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The rapid succession of new variants of SARS-CoV-2 emphasizes the need to understand the
factors driving pathogen evolution. Here, we investigate a possible tradeoff between the rate of
progression of a disease and its reproductive number. Using an SEIR framework, we show that in
the exponential growth phase of an epidemic, there is an optimal disease duration that balances
the advantage of a fast disease progression with that of causing many secondary infections. This
result offers one possible explanation for the ever shorter generation times of novel variants of SARS-
CoV-2, as it progressed from the original strain to the Alpha, Delta, and, from late 2021 onwards,
to several Omicron variant subtypes. In the endemic state, the optimum disappears and longer
disease duration becomes advantageous for the pathogen. However, selection pressures depend on
context: mitigation strategies such as quarantine of infected individuals may slow down the evolution
towards longer-lasting, more infectious variants. This work then suggests that, in the future, the
trend towards shorter generation times may reverse, and SARS-CoV-2 may instead evolve towards
longer-lasting variants.
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INTRODUCTION

Since the emergence of SARS-CoV-2, multiple vari-
ants of the virus with faster transmission dynamics have
arisen. The variants have supplanted each other in suc-
cessive waves, with variants with ever higher transmission
rates and/or shorter generation times replacing older,
slower variants [1, 2]. This unfolding evolutionary race
suggests a dynamic that can be explored through mod-
eling. Here, we explore the tradeoff between the number
of secondary cases an epidemic disease has time to cause
over its infectious period and the speed with which the
pathogen goes through disease generations.

Some work has already been done on modeling the evo-
lution of the infection profile of SARS-CoV-2 and other
pathogens with similar generation times. Saad-Roy et
al. studied the evolution of a presymptomatic infectious
state under the assumption that such a state is less infec-
tious [3], and in the context of superinfection and within-
host competition [4]. In addition, the relationship be-
tween the duration of a disease or parasitic infection and
the infection rate has been studied under the assump-
tion of a tradeoff between the two given by some func-
tional relationship [5, 6]. Porco et al. [7] investigated
the effects of treatment and other interventions on dis-
ease evolution under the assumption of a similar tradeoff.
Analogous studies have been done on other ecological re-
lationships, such as predation [8, 9]. Finally, Park et al.
[10] have studied the interplay between disease infectivity
and speed with a focus on mitigation rather than evolu-
tion. However, the possibility that a longer infectious
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period might be an evolutionary advantage for a disease
only up to a certain threshold has not been studied in
detail.

Here we investigate disease duration alone, and not
increases in the infection rate, which confer an obvious
advantage for the pathogen, while the situation is less
obvious when it comes to the rate of disease progression.
We focus on the tradeoff between the duration of the indi-
vidual infections and the number of secondary cases that
each infected individual generates. We assume that in-
fected individuals transmit the disease at a constant rate
during the infectious period. This means that a long dis-
ease duration should lead to a higher effective reproduc-
tive number, R0, that is, to more secondary infections.
On the other hand, a long disease duration might also
be a disadvantage to the disease, as it may be associated
with a long latency and thereby a slow epidemic progres-
sion. This is particularly the case if one assumes direct
proportionality between the duration of the latency time
of a disease and its infectious period. Table 1 suggests
that across diseases spread through the air or via direct
social contact, longer infectious periods indeed correlate
with longer latent periods. In a susceptible-exposed-
infectious-recovered (SEIR) type compartmental model,
which we will consider in this study, the latent period
corresponds to the E-state. We will derive relations and
carry out epidemic simulations based on systems of or-
dinary differential equations (ODEs) to investigate the
condition for an optimum disease duration.

MODEL SETUP

We assume that the transmission rate β of a disease is
constant throughout the duration of the infectious period
T , giving a linear relationship between disease duration
and number of secondary cases. While strict proportion-
ality does not necessarily hold, [39, 40] a positive, mono-
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Disease Latency time Infectious period c k R0

Airborne/Social contact:
Influenza H1N1 2.6 [11] 3.4 [11] 0.8 2 [12] 1.6 [13]
COVID-19 (wild-type) ≤ 4.0 [14] 6.5− 9.5 [15] 0.4− 0.6 5 [16] 2.9± 0.5 [17]
Measles ∼ 8.5 [18] a ∼ 8 [19] ∼ 1 15 [20] 13 [21]

