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ABSTRACT 

Objective: To 1) develop and evaluate a machine learning model incorporating gait and 

physical activity to predict medial tibiofemoral cartilage worsening over two years in individuals 

without or with early knee osteoarthritis and 2) identify influential predictors in the model and 

quantify their effect on cartilage worsening. 

Design: An ensemble machine learning model was developed to predict worsened cartilage 

MRI Osteoarthritis Knee Score at 2-year follow-up from gait, physical activity, clinical and 

demographic data from the Multicenter Osteoarthritis Study. Model performance was evaluated 

with Area Under the Curve (AUC) in repeated cross-validations. The top 10 influential predictors 

of the outcome across 100 held-out test sets were identified by a variable importance measure 

statistic, and their marginal effect on the outcome was quantified by g-computation. 

Results: Of 947 legs included in the analysis, 14% experienced medial cartilage worsening 

over two years. The median (2.5th-97.5th percentile) AUC across the 100 held-out test sets was 

0.73 (0.64-0.80). Presence of baseline cartilage damage, higher Kellgren-Lawrence grade, 

greater pain during walking, and higher lateral ground reaction force impulse were associated 

with greater risk of cartilage worsening. 

Conclusions: An ensemble machine learning approach incorporating gait, physical activity, and 

clinical/demographic features showed good performance for predicting cartilage worsening over 

two years. While identifying potential intervention targets from the machine learning model is 

challenging, these results suggest that addressing high lateral ground reaction force impulse 

should be investigated further as a potential target to reduce medial tibiofemoral cartilage 

worsening in persons without or with early knee osteoarthritis. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.30.22277057doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.30.22277057
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
3 of 26 

 

SUMMARY BOX 

What are the findings? 

• Machine learning models predicted cartilage worsening in persons without or with early 

knee osteoarthritis from gait, physical activity, and clinical and demographic 

characteristics with a median AUC of 0.73 across 100 held-out test sets. 

• High lateral ground reaction force impulse (> 1.8 N*s) was associated with 5.5% higher 

risk of cartilage worsening over two years compared to lower lateral impulse (< 1.1 N*s). 

How might it impact on clinical practice in the future? 

• Gait and physical activity are some of the only modifiable risk factors for knee 

osteoarthritis; addressing high lateral ground reaction force impulse may be a potential 

target for interventions to slow early knee osteoarthritis progression. 
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INTRODUCTION 

Knee osteoarthritis (OA) is a progressive, painful joint disease and leading cause of disability, 

affecting over 350 million adults worldwide.[1] While some individuals with advanced disease 

undergo knee replacement, there is no cure for OA and many live with pain and poor quality of 

life for decades. Additionally, existing structural damage and other risk factors (e.g., obesity, 

malalignment) can drive further degeneration.[2, 3] Addressing the burden of knee OA will 

require both early identification of individuals at risk and discovery of potential targets for early 

interventions that can be implemented prior to the onset of extensive damage or other risk 

factors. 

Mechanical loading on the joint is one of the only modifiable risk factors for knee OA[4] 

and can be manipulated through gait and/or physical activity interventions. While prior research 

has identified key gait features associated with medial tibiofemoral knee OA progression,[5] 

these have typically been examined in isolation, in small samples, and/or without accounting for 

other known clinical/demographic risk factors. Importantly, little is known about gait and physical 

activity predictors of progression in individuals early in the disease process. Machine learning 

models can help identify features among larger complex constructs that are important to 

prediction without requiring assumptions about underlying relationships among these features, 

making them useful for exploring gait and physical activity data.[6-8] 

The Multicenter Osteoarthritis Study (MOST)[9]  is a unique, large, observational cohort 

of individuals with and without knee OA where data on gait biomechanics, accelerometer-

derived physical activity, and key clinical and demographic measures are available for 

application of machine learning approaches. Further, MOST includes MRI knee exams at 

multiple timepoints, providing sensitive measures of early joint structural change, such as 

worsening cartilage damage.[10] Using the MOST data, our objectives were to (1) build and 

evaluate a machine learning model to predict medial tibiofemoral cartilage worsening over 2-

years from gait, physical activity, and clinical and demographic risk factors in individuals without 
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or with early knee OA, and (2) identify features that contributed most to prediction of cartilage 

worsening from the machine learning model and quantify their effect on the cartilage worsening 

outcome. 

