medical Care* 1993;31:201–212.
- 6 Robinson JR, Young TK, Roos LL, Gelskey DE. Estimating the burden of disease: Comparing
 administrative data and self-reports. *Medical Care* 1997;35:932–947.
- 7 Roberts JD, Poffenroth LA, Roos LL, Bebchuk JD, Carter AO. Monitoring childhood immunizations: A
 Canadian approach. *American Journal of Public Health* 1994;84:1666.
- 194 8 Righolt CH, Zhang G, Sever E, Wilkinson K, Mahmud SM. Patterns and descriptors of COVID-19
 195 testing and lab-confirmed COVID-19 incidence in Manitoba, Canada, March 2020-May 2021: A
 196 population-based study. *The Lancet Regional Health Americas* 2021;2:100038.
- 9 Ji C, Piché-Renaud P-P, Apajee J, Stephenson E, Forte M, Friedman JN, et al. Impact of the COVID-19
 pandemic on routine immunization coverage in children under 2 years old in Ontario, Canada: A
 retrospective cohort study. *Vaccine* 2022.
- 10 Walker B, Anderson A, Stoecker C, Shao Y, LaVeist TA, Callison K. COVID-19 and Routine
 Childhood and Adolescent Immunizations: Evidence from Louisiana Medicaid. *Vaccine* 2022;40:837–840.
- 11 White DB, Villarroel L, Hick JL. Inequitable Access to Hospital Care Protecting Disadvantaged
 Populations during Public Health Emergencies. *New England Journal of Medicine* 2021;385:2211–
 2214.

Table 1 Changes in vaccine uptake (%) of routine childhood vaccines during the pandemic (data ending November 30, 2021).

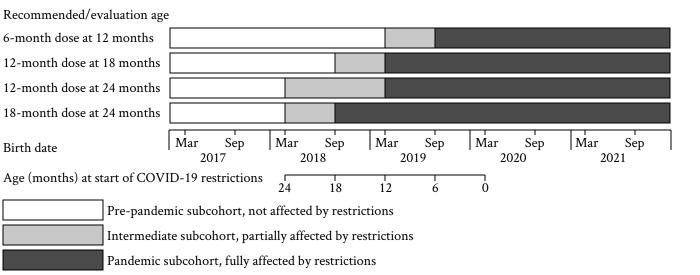
DTaP	Dose 3 uptake at 12 months ^a				Dose 4 uptake at 24 months ^b			
	Pre- pandemic	Pandemic	Relative change	Fold change	Pre- pandemic	Pandemic	Relative change	Fold change
Overall	80	74	-7%		71	64	-10%	
Gender								
Male	80	74	-8%	ref.	71	64	-10%	ref.
Female	79	74	-7%	0.9	71	64	-10%	1.0
Income quintile								
Q1 (lowest)	71	62	-13%	6.1	61	50	-17%	4.4
Q2	80	72	-10%	4.6	71	61	-14%	3.5
Q3	83	79	-5%	2.6	75	71	-6%	1.5
Q4	82	77	-7%	3.2	75	70	-8%	1.9
Q5 (highest)	85	84	-2%	ref.	79	76	-4%	ref.
Unknown	81	81	1%	-0.2	70	71	2%	-0.4
Residence								
Rural	70	60	-14%	5.5	62	53	-15%	2.3
Urban	87	85	-3%	ref.	79	74	-6%	ref.
Unknown	75	67	-12%	4.5	55	42	-23%	3.6
Regional health authority of residence								
Winnipeg	87	85	-3%	ref.	79	74	-6%	ref.
Interlake-Eastern	78	65	-16%	6.6	68	60	-11%	1.8
Northern	64	50	-22%	8.6	51	39	-25%	4.0
Southern	66	58	-12%	4.6	60	51	-15%	2.4
Prairie Mountain	82	77	-7%	2.6	74	68	-9%	1.4
Public Trustee / In CFS care	75	67	-12%	4.6	55	42	-23%	3.6
MMR	Dose 1 uptake at 18 months ^c				Dose 1 uptake at 24 months ^d			
	Pre- pandemic	Pandemic	Relative change	Fold change	Pre- pandemic	Pandemic	Relative change	Fold change
Overall	82	75	-9%		86	80	-7%	