SARS ∼ 10 [22] ∼ 12 [22] b ∼ 0.8 2 [23] 2− 4 [24]
Ebola 12.7 [25] 7.2 [26] c 1.8 10 [25] 1.4− 1.8 [27]
Smallpox 14.6 [28] 8.6 [28] 1.7 35 [29] 3.5− 6 [28]
Waterborne:
Cholera 1.7 [30] 2.0 [31] 0.9 2 [30] 1.1− 2.6 [32]
Vector-borne/zoonotic:
Yellow fever 4.3 [33] 1− 4 [34] 1.1− 4.3 8 [33] 2.4 [34]
Rabies 10− 700 [35] < 7 [36] 1.4− 100 - -
Sexually transmitted:
Syphilis 9− 90 [37] ∼ 365 [38] 0.02− 0.2 - -

TABLE I. Duration (days) of the latent and infectious periods for some infectious diseases. c
is the ratio of the latency time to the infectious period of the disease, while k = kincubation

is the shape factor for a Gamma distribution which we fit approximately to the measured
distribution of incubation times found in the cited literature. The coefficient of variation of
these distributions is given by CV 2 = 1/k. Note that we show the k-values for the incubation
periods as opposed to the latent periods, which we assume are similarly distributed. The
incubation period is the time from infection to symptom onset, while the latent period is the
time from infection to onset of infectiousness. The last column shows the estimated basic
reproductive number. Diseases are here sorted by whether they are mainly spread through
water, by vectors or other animals, by sexual contact, or by droplets or aerosols upon casual
social contact.

a As infectiousness begins four days before the onset of a rash, latency time is calculated as incubation
period minus four days.

b Incubation period is reported as 4.6 days. Here, we define the infectious period by the requirement
that at least 50 % of patients secrete measurable quantities of the virus. In that case, infectiousness
begins on day five after the onset of symptoms and ends on day 17, yielding a latency time of 9.6
days.

c The cited study reports separate infectious periods for survivors and deceased patients. We have
here indicated the average.

tonic relation between the two is expected since a longer
infectious period leads to more opportunities for passing
on the infection.

Throughout this work, we will distinguish between the
latent and incubation periods of a disease. The latent pe-
riod is the time from the initial infection until the patient
becomes infectious. In contrast, the incubation period is
the time from infection until the onset of symptoms.

The SEIR model reads:

dS

dt
= − β S I (1)

dE

dt
= β S I − 1

τ
E (2)

dI

dt
=

1

τ
E − 1

T
I (3)

dR

dt
=

1

T
I. (4)

where S, E, I, and R are susceptible, exposed (but non-
infectious), infectious, and recovered compartments re-
spectively. β is the transmission rate per unit time, τ is
the average duration of the pre-infectious exposed period,
and T is the duration of the infectious period. We take
the total population of the system to be fixed at N = 1

and assume that the time-scale of the entire scenario is
short enough that vital dynamics - births and deaths -
can be neglected.

We will also investigate the effects of variability in the
durations of the E and I states. Usually, an exponen-
tial distribution is assumed in SEIR models. However,
by subdividing each of the compartments E and I into
k equally long sub-compartments, we instead obtain a
Gamma distribution of latency times and infectious pe-
riods with a shape parameter k [41]. The shape pa-
rameter is related to the coefficient of variation CV by
k = 1/

√
CV . Thus, a greater k corresponds to lower

person-to-person variation in the durations of the E and
I states. Since we assume integer values of k, this distri-
bution coincides with an Erlang distribution. The above
equations for the simple SEIR model correspond to let-
ting the shape parameter take on the value k = 1, yield-
ing the familiar exponential case.

When considering the evolution of the disease in an
endemic state with a high degree of existing immunity
in the population, we slightly modify the above SEIR
model. To make the endemic state possible, we allow
individuals to lose immunity at a rate ω, corresponding
to an SEIRS model of disease progression. This model is
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then solved numerically, including multiple co-circulating
variants with different disease durations T . Thereby we
emulate the natural competition between variants.

Finally, mitigation by isolation of infected individuals
is implemented by the addition of a quarantine rate q and
corresponding noninfectious quarantine compartment Q
to the SEIRS model. This represents how individuals
have some chance of becoming symptomatic, being con-
tact traced, or otherwise being diagnosed and isolated for
each day of illness. We expect that individuals suffering
from a very long-lasting infectious disease will eventually
self-quarantine. The resulting equations thus become

dS

dt
= ω R −

nvar∑
i

β S Ii (5)

dEi
dt

= β S Ii −
1

τi
Ei (6)

dIi
dt

=
1

τi
Ei −

(
1

Ti
+ q

)
Ii (7)

dQi
dt

= q Ii −
1

Ti
Qi (8)

dR

dt
=

nvar∑
i

1

Ti
(Ii +Qi)− ω R. (9)

Here we have introduced an index i to indicate the pos-
sibility of including nvar different variants, all of which
we assume to have perfect cross immunity with respect
to the others. This will become important when simu-
lating competition between strains with different disease
durations and latency times.

