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Abstract 

Causal discovery is a powerful tool to disclose underlying structures by analyzing purely 

observational data. Genetic variants can provide useful complementary information for 

structure learning. Here, we propose a novel algorithm MRSL (Mendelian Randomization 

(MR)-based Structure Learning algorithm), which combines the graph theory with univariable 

and multivariable MR to learn the true structure using only GWAS summary statistics. 

Specifically, MRSL also utilizes topological sorting to improve the precision of structure 

learning and provides three adjusting categories for multivariable MR. Results of simulation 

reveal that MRSL has up to two-fold higher F1 score than other eight competitive methods. 

Additionally, the computing time of MRSL is 100 times faster than other methods. 

Furthermore, we apply MRSL to 26 biomarkers and 44 ICD10-defined diseases from UK 

Biobank. The results cover most of expected causal links which have biological 

interpretations and several new links supported by clinical case reports or previous 

observational literatures. 
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Introduction 

Causal discovery aims to infer causal structure by analyzing purely observational data [1-2]. It 

can be widely applied in the social and natural sciences, and it is a powerful tool for 

discovering biological networks [3-4] and disease diagnostic purposes [5-6], etc. Graphical 

models reveal the generating process of the observed data and they can be identified under 

three assumptions [1-2, 7-8]: (1) the causal Markov condition, (2) the causal faithfulness 

assumption and (3) the causal sufficiency assumption. The causal Markov condition means 

that all nodes are independent of their non-descendants when conditionally on their parents. 

The causal faithfulness assumption requires all conditional independences in true underlying 

distribution ℙ are represented in the graph and are invariant to changes in parameterization. 

The causal sufficiency assumption states that any pair of nodes in the graph has no common 

external cause, and it implies there is no unobserved confounding variable. Various algorithms 

have been developed and can learn causal structures from purely or mostly observational data 

[9]. Constraint-based methods start with a fully connected graph and carry out a series of 

marginal and conditional independence tests to decide which edges should be removed, such 

as PC [10] and Markov blanket detection algorithm (e.g. Grow-Shrink [11] and Incremental 

Association algorithm [12-13]), etc. The outputs of such algorithms are equivalence classes. 

Score-based methods find the most plausible Directed Acyclic Graph (DAG) by optimizing a 

properly defined score function, such as the hill climbing (HC) greedy search algorithm [14], 

etc. The hybrid algorithms have become widely used because they combine the advantages of 

the constraint-based and score-based algorithms [15]. One popular strategy is to use 

constraint-based algorithms to determine an initial network structure and then to use 

score-based algorithms to find the highest-scoring network structure. For example, Max-Min 

Hill-Climbing (MMHC) [16] and Restricted Maximization algorithm [17], etc. All of these 

methods require the causal sufficiency assumption and require that the input data sets must be 

individual data. Recently several algorithms have been developed to learn the structure with 

latent variables, that is, relax the causal sufficiency assumption, such as Fast Causal Inference 

(FCI) algorithm [18-19] and Greedy FCI [20], etc. However, they output Partial Ancestral 

Graphs (PAG), but not complete structure information. All of the above algorithms are for 

structural learning but not for parameter learning 

Utilization of genetic variants which are robustly associated with a risk factor provides a 

directional causal anchor for causal discovery. Thus the combination of Mendelian 

Randomization (MR) and causal discovery becomes popular. MR methods use genetic 
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variants as instrumental variables (IVs) to infer the causal relationship from the exposure to 

the outcome [21]. These IVs can be used to remove confounding biases and to avoid reversed 

causal relationships. A valid IV must satisfy three assumptions: (1) Relevance – IV is robustly 

associated with the exposure; (2) Exchangeability – IV is not associated with any confounder 

of the exposure–outcome relationship; (3) Exclusion restriction – IV is independent of the 

outcome conditional on the exposure and all confounders of the exposure-outcome 

relationship. Richard et al. [22-23] concluded that Bayesian network (BN) incorporating 

genetic anchors is a useful complementary method to conventional MR for exploring causal 

relationships in complex omic data sets. A novel machine learning algorithm named MRPC 

incorporates the Principle of Mendelian randomization (PMR) in the PC algorithm, to learn 

causal graphs [24]. Nevertheless the algorithm also requires causal sufficiency assumption, i.e. 