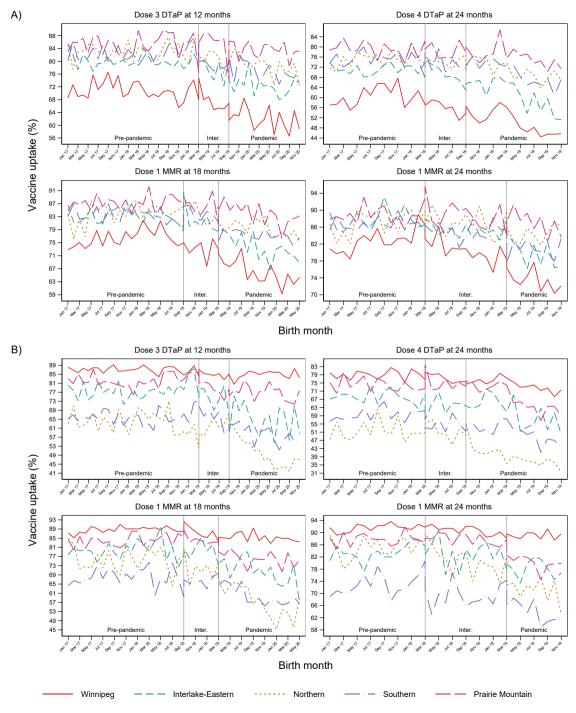
Overall	02	75	- 7 70		00	00	-7.90	
Gender								
Male	82	75	-9%	ref.	86	80	-7%	ref.
Female	82	76	-8%	0.9	86	80	-7%	1.1
Income quintile								
Q1 (lowest)	76	66	-14%	3.5	83	73	-11%	5.6
Q2	83	74	-12%	3.0	88	80	-10%	4.7
Q3	84	79	-6%	1.5	87	84	-3%	1.5
Q4	83	77	-7%	1.9	87	81	-7%	3.3
Q5 (highest)	87	84	-4%	ref.	89	87	-2%	ref.
Unknown	84	82	-2%	0.5	87	86	-1%	0.5

Residence

Rural	75	64	-15%	3.6	80	71	-12%	4.0
Urban	89	85	-4%	ref.	92	89	-3%	ref.
Unknown	80	60	-25%	6.1	81	53	-34%	11.5
Regional health authority of residence								
Winnipeg	89	85	-4%	ref.	92	89	-3%	ref.
Interlake-Eastern	80	70	-12%	3.1	83	78	-6%	2.3
Northern	76	57	-24%	6.3	85	71	-16%	6.0
Southern	68	60	-12%	3.2	73	64	-12%	4.5
Prairie Mountain	84	76	-10%	2.5	88	80	-9%	3.3
Public Trustee / In CFS care	80	60	-25%	6.5	81	53	-34%	12.4

DTaP = Diphtheria, tetanus, and acellular pertussis vaccine


MMR = Measles, mumps, and rubella vaccine


^a Recommended age is 6 months; Pre-pandemic cohort, born January 1, 2017 - March 15, 2019; Pandemic cohort, born September 15, 2019 and later

^b Recommended age is 18 months; Pre-pandemic cohort, born January 1, 2017 - March 15, 2018; Pandemic cohort, born September 15, 2018 and later

^c Recommended age is 12 months; Pre-pandemic cohort, born January 1, 2017 - September 15, 2018; Pandemic cohort, born March 15, 2019 and later

^d Recommended age is 12 months; Pre-pandemic cohort, born January 1, 2017 - March 15, 2018; Pandemic cohort, born March 15, 2019 and later

