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Abstract

Causal discovery is a powerful tool to disclose underlying structures by anayzing purely
observational data. Genetic variants can provide useful complementary information for
structure learning. Here, we propose a novel algorithm MRSL (Mendelian Randomization
(MR)-based Structure Learning algorithm), which combines the graph theory with univariable
and multivariable MR to learn the true structure using only GWAS summary statistics.
Specifically, MRSL also utilizes topological sorting to improve the precision of structure
learning and provides three adjusting categories for multivariable MR. Results of simulation
reveal that MRSL has up to two-fold higher F1 score than other eight competitive methods.
Additionally, the computing time of MRSL is 100 times faster than other methods.
Furthermore, we apply MRSL to 26 biomarkers and 44 1CD10-defined diseases from UK
Biobank. The results cover most of expected causal links which have biologica
interpretations and several new links supported by clinical case reports or previous

observational literatures.
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I ntroduction

Causal discovery aimsto infer causal structure by analyzing purely observational data[1-2]. It
can be widely applied in the socid and natural sciences, and it is a powerful tool for
discovering biological networks [3-4] and disease diagnostic purposes [5-6], etc. Graphical
models reveal the generating process of the observed data and they can be identified under
three assumptions [1-2, 7-8]: (1) the causal Markov condition, (2) the causal faithfulness
assumption and (3) the causal sufficiency assumption. The causal Markov condition means
that all nodes are independent of their non-descendants when conditionally on their parents.
The causal faithfulness assumption requires all conditional independences in true underlying
distribution P are represented in the graph and are invariant to changes in parameterization.
The causal sufficiency assumption states that any pair of nodes in the graph has no common
external cause, and it implies thereis no unobserved confounding variable. Various algorithms
have been developed and can learn causal structures from purely or mostly observational data
[9]. Constraint-based methods start with a fully connected graph and carry out a series of
marginal and conditional independence tests to decide which edges should be removed, such
as PC [10] and Markov blanket detection algorithm (e.g. Grow-Shrink [11] and Incremental
Association algorithm [12-13]), etc. The outputs of such algorithms are equivalence classes.
Score-based methods find the most plausible Directed Acyclic Graph (DAG) by optimizing a
properly defined score function, such as the hill climbing (HC) greedy search algorithm [14],
etc. The hybrid algorithms have become widely used because they combine the advantages of
the constraint-based and score-based algorithms [15]. One popular strategy is to use
constraint-based algorithms to determine an initial network structure and then to use
score-based algorithms to find the highest-scoring network structure. For example, Max-Min
Hill-Climbing (MMHC) [16] and Restricted Maximization algorithm [17], etc. All of these
methods require the causal sufficiency assumption and require that the input data sets must be
individual data. Recently several algorithms have been developed to learn the structure with
latent variables, that is, relax the causal sufficiency assumption, such as Fast Causal Inference
(FCI) agorithm [18-19] and Greedy FCI [20], etc. However, they output Partial Ancestral
Graphs (PAG), but not complete structure information. All of the above algorithms are for
structural learning but not for parameter learning

Utilization of genetic variants which are robustly associated with a risk factor provides a
directiona causa anchor for causal discovery. Thus the combination of Mendelian

Randomization (MR) and causal discovery becomes popular. MR methods use genetic
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variants as instrumental variables (IVs) to infer the causal relationship from the exposure to
the outcome [21]. These Vs can be used to remove confounding biases and to avoid reversed
causal relationships. A valid IV must satisfy three assumptions: (1) Relevance — IV is robustly
associated with the exposure; (2) Exchangeability — 1V is not associated with any confounder
of the exposure-outcome relationship; (3) Exclusion restriction — IV is independent of the
outcome conditional on the exposure and all confounders of the exposure-outcome
relationship. Richard et al. [22-23] concluded that Bayesian network (BN) incorporating
genetic anchors is a useful complementary method to conventional MR for exploring causal
relationships in complex omic data sets. A novel machine learning algorithm named MRPC
incorporates the Principle of Mendelian randomization (PMR) in the PC agorithm, to learn
causal graphs [24]. Nevertheless the algorithm also requires causal sufficiency assumption, i.e.
no unobserved confounders among all the variables. Actualy, this method only uses the
information of genetic variants but not the idea of MR. Afterwards, David et al. [25] presented
a pipeline, named causal Graphical Analysis Using Genetics (cGAUGE), using IV filters with
provable properties to perform univariable MR (UVMR) [26-27] then to obtained a causal
graph. This algorithm allows the unobserved confounders among all the variables and requires
individual genetic and phenotypic data. A flexible two stage procedure called bidirectional
mediated Mendelian randomization (BIMMER) can be used to infer sparse networks of direct
causal effects (DCEs) from phenome-scale GWAS summary statistics [28]. However, this
process is implemented by inverse sparse regression under the assumption that the DCE
matrix is sparse. Furthermore, BIMMER is very time consuming.

Multivariable MR (MVMR) [27, 29-30] is able to compute DCEs when there are
multiple potential exposures and a single outcome. In MVMR, each genetic variant must
satisfy the following criteria: (1) the variant is associated with at |least one of the exposures; (2)
the variant is independent of all confounders between exposures and outcomes; and (3) the
variant is independent of the outcome conditional on the exposures and confounders. In this
paper, we propose a novel agorithm called MRSL based on UVMR and MVMR for structural
learning using summarized genetic data without requiring individual data. MRSL starts with
an empty graph. For the first step, a marginal causal graph can be obtained by using
bi-directional MR [31-32] in pairs. This processis a UVMR analysis, which estimates all total
causal effects for each pair of variables. For the second step, we find the topological sorting
for the marginal causal graph. For the third step, based on the above topological sorting [33],
MVMR is performed to estimate the direct effects for each pair of variables by adjusting for
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the genetic associations with the phenotypes in a sufficient separating set. After an iteration
process of step 2 and step 3, MRSL outputs a true causal graph. We apply MRSL to 26
biomarkers and 44 1CD10-defined diseases in 337,198 European from UK Biobank using