no unobserved confounders among all the variables. Actually, this method only uses the 

information of genetic variants but not the idea of MR. Afterwards, David et al. [25] presented 

a pipeline, named causal Graphical Analysis Using Genetics (cGAUGE), using IV filters with 

provable properties to perform univariable MR (UVMR) [26-27] then to obtained a causal 

graph. This algorithm allows the unobserved confounders among all the variables and requires 

individual genetic and phenotypic data. A flexible two stage procedure called bidirectional 

mediated Mendelian randomization (BIMMER) can be used to infer sparse networks of direct 

causal effects (DCEs) from phenome-scale GWAS summary statistics [28]. However, this 

process is implemented by inverse sparse regression under the assumption that the DCE 

matrix is sparse. Furthermore, BIMMER is very time consuming. 

Multivariable MR (MVMR) [27, 29-30] is able to compute DCEs when there are 

multiple potential exposures and a single outcome. In MVMR, each genetic variant must 

satisfy the following criteria: (1) the variant is associated with at least one of the exposures; (2) 

the variant is independent of all confounders between exposures and outcomes; and (3) the 

variant is independent of the outcome conditional on the exposures and confounders. In this 

paper, we propose a novel algorithm called MRSL based on UVMR and MVMR for structural 

learning using summarized genetic data without requiring individual data. MRSL starts with 

an empty graph. For the first step, a marginal causal graph can be obtained by using 

bi-directional MR [31-32] in pairs. This process is a UVMR analysis, which estimates all total 

causal effects for each pair of variables. For the second step, we find the topological sorting 

for the marginal causal graph. For the third step, based on the above topological sorting [33], 

MVMR is performed to estimate the direct effects for each pair of variables by adjusting for 
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the genetic associations with the phenotypes in a sufficient separating set. After an iteration 

process of step 2 and step 3, MRSL outputs a true causal graph. We apply MRSL to 26 

biomarkers and 44 ICD10-defined diseases in 337,198 European from UK Biobank using 

summarized genetic data.  

Results 

[Please insert Figure 1 here] 

Method overview. We present a novel algorithm MRSL for structural learning based on 

summarized genetic data. An illustration diagram of MRSL is displayed in Figure 1. Consider 

a DAG � with d phenotypes 1 2{ , ,..., }dX X X . U represents a set of unobserved confounders 

among d phenotypes. GWAS summary data for these d phenotypes are available. Generally, 

for continuous phenotypes, beta coefficients and their standard errors can be obtained from 

linear regression; for binary phenotypes, log(OR) coefficients and their standard errors can be 

obtained from logistic regression. Firstly, MRSL initializes the target causal graph with an 

empty graph and then obtains a marginal causal graph �M, using bi-directional MR in pairs of 

variables. The marginal causal graph �M includes all the edges in the true causal graph �, but 

may add extra edges and spurious colliders. At the second step, we find the topological 

sorting of the nodes in the marginal causal graph using Depth First Search (DFS) algorithm 

[33-34]. The order of the topological sorting for the true causal graph � and the marginal 

causal graph �M are the same. Based on this order, MVMR is performed to remove extra 

edges in �M. For each edge p qX X→  in the marginal causal graph �M, we search a sufficient 

separating set { , }
p q p qX X X X pqSSS ADJ U→ →=  and adjust for genetic associations with 

p qX XADJ →  using MVMR to detect whether an edge is extra. The marginal causal graph is 

updated after each edge’s test. 
p qX XADJ →  can be searched in three ways: (1) all variables on 

the open paths from pX  to qX ; (2) minimal sufficient adjustment set [1-2] and all the 

mediators from pX  to qX ; (3) V\{ pX , qX  and dS }, where dS  refers to the colliders 

where pX  and qX  have direct edges on them. For each edge p qX X→  pointing to them 

in the marginal causal graph �M, if there is a sufficient separating set 
p qX XSSS →  such that 

|
p qp q X XX X SSS →⊥  using MVMR, we delete the extra edge p qX X→  in the true causal 

graph �. In addition, adjusting for the nodes in 
p qX XSSS →  cannot unlock any blocked 
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pathways in the true causal graph �. Thus the third step removes the extra edges in the graph 