 

METHODS 

Study sample 

At 144-months, surviving participants from the original MOST cohort (age = 50-79, with or at 

increased risk for developing knee OA at enrollment) were invited to return for a clinic visit and 

concurrently, a new cohort (age 45-69, with or without knee pain, and with Kellgren-Lawrence 

radiographic grades ≤ 2) was enrolled. Participants with inflammatory disease or stroke were 

not included in either cohort. The MOST study received institutional review board approval 

from the four core sites (Boston University, University of Alabama at Birmingham [UAB], 

University of California San Francisco, University of Iowa [UIowa]). All participants provided 

informed consent prior to participating in the study, in accordance with the Helsinki 

Declaration. 

We used data from both cohorts for our study baseline (original cohort: 144-month, 

new cohort: enrollment visit) and 2-year follow-up (original cohort: 168-month, new cohort: 24-

month). MRIs were read for one knee per participant (herein referred to as the “study knee”) at 

both baseline and 2-years. We excluded participants with Kellgren-Lawrence grades > 2 in the 

study knee to focus on early disease (Figure 1). We also excluded participants with history of 

knee or hip replacement in either leg, steroid or hyaluronic acid injection during the past 6 

months in either knee, or regular use of a walking aid. Finally, we excluded participants who did 

not undergo MRI assessment and participants with data quality issues related to gait and/or 

physical activity measures (described later). 
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Figure 1. Study sample from the Multicenter Osteoarthritis Study 

 

Patient and public involvement 

Currently, patients and the public are not involved in the design, conduct, reporting, or 

dissemination plans for research projects utilizing MOST data. 

 

Exposures 

Clinical and demographic features 

Clinical and demographic factors that are both independent risk factors for OA and affect gait 

and/or physical activity independent of OA (i.e., confounders) were included as model 

inputs.[11-18] Sex, age, body mass index (BMI), race, clinic site, and prior history of knee injury 

or surgery were recorded at baseline. Given small sample sizes in multiple categories of race, 

particularly at the UIowa clinic site, race and site were combined into a single feature with 3-
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levels: UAB non-White, UAB White, and UIowa. Participants also completed the Western 

Ontario and McMaster Universities Osteoarthritis Index (WOMAC)[19] and Center for 

Epidemiologic Studies Depression Scale (CES-D), and had posterior-anterior and lateral weight 

bearing radiographs taken, which were read for Kellgren-Lawrence grade (KLG)[20] at the 

MOST analysis center. Hip-knee-ankle alignment for the new cohort was read from long-limb 

radiographs taken at baseline. Long limb radiographs were not acquired for the original cohort 

at the 144-month visit (current baseline), thus we used hip-knee-ankle alignment read from long 

limb radiographs taken at the 60-month visit for these participants. WOMAC pain during walking 

was extracted from the first question of the WOMAC questionnaire, with legs categorized as 

‘no,’ ‘mild,’ or ‘moderate or higher’ pain during walking.  

 

Table 1. Baseline demographics and clinical characteristics 

Feature Frequency, n (%) Mean ± SD 
n participants 947  

Sex: 
     Female 

 
551 (58.2%) 

 

Race: 
     American Indian or Alaskan Native 
     Asian 
     Black or African American 
     Don’t know/Refused 
     More than one race 
     Other 
     White or Caucasian 

 
3 (0.3%) 
8 (0.8%) 

109 (11.5%) 
1 (0.1%) 
7 (0.7%) 
11 (1.2%) 

808 (85.3%) 

 

Clinic Site: 
     University of Iowa 

 
609 (64.3%) 

 

Cohort: 
     New 

 
768 (81.1%) 

 

Previous injury/surgery: 
     Yes 

 
178 (18.8%) 

 

Medial tibiofemoral cartilage damage:  
     Present 

 
371 (39.2%) 