summarized genetic data.
Results

[Please insert Figure 1 here]
Method overview. We present a novel algorithm MRSL for structural learning based on
summarized genetic data. Aniillustration diagram of MRSL is displayed in Figure 1. Consider
a DAG G with d phenotypes {X,, X,,..., X }. U represents a set of unobserved confounders
among d phenotypes. GWAS summary data for these d phenotypes are available. Generally,
for continuous phenotypes, beta coefficients and their standard errors can be obtained from
linear regression; for binary phenotypes, 10g(OR) coefficients and their standard errors can be
obtained from logistic regression. Firstly, MRSL initializes the target causal graph with an
empty graph and then obtains a marginal causal graph Gy, using bi-directional MR in pairs of
variables. The marginal causal graph Gy includes all the edges in the true causal graph G, but
may add extra edges and spurious colliders. At the second step, we find the topological
sorting of the nodes in the marginal causal graph using Depth First Search (DFS) algorithm
[33-34]. The order of the topological sorting for the true causal graph G and the marginal
causal graph Gy are the same. Based on this order, MVMR is performed to remove extra

edgesin Gu. For eachedge X, — X, inthe marginal causal graph Gu, we search asufficient
separating set SS5, |, ={ADJy _ .U,} and adjust for genetic associations with
ADJy _x. using MVMR to detect whether an edge is extra. The marginal causal graph is
updated after each edge’stest. ADJ, _,, ~ can be searched inthree ways: (1) all variables on
the open paths from X to X, ; (2) minima sufficient adjustment set [1-2] and al the

mediators from X to X,; (3) V{ X, ,X, and S}, where S° refers to the colliders

where X ~and X, have direct edges on them. For each edge X, — X, pointing to them
in the marginal causal graph Gy, if there is a sufficient separating set Sssxpﬁxq such that
X, L X, |SSSs<p_>Xq using MVMR, we delete the extra edge X, — X, in the true causal

graph G. In addition, adjusting for the nodes in SS&ﬁXq cannot unlock any blocked
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pathways in the true causal graph G. Thus the third step removes the extra edges in the graph
Gwn. For the fourth step, we add an iteration step to perfform MVMR in step 2 and step 3 again,
using the graph obtained by step 3 as the initialization, until this graph converges. Detailed
illustration of MRSL is shown in the Methods section.

We provide a motivating example to illustrate the workflow of MRSL (Figure 1 A-F).
The true causal diagram is Figure 1 (A). The input are the GWAS summary datasets of five
phenotypes. Firstly, bidirectiona MR in pairs of five variables are performed to obtain a
margina causal graph (Figure 1 (B)). We find that its topological sorting is
IX,, X5, X, X,, X, }. Then we perform MVMR varying across each edge in Figure 1 (B) to

detect whether the edge is extra. In this stage, we adjust for the genetic associations with
phenotypes in ADJy _ for each MVMR. We firstly focus on the edge X, — X,. The

other three nodes are not included in ADJ, ,, thus this edge retains. Then we are
interested in  the edge X, X, , and ADJYP , =ADI? , ={X} and
ADJIY ., ={X,,X; X,} . MVMR is performed by adjusting for the genetic associations with
phenotypesin ADJ, _ and theresult reveals anull direct causal relationship between X,

and X,. Thus the edge X, — X, is removed. The rest edges are tested by the same ways

(Figure 1 C-J). After al the edges in Figure 1 (B) are tested once, we obtained Figure 1 (J).
An iteration for step 2 and step 3 are performed using this graph and stop when the causal
graph converges. Finally MRSL output the target causal diagram.
Simulations: Firstly we conducted a simulation study to evaluate the performance of MVMR
to estimate the direct causal effect of an exposure (X) on an outcome (Y) when adjusting for a
collider (S), a mediator (M) or a measured confounder (C), respectively (Figure 2 A-C). We
considered seven kinds of available SNPs as IVs: (1) G: SNPs only associated with X; (2)
G, SNPs associated with X and adjusting variable; (3) G,: SNPs only associated with the
adjusting variable; (4) G +G;; (5) G +G,; (6) G,+G;; (7) G +G,+G,. Details of data
generation are shown in Methods section and Supplementary Notes.

[Please insert Figure 2 here]

[Please insert Figure 3 here]

Figure 3 shows the results of MVMR when there are 100 1Vs. When adjusting for the

collider (S), the causal estimation is biased whatever IVs are used, and this bias becomes

larger as the increasing of other edges’ effects. When adjusting for the mediator (M), causal
6
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estimation is unbiased when the IVsare G, only, G +G; or G +G,+G;. Thetypel error

rates of causal estimations are stable around 0.05 under these three kinds of 1V selection. The
causal estimations under G +G, or G,+G,+G, have higher power than that under G,

only when the causal effect is 0.1. G, are terrible 1Vs with large biased estimations
whatever variables adjusting for. When adjusting for the measured confounder (C), G only,
G, only, G+G, and G +G,+G, are good choices for 1Vs in MVMR with unbiased
estimations. When G, only and G +G, arelVs, thetypel error rates of causal estimations
are stable around 0.05, whereas when G only and G +G,+G, are IVs, the type | error

rates are alittle bit inflated. The power of causal estimation is high whatever kinds of IVs are
selected except G, only. The simulation results of 6, 20 and 60 Vs are shown in the

Supplementary Fig.1-4. In practice, practitioners always don’t know the roles of the adjusting
variables. Consider the above three graphs together, G, +G,+G;, is the best choice of IVs

when performing MVMR.

For the simulation study 2, we conducted a smulation study for continuous and binary
phenotypes to learn the structures of random graphs, respectively. We generated the random
graphs with 5, 10 and 15 nodes, respectively. Considering the different complexity of network,
we set the probability of each edge to be present in a graph as 0.2, 0.5 and 0.8. The effect of
each edge follows uniform distribution with four settings: U(0,0.25), U(0.25,0.5), U(0.5,0.75)
and U(0.75,1). We varied across the number of SNPs g, and g, as5, 10, 20, 30, 40 and 50,

respectively. We compared MRSL with eight published methods: BIMMER [28], cGAUGE
based on IVW, MR Egger and MR PRESSO [25], HC algorithm incorporating genetic
anchors [23] (based on genetic risk score or the most significant SNP) and MRPC algorithm
[24] (based on genetic risk score or the most significant SNP). Details of data generation are
shown in Methods section.