RESULTS

Optimum disease duration for exponential growth

In the exponential growth phase of an epidemic, the
growth rate for k = 1 may be determined by lineariz-
ing the system of equations (1-4) around the disease-
free equilibrium. The epidemic growth rate r is then
the largest eigenvalue of the Jacobian [42]:

r =
−(1 + c) +

√
(1 + c)2 − 4(1− βT )c

2cT
, (10)

where c ≡ τ/T , and we have chosen the physically allow-
able positive branch. The above function has a maximum
for the duration T given by

R0,fastest = βTfastest = 2 +
√
c+

1√
c
, (11)

In the limit of k → ∞, the durations of the exposed
and infectious stages are deterministic. If we further ne-
glect the variation in the timing of disease transmission,
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FIG. 1. Direct simulation of the initial growth of an epi-
demic for different disease durations T . When disease dura-
tion is short, the epidemic grows faster as T increases because
each infected individual can infect more people. However, for
larger values of T , the cost of the longer latent period increases
and leads to slower exponential growth. Here, β = 1, k = 1,
and c = τ/T = 1, corresponding to assuming equal duration
of the E and I states. The initial exposed and infected frac-
tions of the population are E(0) = 10−12 and I(0) = 10−12.

total disease duration thus becomes τ+T and the genera-
tion time becomes τ+T/2. Under these approximations,
the number of infected in the exponential growth phase
approaches

I(t) = R
t/(τ+T/2)
0 = (βT )t/((

1
2+c)T ). (12)

This is only an approximate expression, as it requires the
assumption that disease transmission is also determinis-
tic, which is not the case even for k → ∞. Maximising
the exponential growth rate as a function of T in the
infinite-k limit and under the assumptions of Eq. (12),
we obtain the finite value

Tfastest = e/β, (13)

where e denotes Euler’s number.
In the exponential growth phase, the variant with the

highest growth rate will quickly come to dominate. An
illustration of this phase for different disease durations
and k = c = 1 can be seen in Fig. 1, while a plot of the
growth rate as a function of T for various values of c is
shown in Fig. 2(a). As shown, the exponential growth
rate is much higher for lower values of c. Furthermore,
there is good agreement between our analytical and nu-
merical calculations. When increasing c, the maximum
growth rate decreases strongly, and the optimum with
respect to T becomes less clear.

In the equation for r (Eq. (10)), it is assumed that the
probability distribution for the duration of the latency
time and infectious period of each individual is an expo-
nential distribution, corresponding to a shape parameter
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FIG. 2. Growth rate as a function of infectious period dura-
tion T as simulated, compared with the growth rate derived
in Eq. (10). Here, we set the infection rate β = 1/day. In
panel (a) we vary the ratio between exposed and infectious
period duration, c. One observes that the growth rate has a
maximum at the duration given by Eq. (11) (giving T = 4
for c = 1 and T = 5.48 for c = 10). Panel (b) shows the
corresponding plot when considering a larger shape factor k
for the distribution of the durations of latent and infectious
periods.

k = 1. We wish to explore how the degree of variabil-
ity in the latent and infectious period affects the optimal
value disease duration and the resulting growth rate. We
do this numerically by solving the SEIR equations with
a Gamma distributed latent and infectious period and
varying the shape parameter.

In Fig. 2(b), the effects of varying k are shown. At
c = 1, the effect of an increase in k is modest. However,
when the latent period is much longer than the infectious
period (c = 10), a more definite duration (k = 10) is
associated with a clearly lower resultant growth rate. A
more complete overview of growth rates and maxima as
functions of c for different k is given in Fig. 3.

Overall, Fig. 3 illustrates that the maximal daily

growth rate decreases monotonically as a function of c,
reflecting a longer latency time. Increasing k, i.e., mak-
ing the distribution of latency times more sharply peaked,
also leads to a slight decrease in maximal growth rate for
c > 1.