�M. For the fourth step, we add an iteration step to perform MVMR in step 2 and step 3 again, 

using the graph obtained by step 3 as the initialization, until this graph converges. Detailed 

illustration of MRSL is shown in the Methods section.  

We provide a motivating example to illustrate the workflow of MRSL (Figure 1 A-F). 

The true causal diagram is Figure 1 (A). The input are the GWAS summary datasets of five 

phenotypes. Firstly, bidirectional MR in pairs of five variables are performed to obtain a 

marginal causal graph (Figure 1 (B)). We find that its topological sorting is 

{ }1 3 5 2 4, , , ,X X X X X . Then we perform MVMR varying across each edge in Figure 1 (B) to 

detect whether the edge is extra. In this stage, we adjust for the genetic associations with 

phenotypes in 
p qX XADJ →  for each MVMR. We firstly focus on the edge 1 3X X→ . The 

other three nodes are not included in 
1 3X XADJ →  thus this edge retains. Then we are 

interested in the edge 1 5X X→ , and 
1 5 1 5

(1) (2)
3{ }X X X XADJ ADJ X→ →= =  and 

1 5

(3)
2 3 4{ , , }X XADJ X X X→ = . MVMR is performed by adjusting for the genetic associations with 

phenotypes in 
p qX XADJ →  and the result reveals a null direct causal relationship between 1X  

and 5X . Thus the edge 1 5X X→  is removed. The rest edges are tested by the same ways 

(Figure 1 C-J). After all the edges in Figure 1 (B) are tested once, we obtained Figure 1 (J). 

An iteration for step 2 and step 3 are performed using this graph and stop when the causal 

graph converges. Finally MRSL output the target causal diagram.  

Simulations: Firstly we conducted a simulation study to evaluate the performance of MVMR 

to estimate the direct causal effect of an exposure (X) on an outcome (Y) when adjusting for a 

collider (S), a mediator (M) or a measured confounder (C), respectively (Figure 2 A-C). We 

considered seven kinds of available SNPs as IVs: (1) 1G : SNPs only associated with X; (2) 

2G : SNPs associated with X and adjusting variable; (3) 3G : SNPs only associated with the 

adjusting variable; (4) 1 3G G+ ; (5) 1 2G G+ ; (6) 2 3G G+ ; (7) 1 2 3G G G+ + . Details of data 

generation are shown in Methods section and Supplementary Notes.  

[Please insert Figure 2 here] 

[Please insert Figure 3 here] 

Figure 3 shows the results of MVMR when there are 100 IVs. When adjusting for the 

collider (S), the causal estimation is biased whatever IVs are used, and this bias becomes 

larger as the increasing of other edges’ effects. When adjusting for the mediator (M), causal 
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estimation is unbiased when the IVs are 2G  only, 1 3G G+  or 1 2 3G G G+ + . The type I error 

rates of causal estimations are stable around 0.05 under these three kinds of IV selection. The 

causal estimations under 1 3G G+  or 1 2 3G G G+ +  have higher power than that under 2G  

only when the causal effect is 0.1. 3G  are terrible IVs with large biased estimations 

whatever variables adjusting for. When adjusting for the measured confounder (C), 1G  only, 

2G  only, 1 2G G+  and 1 2 3G G G+ +  are good choices for IVs in MVMR with unbiased 

estimations. When 2G  only and 1 2G G+  are IVs, the type I error rates of causal estimations 

are stable around 0.05, whereas when 1G  only and 1 2 3G G G+ +  are IVs, the type I error 

rates are a little bit inflated. The power of causal estimation is high whatever kinds of IVs are 

selected except 2G  only. The simulation results of 6, 20 and 60 IVs are shown in the 

Supplementary Fig.1-4. In practice, practitioners always don’t know the roles of the adjusting 

variables. Consider the above three graphs together, 1 2 3G G G+ +  is the best choice of IVs 

when performing MVMR. 