[Please insert Figure 4 here]

[Please insert Figure 5 here]

[Please insert Table 1 here]

Simulation results of 10 continuous nodes are shown in Figure 4-5 and Table 1. Figure 4
demonstrates the F1 score with different edges’ effects and complexity of network. Figure 5
shows the mean of precision and recall when there are 20 1Vs. Results of precision and recall
when there are 5, 10, 30, 40, 50 Vs are shown in Supplementary Fig. 5-8. When the network
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is simple (prob=0.2), F1 score of MRSL is the highest and the performance of three
adjustment categories are similar. As the network become more complex, the F1 score of
MRSL when adjusting for all nodes on the open paths and minimum separated set is

decreasing, whereas MRSL when adjusting for V\{ X, X, S* and U} still has the highest

F1 score. The recall of the former is smaller than the latter as the edges' effects and the
complexity of graph rising. When the edges’ effects are small, F1 score of MRSL rises as the
number of IVsincreasing. When the edges’ effects are large, F1 score of MRSL decreases as
the number of IVs increasing due to the reduction of precision. This may because in

simulation study 1, as the number of IVs increasing, the type | error rate of G, +G,+G, is

even more inflated and lead to the increase of false negative rate. Besides, the power of causal
estimation using MVMR is decreasing as other edges effects increasing. In addition, the
number of adjusting variables is increasing as the network become more complex, then the
accuracy of causal estimation using MVMR is reducing. Table 1 shows the computing time of
MRSL and other eight methods when there are 5, 20 and 50 IVs. MRSL has the fastest
computing time among these methods. Computing time of all the methods with 10, 30 and 40
IVs are listed in Supplementary Table 1. The results of MRSL with 10 binary nodes are
similar as that with continuous nodes (Supplementary Fig. 9-13 and Supplementary Table 2).
As the number of nodes increasing in the network, the F1 score of MRSL is reducing
especially when the network is complex. Results of 5 and 15 nodes are shown in
Supplementary Fig. 14-33 and Supplementary Table 3-6.

[Please insert Figure 6 here]

[Please insert Figure 7 here]

For the simulation study 3, in order to evaluate the performance of MRSL in practical
application, we choose three fixed networks (Figure 6), which are representative examples in
practice, including MAGIC-NIAB [35], ASIA (lung cancer network) [36] and Healthcare
Cost [2], with continuous, binary and mixed nodes, respectively. Detals of these three
networks are illustrated in the Method section. Figure 7 shows the F1 scores of MRSL and
eight methods when learning three networks. MRSL has the best performance among all
methods. The performances of ASIA (binary) and MAGIC-NIAB (continuous) are similar as
that in simulation study 2. For the mixed variables network Healthcare Cost, F1 scoreis lower
than that of ASIA and MAGIC-NIAB. And when the edges' effects are larger, MRSL when
adjusting for adjusting for all nodes on the open paths and minimum separated set is alittle bit
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larger F1 score than MRSL when adjusting for V\{ X , X, ¢ and U} because of higher

precision. The precision and recall are shown in Supplementary Fig. 34-45.

Applied example: network of 44 diseases and 26 biomarkers. We applied MRSL to learn
the network of 44 diseases with ICD 10 coding and 26 biomarkers using GWAS summary
data in UK Biobank. The list of these 70 traits are shown in the Supplementary Table 7.
Figure 8 A) shows the marginal causal graph by MRSL step 1, resulting in 70 nodes and 388
edges. Figure 8 B) shows the conditional causal graph obtained by MVMR adjusting for

VY X, X S* and U}, resulting in 69 nodes and 192 edges. This result was obtained by

removing 196 direct edges induced by mediation pathways after bonferroni correction. Figure
8 C) shows the causal mediation pathways from biomarkers on each diseases. Vitamin D,
Total protein, Urate and Urea are root causes for nearly al the mediation pathways of diseases
[37-39]

[Please insert Figure 8 here]

Most of causal links are expected and have clear interpretation of biological pathways or
have been confirmed by experiments. Such as B37 Candidiasis, Vitamin D [40], K40 Inguinal
hernia [41] and G81 Hemiplegia [42] are direct risk factors; Phosphate [43] and Glycated
haemoglobin [44] are direct protective factors. For F33 Recurrent depressive disorder,
Testosterone have a positive effect on F33 [45]. Other biomarkers affect F33 through F43
Reaction to severe stress, and adjustment disorders. IGF-1 [46] directly influence the risk of
D04 Carcinoma in situ of skin. Vitamin D directly affect G81 Hemiplegia with a protective
effect [47]. Glucose [48] and Urate [49] arerisk factors of K74 Fibrosis and cirrhosis of liver.
Biomarkers have causal effects on K90 Intestinal malabsorption through R14 Flatulence [50]
and related conditions and L43 Lichen planus [51].