 

Age (years)  59.2 ± 8.3 
Body Mass Index (kg/m2)  27.8 ± 4.8 
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Center for Epidemiologic Studies Depression 
score (/60) 

 5.8 ± 6.5 

Hip-knee-ankle alignment (degrees, negative 
values indicate varus alignment) 

 -1.4 ± 2.7 

 Study knee Contralateral  
WOMAC pain during walking: 
     None 
     Mild 
     Moderate or higher 

 
751 (79.3%) 
165 (17.4%) 
31 (3.3%) 

 
754 (79.6%) 
161 (17.0%) 
32 (3.4%) 

 

Kellgren-Lawrence Grade (KLG): 
     KLG = 0 
     KLG = 1 
     KLG = 2 

 
582 (61.5%) 
269 (28.4%) 
96 (10.1%) 

 
587 (62.0%) 
248 (26.2%) 
112 (11.8%) 

 

SD = standard deviation; WOMAC = Western Ontario and McMaster Universities 
Osteoarthritis Index 

 

Gait features 

Three-dimensional (3D) ground reaction force (GRF) data were recorded at 1000 Hz while 

participants walked at self-selected speed across a portable force platform embedded in a 

5.3-meter walkway (AccuGait, AMTI Inc., Watertown, MA, USA). At least five trials of data 

were acquired per leg, with the first excluded as an acclimatization trial. Legs with at least 

three remaining trials where the foot landed completely on the force plate were retained for 

analysis. For each trial, we extracted a selection of gait features: commonly used discrete 

metrics calculated from the 3D GRF waveforms (Figure 2), “toe-out” angle as defined by 

Chang et al.,[21] stance time, and walking speed. We time-normalized all timing features to 

the stance phase of gait. We then averaged each feature across trials for each leg (Table 2). 

GRFs were not amplitude-normalized given the inclusion of BMI as a predictor in the model 

and to avoid issues with interpreting ratios.[22] 
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Figure 2. Features extracted from ground reaction force (GRF) data 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.30.22277057doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.30.22277057
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
10 of 26 

 

Physical activity features 

Participants wore an activity monitor (AX3, Axivity, Newcastle upon Tyne, UK) consisting of a tri-

axial accelerometer and temperature sensor on the lower back (centered over the midpoint of 

L5-S1) for 7 days at baseline, with 3D acceleration data sampled at 100 Hz with a range of ±8g. 

Accelerometer data were extracted and processed at a centralized reading center. At least 10 

hours of wear time were required for a day to be considered valid.[23] Non-wear was defined as 

periods ³10 minutes with no movement (standard deviation < threshold) and verified using the 

temperature sensor in the device (change from average temperature > threshold). Summary 

metrics were calculated for each day, including time spent walking, time spent lying, and the 

mean 3D signal vector magnitude, which describes the overall magnitude of acceleration across 

all three dimensions (Equation 1). Time spent walking and lying were expressed as percent of 

wear time to account for possible differences in minutes of accelerometer wear among 

individuals.[24] Metrics were averaged across all valid days per participant (Table 2). We 

excluded participants with less than 3 valid days of data.[25] 

 𝑆𝑖𝑔𝑛𝑎𝑙	𝑣𝑒𝑐𝑡𝑜𝑟	𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = 	2𝑎!" + 𝑎#$" + 𝑎%&"  Eq. 1 

 