For the simulation study 2, we conducted a simulation study for continuous and binary 

phenotypes to learn the structures of random graphs, respectively. We generated the random 

graphs with 5, 10 and 15 nodes, respectively. Considering the different complexity of network, 

we set the probability of each edge to be present in a graph as 0.2, 0.5 and 0.8. The effect of 

each edge follows uniform distribution with four settings: U(0,0.25), U(0.25,0.5), U(0.5,0.75) 

and U(0.75,1). We varied across the number of SNPs 1g  and 2g  as 5, 10, 20, 30, 40 and 50, 

respectively. We compared MRSL with eight published methods: BIMMER [28], cGAUGE 

based on IVW, MR Egger and MR PRESSO [25], HC algorithm incorporating genetic 

anchors [23] (based on genetic risk score or the most significant SNP) and MRPC algorithm 

[24] (based on genetic risk score or the most significant SNP). Details of data generation are 

shown in Methods section. 

[Please insert Figure 4 here] 

[Please insert Figure 5 here] 

[Please insert Table 1 here] 

Simulation results of 10 continuous nodes are shown in Figure 4-5 and Table 1. Figure 4 

demonstrates the F1 score with different edges’ effects and complexity of network. Figure 5 

shows the mean of precision and recall when there are 20 IVs. Results of precision and recall 

when there are 5, 10, 30, 40, 50 IVs are shown in Supplementary Fig. 5-8. When the network 
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is simple (prob=0.2), F1 score of MRSL is the highest and the performance of three 

adjustment categories are similar. As the network become more complex, the F1 score of 

MRSL when adjusting for all nodes on the open paths and minimum separated set is 

decreasing, whereas MRSL when adjusting for V\{ pX , qX , dS  and U} still has the highest 

F1 score. The recall of the former is smaller than the latter as the edges’ effects and the 

complexity of graph rising. When the edges’ effects are small, F1 score of MRSL rises as the 

number of IVs increasing. When the edges’ effects are large, F1 score of MRSL decreases as 

the number of IVs increasing due to the reduction of precision. This may because in 

simulation study 1, as the number of IVs increasing, the type I error rate of 1 2 3G G G+ +  is 

even more inflated and lead to the increase of false negative rate. Besides, the power of causal 

estimation using MVMR is decreasing as other edges’ effects increasing. In addition, the 

number of adjusting variables is increasing as the network become more complex, then the 

accuracy of causal estimation using MVMR is reducing. Table 1 shows the computing time of 

MRSL and other eight methods when there are 5, 20 and 50 IVs. MRSL has the fastest 

computing time among these methods. Computing time of all the methods with 10, 30 and 40 

IVs are listed in Supplementary Table 1. The results of MRSL with 10 binary nodes are 

similar as that with continuous nodes (Supplementary Fig. 9-13 and Supplementary Table 2). 

As the number of nodes increasing in the network, the F1 score of MRSL is reducing 

especially when the network is complex. Results of 5 and 15 nodes are shown in 

Supplementary Fig. 14-33 and Supplementary Table 3-6. 