Several novel causal links are founded and supported by clinical case report or
observational studies. For example, for C16 Malignant neoplasm of stomach, Urate [52], T17
Foreign body in respiratory tract [53-54], F31 Bipolar affective disorder [55] and K41l
Femoral hernia [56] have negative causal effects on the Malignant neoplasm of stomach.
Urate [57] positively affects the risk of Carcinoma in situ of skin. IGF-1 [58-59] and KO7
Dentofacial anomalies [including malocclusion] directly increase the risk of G81 Hemiplegia
For H60 Oititis externa, Glycated haemoglobin [60] is protective factor, JO3 Acute tonsillitisis
a risk factor of Otitis externa. For J03 Acute tonsillitis, IGF-1 [61], HDL cholesterol [62],
total protein [63] and total bilirubin [64] positively affect J03 Acute tonsillitis. Urate [65] is a

9
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risk factor for K12 Stomatitis and related lesions. Urate negatively affects the risk of M81
Osteoporosis without pathological fracture [66] whereas R25 Abnorma involuntary

movementsis arisk factor [67].
Discussion

In this work, we present a novel algorithm called MRSL based on UVMR and MVMR for
structural learning. Our method is flexible as it requires only summarized genetic data
Besides, MRSL relaxes the causal sufficiency assumption and can be implemented with fast
computing speed and outputs a conditional causal graph with directed causal effects. MRSL
consists of four steps: step 1 outputs amarginal causal graph using bi-directional MR in pairs,
step 2 find the topological sorting of marginal causal graph, step 3 outputs a conditional
causal graph by MVMR and step 4 is an iteration process of step 2 and 3. The marginal causal
graph reveals the total causal relationships of each pair of variables and the conditional causal
graph identifies the mediation pathways then discloses the direct effects of each pair of
variables. The application to 26 biomarkers and 44 1CD10-defined diseases cover lots of
expected causal links which have biological interpretations and several new links supported
by clinical case reports or previous observationa literatures.

The core of MRSL is MR analysis, thus how well MRSL performs depends on the
performance of MR decides. The first point we need to focus on is the selection of IVs. For
the bi-directional MR, an aternative choice is the SNPs only associated with the exposure but
not associated with other variables in the network. To some extent, this can block nearly all
pleiotropic pathways. For MVMR, we firstly conducted a simulation study to choose the most
valid IVs. Here we should consider the valid I'Vs which makes the MVMR perform best when
adjusting for the collider, mediator and confounder simultaneously. From the results of

simulation 1, G,+G,+G, isthebest choice. Thisis supported by previous literature [68-69].

It is necessary to have as many Vs as possible, that is, including genetic variables that are
associated with at least one exposure and removing the instruments that only strong with one
exposure will lead to a loss of precision in the estimation or other potential bias. We only
focus on the effect of particular exposure on the outcome using MVMR each time, thus we
only force positive association with respect to the exposure we are interested in [70]. It has no
influence on our results although this may change the sign of the association with respect to
the adjusting variables. In this work, we use univariable and multivariable IVW as the main

methods. MRSL can be extend to use other UVMR methods, such as pleiotropy-robust

10
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methods (e.g. MR-Egger [71], the weighted median method [72], the mode-based estimate
method [73], MR-RAPS [74] and contamination mixture method [75], etc), and MVMR
methods (e.g. MVMR-Egger, MVMR-Robust, MVMR-Median, and MVMR-Lasso [70], etc)
instead of IVW. However, combination of these methods in MRSL is a time consuming
process and may lose precision due to the low accuracy of methods themselves.

In the second step of MRSL, we present three strategies for adjusting variables in
MVMR with the complement of graph theory in causal inference. Because MR overcome the
influence of unobserved confounding, we exclude U in the three sets of adjusting variables.
Another point we pay attention to is that whether these three sets of adjusting variables are the
same in the marginal causal graph and the true causal graph, or in other words, we have two
guestions: does adjusting these variables in the marginal causal graph unlock the blocked
pathways in the true causal graph? or not completely block the mediation pathways in the true
causal graph? For these two questions, we proposes Lemma 1-3 and Theorem 2. The first way
is adjusting for al nodes on the open paths in the marginal causal graph. This enables all the
open paths between two variables can be blocked, whether mediation pathways or
confounding pathways. This adjusting set doesn’t include the spurious colliders in the
marginal causal graph. For the second way, minimal separating set may include spurious
colliders at the cost of include other confounders or mediators to ensure the separation of two
variables. This not only block the pathways in the true causal graph, but aso block all the
pathways include spurious pathways in the marginal causal graph. The third adjusting set is
the most conservative set, that is, adjusting for all the variables excluding colliders, which are
particular colliders that must have direct edges on the two variables we are interested in. In all,
the second step of MRSL is a process to remove extra edges in marginal causal graph, and
obtain a conditional causal graph.

Combination of graph theory and MVMR is a unique property of our algorithm, and we
utilize this novel property into causa discovery to improve the precision and recall. Our
method can be easily implemented only using GWAS summary data, which is public available
for the most phenotypes as the emergence of a large number GWAS studies with huge sample
size. Published MR-based algorithm such as cGAUGE, requires the individual-level data and
are thus not as easily available as the GWAS summary statistics, and is very time consuming
[25]; BIMMER are implemented based on the complex inverse sparse regression and obtai ned
an approximately estimation of DCE matrix, this require time roughly O(x d*) for d
phenotypes [28]. In the result of simulation study 2-3, we found that the computing time of

11
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MRSL is only around 1/100 of BIMMER, and 1/1000 of cGAUGE, respectively. MRSL has
two-fold higher F1 score than other eight methods when the network is smple. Also, MRSL
outputs the unbiased direct effect of each pair of variables. Moreover, MRSL can be applied
into the structure with feedback loops between any two variables, because our main MR
method IVW can powerfully deal with the case of bi-directional causal relationship between
two variables [28,76]. Similar to MR analysis, GWAS summary data of d phenotypes should
from the homogenous population. We also need to pay more attention to other issues, such as
measurement error, selection bias and missing data, etc, in the future.

In conclusion, we proposed a novel agorithm, utilizing the combination of graph theory
and MR into causal discovery to learn the conditional causal graph. We look forward to offer
constructive suggestions for disease diagnostic and apply our method beyond the scope
considered here.

Methods

MRSL. We consider an algorithm MRSL for structural learning based on summarized genetic
data. An illustration diagram of MRSL is displayed in Figure 1. Assume a DAG =<V, E>
with unobserved confounders, where V is a set of nodes and E is a set of pairs of nodes.