Fig. 3 (b) shows that the value of T which maximises
growth rate r, denoted Tfastest, is highest in the limit of
c→ 0. At low values of k, Tfastest exhibits a dependence
on c, with a local minimum around c = 1 beyond which
it grows as c increases. Tfastest(c) for k = 1 reproduces
Eq. (11). As k is increased, Tfastest becomes nearly inde-
pendent of c and approaches a value of approximately e,
as predicted by Eq. (13) for β = 1. The good agreement
is remarkable given the simplifications contained in that
equation.

The exponential growth rates of Fig. 3 are calculated
by fitting an exponential function to the initial phase of a
simulated SEIR epidemic model. For high values of k and
c, the disease prevalence oscillates around the expected
exponential curve over the course of a disease generation.
In this case, we fit an exponential function to the local
peaks rather than the whole curve. Due to these inherent
fluctuations in the number of infected, the numerically
determined exponential growth rate is very sensitive to
the exact start- and end points of the fit. This gives rise
to the slight fluctuations seen in the curves of 3(b).

In a situation where the disease is growing exponen-
tially, e.g., when an epidemic is breaking out or control
measures are failing, the variant with the fastest expo-
nential growth rate will win as illustrated in Fig. 1. This,
however, only holds transiently and we will see that the
situation is reversed when considering the endemic state
in a model with immunity loss.

The endemic state

In the endemic state, the disease prevalence is sus-
tained at an approximately constant level. In our model,
this is done by introducing a small rate of loss from the
recovered (R) state, corresponding to the waning of ac-
quired immunity (terms involving ωR in Eqs. (5) and
(9)). Furthermore, we will consider a quarantine rate q
that quantifies the probability per day that an individual
in the I state goes into isolation (see Eq. (7)). As pre-
viously described, this is represented by a noninfectious
quarantine compartment Q which infected persons may
leave upon recovery (see Eq. (8)). The extended multi-
strain model (Eqs. (5)-(9)) reduces to the simple SEIR
model of Eqs. (1-4) when only one strain is included and
q = ω = 0. If one were to consider very long disease
durations, inclusion of vital dynamics (birth and death)
would be necessary. This would entail the inclusion of
loss terms from the E, I, and Q states. This would in
turn limit the maximal effective duration of diseases to
be below the scale of a human generation.

The results of the simulations including immunity loss
and quarantine are illustrated in Fig. 4. The figure shows

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2023. ; https://doi.org/10.1101/2022.06.30.22277094doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.30.22277094
http://creativecommons.org/licenses/by/4.0/


5

0 2 4 6 8 10

c

0

0.2

0.4

0.6

0.8
M

a
x
im

a
l 
g

ro
w

th
 r

a
te

k = 1

k = 10

k = 100

k = 1000

(a)

0 2 4 6 8 10

c

0

1

2

3

4

5

6

T
fa

s
te

s
t

k = 1

k = 10

k = 100

k = 1000

Euler's number

(b)

FIG. 3. Maximal growth rates and optimal disease durations
as functions of c for various k. (a) shows the maximal expo-
nential growth rate r of an epidemic pathogen given different
values of c and k. We see that growth rates are highest for
low c and also decrease very slightly with k. (b) shows the
disease duration Tfastest that maximizes the growth rate. For
β = 1 this is also the value of R0 that maximizes the growth
rate. This is equal to the predictions from Eq. (10) for k = 1
and drops as k increases. At higher k, Tfastest approaches e
as predicted in the limit of k →∞.

that in this case, longer-lasting variants always outcom-
pete shorter-lasting ones. The simulations illustrate that
this pattern persists even for very long disease durations
(up to 400 days), although the replacement dynamics be-
come extremely slow when, e.g., a 300-day and a 400-day
variant compete (simulation time > 105days). If the sys-
tem starts out with an equal fraction of the population
infected with each variant, we thus see a succession of
variant takeovers (Fig. 4(a)). Longer-lasting variants
take longer to grow, but eventually always end up tak-
ing over due to their higher basic reproductive number.
However, by increasing the quarantine rate q (Fig. 4(b)),
we see that this development can be slowed significantly.
We have also examined the sensitivity to variations in

the immunity loss rate ω, but varying this rate has little
effect, except on the magnitude of outbreaks.
In the limit of very large T (formally, T → ∞), the size
of the recovered population R goes to 0, while the sus-
ceptible population tends towards the limit S → q/β.
Thus E + Q + I → 1 − q/β. Interestingly, in this limit
the vast majority of non-susceptible individuals will be
in the exposed and quarantined states, since, at steady
state I/(E + Q) = 1/(c + (1 + c)Tq) which decreases as
T is increased. Strictly speaking, the T → ∞ limit is
only meaningful if vital dynamics are included, but al-
ready at moderate values of T , we can see that E+Q+I
increases with increasing T while I in fact decreases (see
Fig. 4(c)). As such, the competitive advantage of slower
variants does not owe to a higher number of individu-
als in the I state, but rather to a minimization of the
uninfected population.