[Please insert Figure 6 here] 

[Please insert Figure 7 here] 

For the simulation study 3, in order to evaluate the performance of MRSL in practical 

application, we choose three fixed networks (Figure 6), which are representative examples in 

practice, including MAGIC-NIAB [35], ASIA (lung cancer network) [36] and Healthcare 

Cost [2], with continuous, binary and mixed nodes, respectively. Details of these three 

networks are illustrated in the Method section. Figure 7 shows the F1 scores of MRSL and 

eight methods when learning three networks. MRSL has the best performance among all 

methods. The performances of ASIA (binary) and MAGIC-NIAB (continuous) are similar as 

that in simulation study 2. For the mixed variables network Healthcare Cost, F1 score is lower 

than that of ASIA and MAGIC-NIAB. And when the edges’ effects are larger, MRSL when 

adjusting for adjusting for all nodes on the open paths and minimum separated set is a little bit 
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larger F1 score than MRSL when adjusting for V\{ pX , qX , dS  and U} because of higher 

precision. The precision and recall are shown in Supplementary Fig. 34-45. 

Applied example: network of 44 diseases and 26 biomarkers. We applied MRSL to learn 

the network of 44 diseases with ICD 10 coding and 26 biomarkers using GWAS summary 

data in UK Biobank. The list of these 70 traits are shown in the Supplementary Table 7. 

Figure 8 A) shows the marginal causal graph by MRSL step 1, resulting in 70 nodes and 388 

edges. Figure 8 B) shows the conditional causal graph obtained by MVMR adjusting for 

V\{ pX , qX , dS  and U}, resulting in 69 nodes and 192 edges. This result was obtained by 

removing 196 direct edges induced by mediation pathways after bonferroni correction. Figure 

8 C) shows the causal mediation pathways from biomarkers on each diseases. Vitamin D, 

Total protein, Urate and Urea are root causes for nearly all the mediation pathways of diseases 

[37-39] 

[Please insert Figure 8 here] 

Most of causal links are expected and have clear interpretation of biological pathways or 

have been confirmed by experiments. Such as B37 Candidiasis, Vitamin D [40], K40 Inguinal 

hernia [41] and G81 Hemiplegia [42] are direct risk factors; Phosphate [43] and Glycated 

haemoglobin [44] are direct protective factors. For F33 Recurrent depressive disorder, 

Testosterone have a positive effect on F33 [45]. Other biomarkers affect F33 through F43 

Reaction to severe stress, and adjustment disorders. IGF-1 [46] directly influence the risk of 

D04 Carcinoma in situ of skin. Vitamin D directly affect G81 Hemiplegia with a protective 

effect [47]. Glucose [48] and Urate [49] are risk factors of K74 Fibrosis and cirrhosis of liver. 

Biomarkers have causal effects on K90 Intestinal malabsorption through R14 Flatulence [50] 

and related conditions and L43 Lichen planus [51]. 

Several novel causal links are founded and supported by clinical case report or 

observational studies. For example, for C16 Malignant neoplasm of stomach, Urate [52], T17 

Foreign body in respiratory tract [53-54], F31 Bipolar affective disorder [55] and K41 

Femoral hernia [56] have negative causal effects on the Malignant neoplasm of stomach. 

Urate [57] positively affects the risk of Carcinoma in situ of skin. IGF-1 [58-59] and K07 

Dentofacial anomalies [including malocclusion] directly increase the risk of G81 Hemiplegia. 

For H60 Otitis externa, Glycated haemoglobin [60] is protective factor, J03 Acute tonsillitis is 

a risk factor of Otitis externa. For J03 Acute tonsillitis, IGF-1 [61], HDL cholesterol [62], 

total protein [63] and total bilirubin [64] positively affect J03 Acute tonsillitis. Urate [65] is a 
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risk factor for K12 Stomatitis and related lesions. Urate negatively affects the risk of M81 

Osteoporosis without pathological fracture [66] whereas R25 Abnormal involuntary 

movements is a risk factor [67]. 

Discussion 

In this work, we present a novel algorithm called MRSL based on UVMR and MVMR for 

structural learning. Our method is flexible as it requires only summarized genetic data. 