Assume we are interested in d phenotypes {X,,X,,...X,}. U represents unobserved

confounders among d phenotypes. E; and Egy denote al the pairs of nodes for directed edges
in the true causal graph G and the marginal causal graph Gu, respectively. S; and Sgu denote
all the collidersin the true causal graph G and the marginal causal graph Gu, respectively. For
convenience, the unobserved confounders among phenotypes in Figure 1 are omitted. GWAS
summary data for these d phenotypes are available. Generally, for a continuous phenotype,
beta coefficient and its standard error can be obtained from linear regression; for a binary
phenotype, |og(OR) coefficient and its standard error can be obtained from logistic regression.
MRSL initializes with an empty graph. The first step of MRSL is to obtain a marginal causal
graph, denoted by G, using bi-directional MR in pairs. Here, we choose the univariable
inverse-variance weighted (1VW) method as the main method because of its high accuracy.
Assumption 1. For an exposure and an outcome, the independent IVsin UVMR must satisfy
(Relevance) 1Vs are strongly associated with the exposure; (Exchangeability) IVs are
independent with unobserved confounders between the exposure and the outcome; (Exclusion
restriction) 1Vs affect the outcome only through the exposure.

For a pair of phenotypesX ; and X, we firstly focus on the causal effect of X on
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X, -Weselect J ~[Vsfor X = toperform weighted regression:
By, =ByaByx, +8x, 8¢, ~NORB, )),i=1..3,, (D)
where %’XM and %Xm are genetic associations for X, and X, on j-th IVs in linear

regression in GWAS, respectively. se(%’xq_) is the standard error of %qu' J, Ivsfor X,
must satisfy the Assumption 1. For the reverse direction, we select J, Vs for X to

perform weighted regression:

%x- :bqap%xq‘ TE, Ex, ~ N(O, Se(%xpj )2), | ::L""‘Jq' (2

2]

b or b represents the total effect of X  on X, or X, on X

p—q q—-p

respectively.

b
Similarly, J, IVs for X, must satisfy the Assumption 1. Wald tests for the total effect
estimations can be used to test whether there are causal pathways from X to X, or X,
to X, respectively.
Assumption 2 (Causal Markov condition). Each variable is independent of its
non-descendants given its parents in graph gG.
Assumption 3 (Faithfulness assumption). All independencies embedded in the observed
distribution P are stable and are invariant to changes in parameterization. Thus, it implies
(together with d-separation) that (X LY |Z)p <= (X LY|Z),.
Lemma 1. For the true causal graph G and the margina causal graph Gm, E;SEgm and
SCSSowm.

For the second step, we find the topological sorting Tgv in marginal causal graph Gu using
DFS [33-34]. Topologica sorting for a DAG is a linear ordering of vertices such that for

every directed edge X, — X, vertex X = comes before X in the ordering. This ensures

that parent nodes will be ordered before their child nodes, and honors the forward direction of
edges in the ordering. The DFS algorithm loops through each node of the graph, in an
arbitrary order. DFS terminates when it hits any node that has already been visited since the
beginning of the topological sort or the node has no outgoing edges. Each node X gets
prepended to the output list only after considering all other nodes which depend on X (all
descendants of X in the graph).

Lemma 2 (Topological sorting invariance). The topological sorting of the true causal graph
G and the marginal causal graph Gu are the same Tg=Tgw.
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In the third step, MVMR is performed to remove Egu\Eg in Guv, and obtain the true
causal graph. For each edgein Gw (6.9. X, — X, ), we detect whether this edge exists after
adjusting for the genetic associations with the phenotypes in a sufficient separating set using
MVMR.

Assumption 4. For an exposure, a set of covariates and an outcome, the independent IVs in
MVMR must satisfy (Relevance) I1Vs are strongly associated with the exposure and
covariates; (Exchangeability) 1Vs are independent with any unobserved confounders among
the exposure, adjusting variables and the outcome; (Exclusion restriction) Vs affect the

outcome only through the exposure or covariates.
For an edge X,— X, in Gu, SS5, .« :{ADJX’ﬁxq U, denotes the sufficient
separating set. Then we can perform multivariable IVW by following weighted regression of

X, on X, adjustment for ADJy _x.

%)x. = apaq%xm + 8p, %XADJXMW TE Ex, T N (O, Se(%xcIj )%, Q)

a

where a_ is the direct effect of X  on X, not through mediators and confounders in
ADJXP_)Xq . The Wald test for estimation of a_,_, can be used to test whether there is a direct
edge from X to X, .IVsfor the regression (3) above must satisfy the Assumption 4. This

kind of IV can be obtained by statistical filtering criteria (see application examples) or ImplV
filter and ExSep test [25].
For MVMR, the sufficient adjustment set ADJXWxq can be made up of three ways: (1)

al nodes on the open paths from X to X_; (2) minimal sufficient adjustment set for

confounders and al the mediators from X to X ;(3) V{ X, X, and s'}. s¢ refersto
a set of colliders where the two interested nodes have direct edges on them, e.g. for two nodes
X, and X, thecollider S in X —§ « X, isincludedin S° but the collider S, in
X, =S, «C— X, isnotincluded in S*. S° inthe graph Gu includes the colliders and
the nodes not on the pathway from X to X, but not includes any mediators, confounders
or the nodes which are both mediators and confounders on the pathways from X, to X, in
the true causal graph G. Note that one node can be a mediator and a collider simultaneously.
For example, a graph D with edges X, — X;, X; = X,, X, = X, and X, —> X;, X; isa

mediator on the path X, — X, — X, and also a collider on the path X, — X, < X,. This
14
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kind of node is included in the sufficient separating set ADJ;p_>Xq by including other nodes
(eg. X,)toensure X and X, aresufficiently separated.

Weuse ADJ Qi_)xq (i=12,3) to denote that adjusting variables ADJ, _,, obtained by
the i-th way. The order of MVMR varying across each edge is the same as the topological
sorting in step 2. The topological sorting avoids the case in Supplementary Fig. 46, in which
we show the MV MR adjusting for the genetic associations with the phenotypesin ADJg(S:ﬁXq
with and without topological sorting. For the latter, when we perform MV MR to test whether
theedge X, — X, exists, the genetic association with X, isadjustedin MVMR. However,

in A3, X, isacollider but is not included in S, and X, isincluded in S°. Then we

perform MVMR %Xu ~0541§6’x4]_ +a31‘ﬁx3j and the estimation for direct effect of X, on X,

is biased because X, isacollider. The bias formula of causal estimation when adjusting for
a collider using MVMR are shown in Supplementary Notes. For the former, this kind of
problem can be avoided and the process of removing edges is more accurate and faster after
topological sorting.