Table 2. Baseline gait and physical activity features 

Feature Mean ± SD 
GRF impulses (N*s):  
 Vertical GRF impulse 454.5 ± 113.7 
 Medial GRF impulse 18.9 ± 8.1 
 Lateral GRF impulse 1.6 ± 1.0 
 Anterior GRF impulse 23.9 ± 7.0 
 Posterior GRF impulse 24.2 ± 7.2 
GRF local maxima (N):  
 Vertical GRF 1st peak 850.6 ± 179.5 
 Posterior GRF peak 134.1 ± 41.1 
 Early lateral GRF peak  29.5 ± 14.4 
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GRF loading and unloading rates (N/s):  
 Maximum instantaneous vertical GRF loading rate 11555 ± 4077 
 Maximum instantaneous vertical GRF unloading rate  -10204 ± 2289 
Timing of GRF local maxima/minima (% stance):  
 Vertical GRF 1st peak 25.9 ± 3.5 
 Vertical GRF 2nd peak 75.5 ± 2.5 
 Vertical GRF valley (midstance minimum) 48.3 ± 3.5 
 Posterior GRF peak 17.5 ± 2.4 
 Anterior GRF peak 85.4 ± 1.4 
 Early lateral GRF peak  7.1 ± 1.7 
 Early medial GRF peak 26.3 ± 5.7 
 Late medial GRF peak 72.3 ± 5.7 
Spatiotemporal parameters:  
 Gait speed (m/s) 1.35 ± 0.2 
 Stance time (s) 0.7 ± 0.1 
 Angle formed by center of pressure path and direction of travel, “toe-

out angle” (degrees, negative values indicate varus) 
-3.7 ± 5.3 

Accelerometer derived physical activity measures:  
 Time spent walking (% total wear time) 12.3 ± 4.8 
 Time spent lying (% total wear time) 9.2 ± 10.4 
 Mean signal vector magnitude (milligravity) 4.0 ± 1.4 
GRF = ground reaction force; SD = standard deviation 

 

Outcome 

Two musculoskeletal radiologists (AG, FWR) scored the severity of cartilage damage in 5 

medial tibiofemoral subregions of the study knee at each timepoint using the MRI Osteoarthritis 

Knee Score (MOAKS)[26]. We defined medial cartilage worsening as any within-grade or ³ full 

grade increase in area and/or depth in at least one of the 5 medial tibiofemoral cartilage 

subregions over the 2-year period, as has been done previously in MOST.[10, 27] 

 

Machine learning model 

Data preparation, model development, and evaluation were performed in R (v4.0.5). We 

examined Pearson correlations between all continuous features and in the case of near perfect 
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correlations (r > 0.85), selected one feature to retain for analysis. We used the predictive mean 

matching algorithm within the multiple imputation by chained equations (MICE) framework 

(v3.13.0) to impute missing exposure data (<0.1%).[28] Continuous features were scaled and 

centered. We randomly split the data into 70% training data and 30% test data without altering 

the proportion of outcome in both the training and test sets.[29]  

Our goal was to predict the binary outcome of cartilage worsening from the GRF, 

accelerometer, and clinical/demographic data. We used “super learning” (v1.4.2),[30] an 

ensemble machine learning approach that combines several candidate machine learning 

algorithms in order to enhance the accuracy of prediction above and beyond individual 

algorithms (Figure 3). Our candidate learners included Bayesian adaptive regression trees, 

generalized linear model, least absolute shrinkage and selection operator, ridge regression, 

elastic net, random forest, and extreme gradient boosting models. The candidate learners were 

trained through 5-fold cross validation, and the corresponding predictions on the out-of-fold 

samples were used to develop a meta learner that optimized the weight (i.e., contribution) of 

each individual learner. We then cross-validated this trained model by applying it to the held-out 

test set to assess its performance by the area under the receiver operating characteristic curve 

(AUC).  

To test the robustness and reproducibility of the model training and testing, we used 

repeated cross-validation, i.e., repeated the process of randomly splitting the data into train and 

test sets, training the model by super learning, and evaluating its performance on the held-out 

test set, 100 times. Here we report the median (i.e., 50-th percentile), 2.5- and 97.5-th percentile 

AUC across the 100 iterations.  
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Figure 3. Machine learning model development and evaluation 

 

Identification of influential predictors and marginal causal risk differences 

A Variable Importance Measure (VIM) statistic was calculated for each of the 37 features for 

each data split, based on the size of the risk difference between the model fit with and without 

the feature. Thus, for each split, a list of 37 VIMs was produced. The top contributors to 

prediction for each split were identified as the 10 features with the highest VIMs. We defined 

“influential predictors” as the 10 features that most frequently appeared as top contributors to 

prediction across the 100 splits.  