Besides, MRSL relaxes the causal sufficiency assumption and can be implemented with fast 

computing speed and outputs a conditional causal graph with directed causal effects. MRSL 

consists of four steps: step 1 outputs a marginal causal graph using bi-directional MR in pairs, 

step 2 find the topological sorting of marginal causal graph, step 3 outputs a conditional 

causal graph by MVMR and step 4 is an iteration process of step 2 and 3. The marginal causal 

graph reveals the total causal relationships of each pair of variables and the conditional causal 

graph identifies the mediation pathways then discloses the direct effects of each pair of 

variables. The application to 26 biomarkers and 44 ICD10-defined diseases cover lots of 

expected causal links which have biological interpretations and several new links supported 

by clinical case reports or previous observational literatures. 

The core of MRSL is MR analysis, thus how well MRSL performs depends on the 

performance of MR decides. The first point we need to focus on is the selection of IVs. For 

the bi-directional MR, an alternative choice is the SNPs only associated with the exposure but 

not associated with other variables in the network. To some extent, this can block nearly all 

pleiotropic pathways. For MVMR, we firstly conducted a simulation study to choose the most 

valid IVs. Here we should consider the valid IVs which makes the MVMR perform best when 

adjusting for the collider, mediator and confounder simultaneously. From the results of 

simulation 1, 1 2 3G G G+ +  is the best choice. This is supported by previous literature [68-69]. 

It is necessary to have as many IVs as possible, that is, including genetic variables that are 

associated with at least one exposure and removing the instruments that only strong with one 

exposure will lead to a loss of precision in the estimation or other potential bias. We only 

focus on the effect of particular exposure on the outcome using MVMR each time, thus we 

only force positive association with respect to the exposure we are interested in [70]. It has no 

influence on our results although this may change the sign of the association with respect to 

the adjusting variables. In this work, we use univariable and multivariable IVW as the main 

methods. MRSL can be extend to use other UVMR methods, such as pleiotropy-robust 
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methods (e.g. MR-Egger [71], the weighted median method [72], the mode-based estimate 

method [73], MR-RAPS [74] and contamination mixture method [75], etc), and MVMR 

methods (e.g. MVMR-Egger, MVMR-Robust, MVMR-Median, and MVMR-Lasso [70], etc) 

instead of IVW. However, combination of these methods in MRSL is a time consuming 

process and may lose precision due to the low accuracy of methods themselves.  

In the second step of MRSL, we present three strategies for adjusting variables in 

MVMR with the complement of graph theory in causal inference. Because MR overcome the 

influence of unobserved confounding, we exclude U in the three sets of adjusting variables. 

Another point we pay attention to is that whether these three sets of adjusting variables are the 

same in the marginal causal graph and the true causal graph, or in other words, we have two 

questions: does adjusting these variables in the marginal causal graph unlock the blocked 

pathways in the true causal graph? or not completely block the mediation pathways in the true 

causal graph? For these two questions, we proposes Lemma 1-3 and Theorem 2. The first way 

is adjusting for all nodes on the open paths in the marginal causal graph. This enables all the 

open paths between two variables can be blocked, whether mediation pathways or 

confounding pathways. This adjusting set doesn’t include the spurious colliders in the 

marginal causal graph. For the second way, minimal separating set may include spurious 

colliders at the cost of include other confounders or mediators to ensure the separation of two 

variables. This not only block the pathways in the true causal graph, but also block all the 

pathways include spurious pathways in the marginal causal graph. The third adjusting set is 

the most conservative set, that is, adjusting for all the variables excluding colliders, which are 

particular colliders that must have direct edges on the two variables we are interested in. In all, 

the second step of MRSL is a process to remove extra edges in marginal causal graph, and 

obtain a conditional causal graph. 