Theorem 1: Under the Assumptions 2-4, for each edge X, — X, in the marginal causal
graph Gum, given a sufficient separating set SSSXﬁXq :{ADprﬁxq,qu} such that
X, LX, |SSS<D_>Xq , which can be tested by adjusting for genetic associations with
ADpr%xq using MVMR,

2
@xm = apeq%xm + 8pp; %xmxﬁxq] TE 1Ex, T N (O, Se(%xq,) )

where a, , determines the existence of edge from X to X, in the true causa graph g,

q

then thereisno direct edge from X to X, inthetruecausal graph G.

Based on Theorem 1, the edges Egu\ E; in the graph G are removed. After the third step,
we add an iteration step to perform step 2 and 3 again, using the graph obtained in the
previous step 3, until the graph is convergence. The aim of this step is to eliminate the random
error and statistical test error in the UVMR and MVMR and increase the precision of MRSL.

Simulation. We conduct three simulation studies to evaluate the performance of MRSL.

Firstly, we conduct a simulation study to choose the optimal selection strategy of 1Vs for
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MVMR. Secondly, we evaluate the performance of MRSL and other eight published methods
for structure discovery, when learning the structure of random graph with continuous and
binary nodes, respectively. Thirdly, we select three representative graphs from previous
literatures and access the performance of MRSL and other eight published methods.

Simulation study 1 on 1Vs sdection in MVMR. The basis of MRSL is MR, thus it is
vital to select valid IVs. We firstly conduct a simulation study to evaluate the performance of
MVMR when estimate the causal effect of an exposure (X) on an outcome (Y). We consider
three roles of adjusting variables in MVMR: a collider (S), a mediator (M) or a measured
confounder (C) in the causal pathway from X to Y (Figure 2 A-C). Based on the three figures,
there are seven kinds of available SNPs as1Vs: (1) G: SNPsonly associated with X; (2) G,:
SNPs associated with X and adjusting variable; (3) G,: SNPs only associated with the
adjusting variable; (4) G +G;; (5 G+G,; (6) G,+G;; (7) G +G,+G,. When the
adjusting variable is a confounder, G, is also associated with X, and it may be selected as
instrumental variable because practitioners don’t know the true roles of the adjusting variables.
The process of data generation is shown in Supplementary Notes. We generate 10,000
individuals and 1,000 repeated datasets. To access the performance of MVMR, we plot a
boxplot to evaluate the estimation of causal effect of X on 'Y, and calculate the type | error rate
for null causal effect and statistical power to detect the non-zero causal effect. The nominal
level isset to 0.05.

Simulation study 2 on MRSL with random graphs. To valid the utility of the MRSL
method for learning structures, we conduct a simulation study for continuous and binary
variables, respectively. Genetic |Vs are generated from binomial distribution B(20.3). Let Y
denote the Nxd matrix of d phenotypes and G denote a NxJ matrix of J SNPs. For continuous
variables, d phenotypes are generated from the following model

Y=RB+Ga+U +¢,

where R, represents the parent nodes of Y, S arethe effectsof R, on Y and generated

from uniform distribution, @ is a dxJ matrix of effects of SNPs on phenotypes, U

represents the confounding factors among d phenotypes and ¢ is the residual term
following normal distribution N(O,1) . For binary variables, d nodes are generated from the
following model

logit[P(Y =1)]=R +Ga+U .
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We generate the random graphs with 5, 10 and 15 nodes, respectively. Considering the
different complexity of network, we set the probability of each edge to be present in a graph
as 0.2, 0.5 and 0.8. In practice, there may be effects of different magnitude between traits,
thus we consider B follows uniform distribution with four parameter settings: U(0,0.25),
U(0.25,0.5), U(0.5,0.75) and U(0.75,1) for continuous nodes, odd ratio (OR) U(1,1.5),
U(1.5,2), U(2,2.5) and U(2.5,3) for binary nodes. The IVs are assumed uncorrelated, and
subdivided into two categories: (1) g, SNPsthat only predict one phenotype; (2) g, SNPs

that predict all the phenotypes simultaneously. The variance of each phenotype explained by
all the SNPsis around 10%. We vary across the number of SNPs g, and g, with5, 10, 20,
30, 40 and 50, respectively.

We compared our method with eight published methods: BIMMER [28], cGAUGE
based on IVW, MR Egger and MR PRESSO [25], HC algorithm incorporating genetic
anchors [23] (based on genetic risk score or the most significant SNP) and MRPC algorithm
[24] (based on genetic risk score or the most significant SNP). BIMMER can be implemented
using GWAS summary data whereas other seven methods need individual genetic and
phenotypic data. To access the performance of algorithm, we calculate the mean of F1 score,
recall, precision and computing time across 100 data sets with 10,000 individuals for each
method. Recall (i.e., power, or sensitivity) measures how many edges from the true causal
graph a method can recover, whereas precision (i.e.,, 1-FDR) measures how many correct
edges are recovered in the inferred graph, and F1 score is a combined index of recall and
precision. Details of calculation formula are shown in Supplementary Notes.