DISCUSSION

Our analysis illustrates that being fast-acting can be an
evolutionary advantage for a pathogen, even if it comes
at the cost of a lower reproductive number. However, this
is only the case in the initial exponential growth phase
of the epidemic. In the endemic phase the longer-lasting
variants which have a higher R0 will always eventually
come to dominate. This is the case regardless of inter-
ventions such as quarantine, though evolution towards
long-lasting, more infectious variants may be slowed by
quarantining infectious individuals.

We expect the two scenarios modelled here to be ap-
plicable across most of the trajectory of a real-world epi-
demic. With regard to quarantine, we would expect the
onset of symptoms to increase the chance that individuals
stay home or are bedridden, effectively self-quarantining.
This is likely the case regardless of large-scale mitigation
policies.

In addition, the exponential growth scenario is not nec-
essarily limited to the short initial stage of the epidemic.
In the case of the COVID-19 pandemic, mitigation ef-
forts in various locations often kept the local reproduc-
tive number at or below 1. When such efforts failed or
were relaxed, local epidemics entered a new exponential
growth phase. Our results may thus contribute to an
understanding of the successive shifts from the Wuhan
strain, to the Alpha and Delta variants, and then, during
2022, to various Omicron subtypes. The Delta variant
has been shown to have a somewhat shorter incubation
period and significantly shorter generation time than the
ancestral strain [43–45]. Hart et al. [46] measure a gener-
ation time of 5.5 days for the Alpha variant and 4.6 days
for the Delta variant. Omicron was even faster, with a
reported serial interval of only 2.2 days [47]. The analysis
in Abbott et al. further supports the tendency of faster
disease progression for the latter SARS-CoV-2 variant,
although Pung et al. dispute whether generation times
of Delta were in fact significantly lower than for the Al-
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FIG. 4. Competition between variants of different infec-
tious period duration T as the disease progresses to the
endemic phase. We here show the results of an ODE-
based simulation of six different variants of duration T =
10, 50, 100, 200, 300, 400 days. The simulations use fixed β =
1, c = 1, and ω = 10−3. The first two panels show the
total exposed, infected, and quarantined infected population
E + I + Q. In (a), we simulate the system without quar-
antine. We see that the longer-lasting variants replace the
shorter-lived ones. (b) shows a simulation using the same
parameters and a quarantine rate of q = 0.1 per day of infec-
tious illness. The longer-lasting variants still win, but quaran-
tine slows down the evolution. (c) shows the same simulation
as (b), but only I is plotted. I decreases as longer-lasting
variants take over, since more and more of the population is
quarantined for very long disease durations.

pha variant [2, 48].

Each new SARS-CoV-2 variant has been accompanied
by changes in transmission rate as well as generation
time. The analysis presented here focuses on the time
aspect while ignoring the obvious evolutionary gain a
pathogen may obtain by increasing the infection rate
β. We found that the growth rate in the exponential
growth phase of an epidemic indeed seems to be optimal
for rather short generation times, which agrees with the
obervation that new SARS-CoV-2 variants tend to be
faster than older variants. This overall tendency during
2020-2021 with ever faster virus variants may later be
broken, however. Our simulations demonstrate that this
is likely if the pandemic reaches a more endemic state
where slower variants of the disease gain in fitness, as
mitigation and quarantine efforts are dropped. Even un-
der the assumption of quarantine measures, the optimal
strategy should shift towards a longer disease duration in
the endemic state, albeit more slowly.

Our analysis focuses on pathogens like SARS-CoV-2,
which are transmitted through social contact and act on
a relatively short timescale. There are of course also
pathogens that act on timescales longer than those pre-
dicted here. This is for example true of sexually trans-
mitted infections such as syphilis and HIV which cause
lifelong infection (c << 1). These infections violate the
assumption of latency time being roughly proportional to
infectious period duration, and thus are not captured by
our model. In the case of these STIs, the two aspects of
pathogen dynamics are essentially decoupled in the body.