To quantify the effect of the influential predictors identified by the super learner model on 

the cartilage worsening outcome, we utilized the parametric g-computation method [31]. 

Continuous variables were quantized into tertiles. For each predictor, we calculated the 

marginal causal risk difference of each category of the predictor on cartilage worsening, 

compared to the corresponding reference category, using riskCommunicator (v 1.0.0) in R.  
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RESULTS 

Model performance  

Of 947 participants (KLG £ 2) included in the analysis, 133 (14%) experienced medial 

tibiofemoral cartilage worsening in the study knee over 2-years. Across 100 splits, the median 

AUC (2.5- and 97.5-th percentiles) on the held-out test sets was 0.73 (0.64-0.80). 

 

Influential predictors and marginal risk differences 

The features most frequently appearing as top contributors to prediction across 100 data splits 

(and frequency of appearance) were baseline medial tibiofemoral cartilage damage (100), 

KLG (97), lateral GRF impulse (43), WOMAC pain during walking (39), time spent walking 

(33), vertical GRF impulse (32), gait speed (29), vertical GRF 1st peak (28), time spent lying 

(27), and timing of early lateral GRF peak (26). Marginal risk differences (Figure 4) can be 

interpreted as the difference in risk of cartilage worsening per 100 individuals in the given 

category compared to the referent category. Presence of baseline cartilage damage, higher 

KLG, greater lateral GRF impulse, and greater pain during walking were associated with 

increased risk of cartilage worsening over 2-years. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.30.22277057doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.30.22277057
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
15 of 26 

 

 

Figure 4. Causal risk differences for influential predictors identified from the machine learning model 

 

DISCUSSION 

An ensemble machine learning approach incorporating gait, physical activity, and 

clinical/demographic features showed good performance (median AUC = 0.73) in predicting 

medial tibiofemoral cartilage worsening over 2-years in people without or with early 

radiographic OA. While determining the relationships among predictors and outcomes in 

machine learning models is challenging, our analysis suggests that addressing high lateral 

GRF impulse may be a potential target to reduce cartilage worsening.  

 

Model performance  
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The current model performance is comparable to other machine learning models predicting 

OA progression from clinical/demographic data. Du et al. reported AUCs of 0.70-0.79 for 

predicting radiographic worsening (increase in KLG, medial, or lateral joint space narrowing) 

over 2-years from baseline cartilage damage features on MRI, but included individuals with 

KLG 0 to 4.[32] Tiulpin et al. reported AUCs of 0.73-0.75 for predicting worsening (increase in 

KLG or knee joint replacement) over 7-years from baseline age, sex, BMI, injury, surgery, 

WOMAC, and KLG in individuals with KLG < 2.[33] The current model achieved similar AUC 

for predicting cartilage worsening over 2-years in individuals with KLG £ 2, with the added 

benefit of providing information about potentially modifiable gait and physical activity 

predictors. 

Prior longitudinal studies of gait and OA typically examined knee-specific loading (e.g., 

knee adduction moment) rather than GRFs, often with samples of 15 to 300 knees.[5] 

Correspondingly, few addressed clinical and demographic confounders, incorporated physical 

activity predictors, or used cross-validation to examine performance in independent test sets. 

Further, many of these studies were conducted in samples with established OA (KLG ³ 2), 

limiting their potential to identify those at risk of progression early in the disease process or 

identify targets for early intervention. The current sample included 947 individuals with KLG £ 

2, who were predominantly pain free or had mild pain during walking, and thus were younger 

with lower BMI than what has been reported previously for established OA samples.[18]  

 

Predictors of OA progression 

The machine learning model identified multiple gait and physical activity features as influential 

predictors of cartilage worsening in knees without or with early radiographic disease. The only 

significant result from the g-computation analyses, however, was for lateral GRF impulse, 

where there was a 5.5% increased risk of cartilage worsening for every 100 individuals in the 
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highest compared to lowest tertile. In a cross-sectional study in the same cohort, we have 

previously reported that limbs with radiographic OA, with or without knee pain, have higher 

lateral GRFs in early stance compared to limbs free from both radiographic OA and pain.[34] 

The current results suggest lateral GRF may also play a role in progression. 