Simulation study 3 on MRSL with fixed graphs. In order to evaluate the performance
of MRSL in practical application, we choose three representative examples (Figure 3 A-C): A)
MAGIC-NIAB, a network based on the Multiparent Advanced Generation Inter-Cross
(MAGIC) winter wheat population produced by the UK National Institute of Agricultural
Botany (NIAB), seven continuous traits were measured: yield (YLD), flowering time (FT),
height (HT), yellow rust in the glasshouse (YR.GLASS) and in the field (YR.FIELD),
Fusarium (FUS), and mildew (MIL). Such a scheme is designed to produce a mapping
population from several generations of intercrossing among eight founders and has the
potential to improve quantitative trait loci (QTL) mapping precision. B) ASIA, also called
lung cancer network, consists of eight binary variables. Lauritzen and Spiegelhalter (1988)
[36] motivate this example as follows: “Shortness-of-breath (dyspnoea) may be due to

tuberculosis, lung cancer or bronchitis, or none of them, or more than one of them. A recent
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visit to Asia increases the chances of tuberculosis, while smoking is known to be a risk factor
for both lung cancer and bronchitis. The results of a single chest X-ray do not discriminate
between lung cancer and tuberculosis, as neither does the presence or absence of dyspnea.” C)
Healthcare Cost, is a recurring theme in most countries’ public discourse due to the
combination of an ageing population and the availability of more advanced (read, expensive)
treatments. We use the simple example in Marco et a. (2021) [77], which modeled an
individual’s yearly medical expenditure by seven mixed variables: age, pre-existing
conditions, outpatient expenditure, inpatient expenditure, any hospital stay, days of hospital
stay and taxes.

The data generation process and parameters’ settings of these three networks are similar
with that in smulation study 2. We also use F1 score, recall, precision and computing time to
evaluate the performance of MRSL.

Applied example. We apply MRSL to learn the network of 26 biomarkers and 44
ICD10-defined diseases using GWAS summary data in UK Biobank. For quantitative
phenotypes, we use the phenotypes that have been inverse rank normalized.

For MRSL, we first clumped the UK Biobank summary statistics to p<5x10® for 26
biomarkers and 44 diseases, with r?> < 0.0001 and distance 10000 kilobases using the

European reference panel in mrbase (https://www.mrbase.org/). To avoid the selection bias,

we choose the IVs in the mae population and use the summarized statistics in female
population. For step 1 in Figure 1, in order to obtain a marginal causal graph using
bi-directional MR, for each MR analysis, we select the SNPs associated with the exposure but
not associated with other phenotypes (except exposure and outcome) as IVs. For example, if
we perform MVMR  X,~X,+ X,, SNPs associated with X, but not associated with X,
are selected as IVs. Next we perform MVMR using three adjustment strategies to obtain the
true graph. We select SNPs associated with at least one phenotype of exposure and the
adjusting variables as IVs. For example, if we perform MVMR X,~X,+X,, SNPs

associated with at least one of X,, X, and X, but not associated with X, are selected

as |Vs. For each MVMR, we also need to filter out the SNPs with linkage disequilibrium (r* >
0.0001).
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Data and code availability

The GWAS summary data in UK Biobank are publicly available at
http://www.nealelab.is/'uk-biobank. All the analysis in our article were implemented by R
software. MRSL can be implemented by https://github.com/hhoulei/MRSL. BIMMER were
implemented using R packages bimmer. MRPC were implemented using R packages MRPC.
HC algorithm were implemented using R packages bnlearn. cGAUGE were implemented
using functions in https://github.com/david-dd-amar/cGAUGE and R packages
MendelianRandomization, MRPRESSO. All the networks were plotted using R packages

igraph.
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Figurelegends

Figure 1. Workflow and the motivating example of MRSL algorithm. Confounders of d
phenotypes are omitted. The input data is GWAS summary data for each phenotype.
Initialization with an empty graph. For the Step 1, a marginal causal graph can be obtained
using bi-directional MR in pairs. For the Step 2, the topological sorting of marginal causal
graph should be found using Depth First Search (DFS). For the Step 3, MVMR is performed
to remove extra edges in the margina causal graph by adjusting for the genetic associations
with phenotypes of three strategies of sufficient separating sets. Thein the Step 4, iteration for
step 2 and step 3 is performed until the graph converges. Finally MRSL outputs a conditional
causal graph. (A-J) Motivating example with five nodes. (A) The true causa graph. (B)
Marginal causal graph obtained by step 1. (C-J) Perform MVMR for each edge in graph (F)
based on its topological sorting. Blue nodes denote the exposure and outcome we are

interested in. MRSL outputs the graph (J). SSSXDHXq ={ADJxﬁxq,qu} denotes the
sufficient separating set from X, to X,. ADJ{_, includes all nodes on the open paths

from X  to X_; (2 ADJ§prxq includes the elements in the minimal sufficient adjustment

set and al the mediators from X, to X.; (3) ADIY , =V\{ X, X, adS'}. s’
refers to the colliders where X and X, have direct edges on them. In the motivating

example, we omit the unobserved confounders U and the instrumental variables for each
phenotypes used in MR.

Figure 2. Diagrams for simulation study 1. X, exposure; Y, outcome; S, collider; M, mediator;
C, measured confounder; U, unobserved confounder. ,3 isthe causal effect of X onY. ¢ is
the causal effect of X on /M or Con X. «, isthecausa effect of /M onY orYonS. G
are SNPs only associated with X. G, are SNPs associated with X and adjusting variable.
G, are SNPs only associated with the adjusting variable

Figure 3. Simulation results of MVMR in simulation study 1. (A-C) Causa effect estimation
of X onY when causal effect [=0; (D-F) Type |l error rates of causal effect estimation of X

on Y when causal effect f=0; (G-1) Causal effect estimation of X on Y when causal effect
[=01; (J-L) Statistical power of causal effect estimation of X on Y when causa effect

B=0.1. The x-axis represent the other edges’ effect (¢4 and ¢, in Figure 2).

Figure 4. F1 score with 10 continuous nodes. The x axis represents the number of 1Vs.
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Considering the different complexity of network, we set the probability of each edge to be
present in a graph as 0.2, 0.5 and 0.8. The effects of any two traits B follows uniform
distribution with four parameter settings: U(0,0.25), U(0.25,0.5), U(0.5,0.75) and U(0.75,1)
for continuous nodes. MRSL_min_sep_set indicates the MRSL adjusting for minimal
sufficient adjustment set and all the mediators; MRSL_open path indicates the MRSL
adjusting for al the nodes on the open paths; MRSL_remove_collider indicates the MRSL

adjusting for V\{ X, X, andS}.