Combination of graph theory and MVMR is a unique property of our algorithm, and we 

utilize this novel property into causal discovery to improve the precision and recall. Our 

method can be easily implemented only using GWAS summary data, which is public available 

for the most phenotypes as the emergence of a large number GWAS studies with huge sample 

size. Published MR-based algorithm such as cGAUGE, requires the individual-level data and 

are thus not as easily available as the GWAS summary statistics, and is very time consuming 

[25]; BIMMER are implemented based on the complex inverse sparse regression and obtained 

an approximately estimation of DCE matrix, this require time roughly �(κ d4) for d 

phenotypes [28]. In the result of simulation study 2-3, we found that the computing time of 
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MRSL is only around 1/100 of BIMMER, and 1/1000 of cGAUGE, respectively. MRSL has 

two-fold higher F1 score than other eight methods when the network is simple. Also, MRSL 

outputs the unbiased direct effect of each pair of variables. Moreover, MRSL can be applied 

into the structure with feedback loops between any two variables, because our main MR 

method IVW can powerfully deal with the case of bi-directional causal relationship between 

two variables [28,76]. Similar to MR analysis, GWAS summary data of d phenotypes should 

from the homogenous population. We also need to pay more attention to other issues, such as 

measurement error, selection bias and missing data, etc, in the future. 

In conclusion, we proposed a novel algorithm, utilizing the combination of graph theory 

and MR into causal discovery to learn the conditional causal graph. We look forward to offer 

constructive suggestions for disease diagnostic and apply our method beyond the scope 

considered here. 

Methods 

MRSL. We consider an algorithm MRSL for structural learning based on summarized genetic 

data. An illustration diagram of MRSL is displayed in Figure 1. Assume a DAG � ,V E=< > 

with unobserved confounders, where V is a set of nodes and E is a set of pairs of nodes. 

Assume we are interested in d phenotypes 1 2{ , ,..., }dX X X . U represents unobserved 

confounders among d phenotypes. E� and E�M denote all the pairs of nodes for directed edges 

in the true causal graph � and the marginal causal graph �M, respectively. S� and S�M denote 

all the colliders in the true causal graph � and the marginal causal graph �M, respectively. For 

convenience, the unobserved confounders among phenotypes in Figure 1 are omitted. GWAS 

summary data for these d phenotypes are available. Generally, for a continuous phenotype, 

beta coefficient and its standard error can be obtained from linear regression; for a binary 

phenotype, log(OR) coefficient and its standard error can be obtained from logistic regression. 

MRSL initializes with an empty graph. The first step of MRSL is to obtain a marginal causal 

graph, denoted by �M, using bi-directional MR in pairs. Here, we choose the univariable 

inverse-variance weighted (IVW) method as the main method because of its high accuracy.  

Assumption 1. For an exposure and an outcome, the independent IVs in UVMR must satisfy 

(Relevance) IVs are strongly associated with the exposure; (Exchangeability) IVs are 

independent with unobserved confounders between the exposure and the outcome; (Exclusion 

restriction) IVs affect the outcome only through the exposure. 

For a pair of phenotypes pX  and qX , we firstly focus on the causal effect of pX  on 
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qX . We select pJ  IVs for pX  to perform weighted regression: 

� � � 2, ~ (0, ( ) ), 1,...,
qj pj qjqj qjX X Xp q X X pb N se j Jβ β ε ε β→= + = ,      (1) 

where �
pjXβ  and �

qjXβ  are genetic associations for pX  and qX  on j-th IVs in linear 

regression in GWAS, respectively. �( )
qjXse β  is the standard error of �

qjXβ . pJ  IVs for pX  

must satisfy the Assumption 1. For the reverse direction, we select qJ  IVs for qX  to 

perform weighted regression: 

� � � 2, ~ (0, ( ) ), 1,...,
pj qj pjpj pjX X Xq p X X qb N se j Jβ β ε ε β→= + = .     (2) 

p qb →  or q pb →  represents the total effect of pX  on qX  or qX  on pX , respectively. 

Similarly, qJ  IVs for qX  must satisfy the Assumption 1. Wald tests for the total effect 

estimations can be used to test whether there are causal pathways from pX  to qX  or qX  

to pX , respectively.  

Assumption 2 (Causal Markov condition). Each variable is independent of its 

non-descendants given its parents in graph �. 