Alternative approaches have been used to investigate
the reasons for the variation in disease duration observed
in the real world. These have predicted the existence
of several “regimes” of disease duration [49]: from fast-
acting childhood infections in situations with high con-
tact rates to lifelong infections in low-contact situations.

It is of course both idealized and highly simplified to
assume that latency times scale proportionally with in-
fectious periods. As mentioned in the introduction, there
is however some support for our assumption of a relation-
ship between the two quantities. The values of c are in-
deed often on the order of 1, except for zoonotic diseases
like rabies or sexually transmitted infections like syphilis
(Table 1). Interestingly, the data show a large variation
in how sharply peaked the incubation periods are, with
the shape parameter k varying from ≈ 2 in respiratory
diseases such as SARS and influenza, to an estimated 35
in smallpox.

The findings of this article highlight the context-
dependence of evolutionary fitness as it pertains to dis-
ease duration and latency. Our results may help explain
some of observed dynamics of emerging SARS-CoV-2
variants. In a wider perspective, our work also sheds
some light on the apparent division of infectious diseases
into a group of quite fast diseases characterized by epi-
demic outbreaks, and another group which are slow with
long latent periods and an endemic pattern of infection.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2023. ; https://doi.org/10.1101/2022.06.30.22277094doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.30.22277094
http://creativecommons.org/licenses/by/4.0/


7

ACKNOWLEDGMENTS

We wish to thank Lone Simonsen, Viggo Andreasen,
and Nils Christian Stenseth for enlightening discussions.

KS and AE have received funding from the European
Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant
agreement no. 740704). BFN received funding from
the Carlsberg Foundation under its Semper Ardens
programme (grant no. CF20-0046), and AE received
funding from NordForsk under the Nordic Programme
for Interdisciplinary Research (grant no. 104910).

DATA AVAILABILITY

The code used to generate the plots shown in this ar-
ticle is available on GitHub under the URL https://
github.com/gks973/Evolution_of_speed or in a per-
manent archived version at https://doi.org/10.5281/
zenodo.7512664.

AUTHOR CONTRIBUTIONS STATEMENT

KS proposed the model. AE, KS and BFN de-
rived the expressions, and BFN and AE wrote the code
for simulations. KS, AE, and BFN wrote the manuscript.

[1] W. S. Hart, E. Miller, N. J. Andrews, P. Waight, P. K.
Maini, S. Funk, and R. N. Thompson, Generation time
of the alpha and delta sars-cov-2 variants: an epidemio-
logical analysis, The Lancet Infectious Diseases 22, 603
(2022).

[2] S. Abbott, K. Sherratt, M. Gerstung, and S. Funk, Es-
timation of the test to test distribution as a proxy for
generation interval distribution for the omicron variant
in england, medRxiv (2022).

[3] C. M. Saad-Roy, N. S. Wingreen, S. A. Levin, and
B. T. Grenfell, Dynamics in a simple evolutionary-
epidemiological model for the evolution of an initial
asymptomatic infection stage, Proceedings of the na-
tional academy of sciences 117, 11541 (2020).

[4] C. M. Saad-Roy, B. T. Grenfell, S. A. Levin, L. Pellis,
H. B. Stage, P. Van Den Driessche, and N. S. Wingreen,
Superinfection and the evolution of an initial asymp-
tomatic stage, Royal Society open science 8, 202212
(2021).

[5] R. M. Anderson and R. M. May, Coevolution of hosts
and parasites, Parasitology 85, 411 (1982).

[6] S. Alizon, A. Hurford, N. Mideo, and M. Van Baalen,
Virulence evolution and the trade-off hypothesis: his-
tory, current state of affairs and the future, Journal of
evolutionary biology 22, 245 (2009).

[7] T. C. Porco, J. O. Lloyd-Smith, K. L. Gross, and A. P.
Galvani, The effect of treatment on pathogen virulence,
Journal of Theoretical Biology 233, 91 (2005).

[8] J. Reed and N. C. Stenseth, On evolutionarily stable
strategies, Journal of theoretical biology 108, 491 (1984).

[9] K. Grunert, H. Holden, E. R. Jakobsen, and N. C.
Stenseth, Evolutionarily stable strategies in stable and
periodically fluctuating populations: The rosenzweig–
macarthur predator–prey model, Proceedings of the Na-
tional Academy of Sciences 118 (2021).