Figure 5. Precision and recall with 10 continuous nodes when thereis 20 1Vs.

Figure 6. Diagrams of practical example in the simulation study 3. Green and yellow circles
denote continuous and binary variables, respectively. MAGIC, Multiparent Advanced
Generation Inter-Cross; NIAB, National Institute of Agricultural Botany; YLD, yield; FT,
flowering time; HT, height; YR.GLASS, yellow rust in the glasshouse; YR.FIELD, yellow
rust in the field; FUS, Fusarium; MIL, mildew.

Figure 7. F1 score of MRSL when learning the structure of MAGIC-NIAB, ASIA and
Healthcare Cost.

Figure 8. Structures of 26 biomarkers and 44 diseases in applied example 2. A) the marginal
causal graph obtained by MRSL-stepl; B) the conditional causal graph obtained by
MRSL-step2; C) mediation pathways of several diseases. The color of an edge indicates
whether the effect is positive or negative. Yellow edges represent the positive effects and
green edges represent the negative effects. Blue nodes represent the ICD10-defiend diseases.
Pink nodes represent the biomarkers.
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Table 1. Computing time with network of 10 continuous nodes in simulation study 2 (seconds).

Edgeeffect g prob MRSL' MRSL® MRSL® MRPC' MRPC’ HC' HC* BIMMER cGAUGE' cGAUGE® cGAUGE’
02 044 063 001 1018 998 138 1.09 9.63 89.86 93.17 153.23

5 05 116 155 001 1242 1149 224 162 1006 104.54 106.87 167.74

08 28 249 001 1100 1173 270 227 9.62 107.74 105.53 162.45

02 025 033 001 31835 699 200 0.6 347 187.00 180.95 374.32

0025 20 05 079 089 002 52453 594 247 108 4.07 188.95 185.82 375.04
08 197 1.95 003 22519 592 244 154 5.02 189.15 186.96 377.61

02 043 054 008 45450 1333 269 145 6.33 769.21 755.44  1177.71

50 05 162 162 015 62090 1157 331 1.86 7.64 761.88 71636 116177

08 358 366 024 55661 1141 333 251 @ 1142 740.36 716.61 1130.72

02 117 1.74 001 778 1109 206 133 1231 112.22 108.91 141.70

5 05 629 416 002 534 1003 265 299 8.63 115.11 112.67 139.95

08 835 630 003 39 887 225 350 6.98 122.92 111.16 122.10

02 110 139 003 11026 965 277 121 8.42 338.80 332.62 610.84

02505 20 05 615 502 007 3304 877 273 306 1134 362.36 353.72 571.79
08 854 1007 0.8 5.60 753 200 3.34 7.43 344.11 339.55 523.73

02 131 147 014 5675 811 190 117 8.64 743.79 757.10 960.77

50 05 711 750 028 2580 848 241 276 1458 791.12 733.85 942.95

08 1577 1818 0.1 4.00 747 177 315 7.90 773.35 755.31 895.70
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0.2 1.28 181 0.01 477 1017 206 153 10.40 110.09 105.68 132.13

5 05 6.99 4.42 0.02 2.86 5.44 243 353 6.77 116.25 108.11 115.02

0.8 9.75 8.56 0.03 191 3.25 18 315 5.42 114.58 108.85 117.62

0.2 1.52 1.83 0.04 24.12 7.52 241 150 9.56 344.63 323.82 551.96

0.5-0.75 20 05 8.27 8.21 0.06 4.20 4.94 204 321 7.29 351.35 350.21 442.85
08 1258 17.88 0.03 1.52 2.70 151 273 5.55 354.66 347.40 377.69

0.2 1.20 123 0.08 15.27 3.37 105 0.78 5.15 417.83 416.32 517.33

50 05 8.42 12.04 0.10 2.00 3.54 153 263 5.72 589.59 651.33 864.82

08 1549 2346 0.03 1.43 3.10 141 277 5.86 779.40 762.43 789.32

0.2 1.38 1.68 0.01 2.50 5.55 186 155 8.89 105.81 99.97 113.52

5 05 8.34 6.12 0.02 171 3.30 230 333 6.15 119.01 112.45 113.43

08 1001 10.06 0.02 1.22 1.30 141 220 4.24 101.53 92.05 103.46

0.2 1.86 2.07 0.04 11.28 441 205 149 8.57 334.46 33541 429.89

0.75-1 20 05 1123 1383 0.05 161 2.68 187 298 6.15 359.54 347.45 374.20
08 1408 20.04 0.02 124 1.38 126 225 4.97 345.71 338.63 342.01

0.2 344 3.46 0.16 40.28 7.01 182 164 9.37 758.43 758.60 928.54

50 05 1567 19.07 0.09 1.38 3.44 174 3.26 6.63 780.50 776.38 821.59

08 1379 20.74 0.02 0.99 1.55 113 219 4.56 629.16 589.81 590.85

MRSL*, MRSL when adjusting for all nodes on the open paths; MRSL?, MRSL when adjusting for minimal sufficient adjustment set and all the
mediators; MRSL®, MRSL when adjusting for D\{ X, X, and S'}. MRPC', MRPC algorithm based on the most significant SNP; MRPC?,
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MRPC algorithm based on genetic risk score. HC', HC algorithm incorporating genetic anchors based on the most significant SNP; HC?, HC
algorithm incorporating genetic anchors based on genetic risk score. cGAUGE?, cGAUGE based on IVW; cGAUGE?, cGAUGE based on MR

Egger; cGAUGE®, cGAUGE based on MR PRESSO.
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F1 score

F1 score with 10 continuous nodes
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Precision—Recall with 10 continuous nodes (20 1Vs)
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A) MAGIC-NIAB (continuous) B) ASIA (binary) C) HEALTHCARE(mixed)
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F1 score

F1 score with fixed graph
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A) Marginal causal graph
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