 The appearance of structure and symptom features as influential predictors is not 

surprising given that these are established risk factors for progression. Of note, despite only 

10.1% of the sample having established radiographic OA (KLG = 2), 39.2% had baseline 

cartilage damage, and both KLG and baseline damage appeared as influential predictors in the 

model. The g-computation analysis identified a 15.4% increased risk of cartilage worsening for 

every 100 individuals with baseline damage compared to no damage, and a 14.3% increased 

risk for every 100 individuals with KLG 2 versus 0. The lack of risk difference for KLG 1 versus 0 

may highlight limitations of the KLG scoring system, which does not reflect tissue-level damage 

well, particularly in early disease.[35, 36] WOMAC pain during walking also appeared as an 

influential predictor along with these structural measures. While those with mild pain had an 

increased risk of cartilage worsening (6.6%) compared to those with no pain, those with 

moderate or higher pain did not have a significantly higher risk. The large confidence interval 

and null result for moderate and higher pain could stem from the small proportion of knees (3% 

of sample) and/or heterogeneity in this group. 

 

Clinical implications 

The utility of this model for risk screening is debatable, as it requires collection of GRFs. While 

easier and faster to collect than joint moments, collecting GRFs requires specialized equipment 

(force platform). Future advances in wearable technologies may facilitate capture of gait 

information during everyday life, including estimates of GRFs,[37, 38] improving the potential of 

this type of model as a risk screening tool. 
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This model also identified potential gait and physical activity intervention targets that 

are of interest for further study. Interestingly, two influential predictors (baseline damage, 

KLG) appeared as top contributors in ³ 97% of the data splits while the others appeared less 

consistently (<50%), and only one gait and physical activity predictor had a significant risk 

difference among tertiles. While we removed highly correlated features, this may result in part 

from predictors that capture similar constructs (e.g., four features that collectively describe an 

important construct could each appear as top contributors 25% of the time). Similarly, our g-

computation approach provides insight into causal pathways but does not account for potential 

concurrent changes in several risk factors. An important motivation for using machine learning 

was to address potential interactions among gait, physical activity, and clinical/demographic 

factors. While it is challenging to identify these underlying relationships from the model, the lack 

of consistency in top contributors and null g-computation results could speak to a need for 

simultaneous intervention on several gait and physical activity features rather than a single 

feature, opening interesting avenues for future study.  

 

Strengths and limitations 

Strengths of this study include the large sample, investigation of risk factors in early disease, 

incorporation of both gait and physical activity, use of machine learning to address potential 

relationships among predictors, and use of g-computation to quantify the effects of these 

predictors. These strengths allowed us to expand existing literature by accounting for patient 

demographics and clinical characteristics, examining multiple gait and physical activity features, 

and testing our model in independent samples. While this study was performed in the large 

MOST dataset, our sample was limited to persons with KLG £ 2 and was largely White with little 

to no pain during walking, thus these results may not generalize to more diverse populations or 

those with severe symptoms. Lateral or patellofemoral worsening could have been present in 
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both outcome groups, resulting in less clear separation between the two. Knee joint specific 

loading (e.g., knee adduction moment) is not available in MOST, limiting comparisons to prior 

longitudinal gait studies. Additionally, we are unaware of other large datasets with gait, physical 

activity, and MR outcome data that could be used for external validation. However, we utilized 

repeated cross-validation to provide information on reproducibility. Last, while 3D GRFs were 

well characterized (21 features), physical activity was described by only 3 features. Better 

characterization of dynamic physical activity patterns may improve model performance and 

ability to identify relevant intervention targets.  

 

Conclusion 

Using an ensemble machine learning approach, we predicted medial tibiofemoral cartilage 

worsening over 2-years in persons without and with early radiographic osteoarthritis with good 

performance on independent samples. Additionally, we identified gait and physical activity 

measures associated with cartilage worsening that may be potential early intervention targets, in 

particular reducing high lateral ground reaction force impulse. 
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