[10] S. W. Park, B. M. Bolker, S. Funk, C. J. E. Metcalf, J. S.
Weitz, B. T. Grenfell, and J. Dushoff, The importance
of the generation interval in investigating dynamics and
control of new sars-cov-2 variants, Journal of the Royal
Society Interface 19, 20220173 (2022).

[11] A. R. Tuite, A. L. Greer, M. Whelan, A.-L. Winter,
B. Lee, P. Yan, J. Wu, S. Moghadas, D. Buckeridge,
B. Pourbohloul, et al., Estimated epidemiologic param-

eters and morbidity associated with pandemic h1n1 in-
fluenza, Cmaj 182, 131 (2010).

[12] H. Nishiura and H. Inaba, Estimation of the incubation
period of influenza a (h1n1-2009) among imported cases:
addressing censoring using outbreak data at the origin
of importation, Journal of theoretical biology 272, 123
(2011).

[13] C. Fraser, C. A. Donnelly, S. Cauchemez, W. P. Hanage,
M. D. Van Kerkhove, T. D. Hollingsworth, J. Griffin,
R. F. Baggaley, H. E. Jenkins, E. J. Lyons, et al., Pan-
demic potential of a strain of influenza a (h1n1): early
findings, science 324, 1557 (2009).

[14] H. Nishiura, N. M. Linton, and A. R. Akhmetzhanov, Se-
rial interval of novel coronavirus (covid-19) infections, In-
ternational journal of infectious diseases 93, 284 (2020).

[15] A. W. Byrne, D. McEvoy, A. B. Collins, K. Hunt,
M. Casey, A. Barber, F. Butler, J. Griffin, E. A. Lane,
C. McAloon, et al., Inferred duration of infectious period
of sars-cov-2: rapid scoping review and analysis of avail-
able evidence for asymptomatic and symptomatic covid-
19 cases, BMJ open 10, e039856 (2020).

[16] Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong,
R. Ren, K. S. Leung, E. H. Lau, J. Y. Wong, et al.,
Early transmission dynamics in wuhan, china, of novel
coronavirus–infected pneumonia, New England journal
of medicine (2020).

[17] M. A. Billah, M. M. Miah, and M. N. Khan, Reproduc-
tive number of coronavirus: A systematic review and
meta-analysis based on global level evidence, PloS one
15, e0242128 (2020).

[18] J. Lessler, N. G. Reich, R. Brookmeyer, T. M. Perl,
K. E. Nelson, and D. A. Cummings, Incubation periods
of acute respiratory viral infections: a systematic review,
The Lancet infectious diseases 9, 291 (2009).

[19] CDC, CDC yellow book 2020 (Oxford University Press,
2019) Chap. Measles (Rubeola), pp. 287–291.

[20] D. Klinkenberg and H. Nishiura, The correlation between
infectivity and incubation period of measles, estimated
from households with two cases, Journal of theoretical
biology 284, 52 (2011).

[21] F. M. Guerra, S. Bolotin, G. Lim, J. Heffernan, S. L.
Deeks, Y. Li, and N. S. Crowcroft, The basic reproduc-
tion number (r0) of measles: a systematic review, The

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2023. ; https://doi.org/10.1101/2022.06.30.22277094doi: medRxiv preprint 

https://github.com/gks973/Evolution_of_speed
https://github.com/gks973/Evolution_of_speed
https://doi.org/10.5281/zenodo.7512664
https://doi.org/10.5281/zenodo.7512664
https://doi.org/10.1101/2022.06.30.22277094
http://creativecommons.org/licenses/by/4.0/


8

Lancet Infectious Diseases 17, e420 (2017).
[22] R. M. Anderson, C. Fraser, A. C. Ghani, C. A. Donnelly,

S. Riley, N. M. Ferguson, G. M. Leung, T. H. Lam, and
A. J. Hedley, Epidemiology, transmission dynamics and
control of sars: the 2002–2003 epidemic, Philosophical
Transactions of the Royal Society of London. Series B:
Biological Sciences 359, 1091 (2004).

[23] B. J. Cowling, M. P. Muller, I. O. Wong, L.-M. Ho,
M. Louie, A. McGeer, and G. M. Leung, Alternative
methods of estimating an incubation distribution: exam-
ples from severe acute respiratory syndrome, Epidemiol-
ogy , 253 (2007).

[24] WHO et al., Consensus document on the epidemiology of
severe acute respiratory syndrome (SARS), Tech. Rep.
(World Health Organization, 2003).

[25] M. Eichner, S. F. Dowell, and N. Firese, Incubation pe-
riod of ebola hemorrhagic virus subtype zaire, Osong
Public Health and Research Perspectives 2, 3 (2011).

[26] G. E. Velásquez, O. Aibana, E. J. Ling, I. Diakite, E. Q.
Mooring, and M. B. Murray, Time from infection to dis-
ease and infectiousness for ebola virus disease, a system-
atic review, Clinical Infectious Diseases 61, 1135 (2015).

[27] Z. Wong, C. Bui, A. Chughtai, and C. Macintyre, A sys-
tematic review of early modelling studies of ebola virus
disease in west africa, Epidemiology & Infection 145,
1069 (2017).

[28] R. Gani and S. Leach, Transmission potential of smallpox
in contemporary populations, Nature 414, 748 (2001).

[29] H. Nishiura, Determination of the appropriate quaran-
tine period following smallpox exposure: an objective
approach using the incubation period distribution, In-
ternational journal of hygiene and environmental health
212, 97 (2009).

[30] J. Eberhart-Phillips, R. Besser, M. Tormey, D. Feikin,
M. Araneta, J. Wells, L. Kilman, G. Rutherford, P. Grif-
fin, R. Baron, et al., An outbreak of cholera from food
served on an international aircraft, Epidemiology & In-
fection 116, 9 (1996).

[31] A. A. Weil, Y. Begum, F. Chowdhury, A. I. Khan, D. T.
Leung, R. C. LaRocque, R. C. Charles, E. T. Ryan, S. B.
Calderwood, F. Qadri, et al., Bacterial shedding in house-
hold contacts of cholera patients in dhaka, bangladesh,
The American journal of tropical medicine and hygiene
91, 738 (2014).

[32] Z. Mukandavire, D. L. Smith, and J. G. Morris Jr,
Cholera in haiti: reproductive numbers and vaccination
coverage estimates, Scientific reports 3, 1 (2013).

[33] M. A. Johansson, N. Arana-Vizcarrondo, B. J. Bigger-
staff, and J. E. Staples, Incubation periods of yellow fever
virus, The American journal of tropical medicine and hy-
giene 83, 183 (2010).

[34] A. Curtis, J. W. Mills, and J. K. Blackburn, A spatial
variant of the basic reproduction number for the new
orleans yellow fever epidemic of 1878, The Professional
Geographer 59, 492 (2007).

[35] C. E. Rupprecht, Rhabdoviruses: rabies virus, Medical
microbiology 4 (1996).

[36] C. R. Fisher, D. G. Streicker, and M. J. Schnell, The
spread and evolution of rabies virus: conquering new
frontiers, Nature Reviews Microbiology 16, 241 (2018).

[37] B. T. Goh, Syphilis in adults, Sexually transmitted in-
fections 81, 448 (2005).

[38] P. O’Byrne and P. MacPherson, Syphilis, British Medical
Journal 365 (2019).

[39] S. Lehtinen, P. Ashcroft, and S. Bonhoeffer, On the rela-
tionship between serial interval, infectiousness profile and
generation time, Journal of the Royal Society Interface
18, 20200756 (2021).

[40] J. J. van Kampen, D. A. van de Vijver, P. L. Fraaij, B. L.
Haagmans, M. M. Lamers, N. Okba, J. P. van den Akker,
H. Endeman, D. A. Gommers, J. J. Cornelissen, et al.,
Duration and key determinants of infectious virus shed-
ding in hospitalized patients with coronavirus disease-
2019 (covid-19), Nature communications 12, 1 (2021).

[41] H. J. Wearing, P. Rohani, and M. J. Keeling, Appropriate
models for the management of infectious diseases, PLoS
medicine 2, e174 (2005).

[42] M. Lipsitch, T. Cohen, B. Cooper, J. M. Robins, S. Ma,
L. James, G. Gopalakrishna, S. K. Chew, C. C. Tan,
M. H. Samore, et al., Transmission dynamics and control
of severe acute respiratory syndrome, science 300, 1966
(2003).

[43] N. M. Linton, T. Kobayashi, Y. Yang, K. Hayashi, A. R.
Akhmetzhanov, S.-m. Jung, B. Yuan, R. Kinoshita, and
H. Nishiura, Incubation period and other epidemiolog-
ical characteristics of 2019 novel coronavirus infections
with right truncation: a statistical analysis of publicly
available case data, Journal of clinical medicine 9, 538
(2020).
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