Assumption 3 (Faithfulness assumption). All independencies embedded in the observed 

distribution ℙ are stable and are invariant to changes in parameterization. Thus, it implies 

(together with d-separation) that ( | )X Y Z⊥ ℙ ( | )X Y Z⇔ ⊥ �. 

Lemma 1. For the true causal graph � and the marginal causal graph �M, E�⊆E�M and 

S�⊆S�M. 

For the second step, we find the topological sorting T�M in marginal causal graph �M using 

DFS [33-34]. Topological sorting for a DAG is a linear ordering of vertices such that for 

every directed edge p qX X→ , vertex pX  comes before qX  in the ordering. This ensures 

that parent nodes will be ordered before their child nodes, and honors the forward direction of 

edges in the ordering. The DFS algorithm loops through each node of the graph, in an 

arbitrary order. DFS terminates when it hits any node that has already been visited since the 

beginning of the topological sort or the node has no outgoing edges. Each node X gets 

prepended to the output list only after considering all other nodes which depend on X (all 

descendants of X in the graph). 

Lemma 2 (Topological sorting invariance). The topological sorting of the true causal graph 

� and the marginal causal graph �M are the same T�=T�M. 
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In the third step, MVMR is performed to remove E�M\E� in �M, and obtain the true 

causal graph. For each edge in �M (e.g. p qX X→ ), we detect whether this edge exists after 

adjusting for the genetic associations with the phenotypes in a sufficient separating set using 

MVMR. 

Assumption 4. For an exposure, a set of covariates and an outcome, the independent IVs in 

MVMR must satisfy (Relevance) IVs are strongly associated with the exposure and 

covariates; (Exchangeability) IVs are independent with any unobserved confounders among 

the exposure, adjusting variables and the outcome; (Exclusion restriction) IVs affect the 

outcome only through the exposure or covariates. 

For an edge p qX X→  in �M, { , }
p q p qX X X X pqSSS ADJ U→ →=  denotes the sufficient 

separating set. Then we can perform multivariable IVW by following weighted regression of 

qX  on pX  adjustment for 
p qX XADJ → : 

� � � � 2, ~ (0, ( ) )
qj pj ADJ j qjqj qjX Xp q

X X X Xp q ADJ X Xa a N seβ β β ε ε β
→→= + + ,   (3) 

where p qa →  is the direct effect of pX  on qX  not through mediators and confounders in 

p qX XADJ → . The Wald test for estimation of p qa →  can be used to test whether there is a direct 

edge from pX  to qX . IVs for the regression (3) above must satisfy the Assumption 4. This 

kind of IV can be obtained by statistical filtering criteria (see application examples) or ImpIV 

filter and ExSep test [25].  

For MVMR, the sufficient adjustment set 
p qX XADJ →  can be made up of three ways: (1) 

all nodes on the open paths from pX  to qX ; (2) minimal sufficient adjustment set for 

confounders and all the mediators from pX  to qX ; (3) V\{ pX , qX  and dS }. dS  refers to 

a set of colliders where the two interested nodes have direct edges on them, e.g. for two nodes 

pX  and qX , the collider 1S  in 1p qX S X→ ←  is included in dS  but the collider 2S  in 

2p qX S C X→ ← →  is not included in dS . dS  in the graph �M includes the colliders and 

the nodes not on the pathway from pX  to qX , but not includes any mediators, confounders 

or the nodes which are both mediators and confounders on the pathways from pX  to qX  in 

the true causal graph �. Note that one node can be a mediator and a collider simultaneously. 

For example, a graph � with edges 1 3 3 2 4 2, ,X X X X X X→ → →  and 4 3X X→ , 3X  is a 

mediator on the path 1 3 2X X X→ →  and also a collider on the path 1 3 4X X X→ ← . This 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 30, 2022. ; https://doi.org/10.1101/2022.06.29.22277051doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.29.22277051
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

kind of node is included in the sufficient separating set *

p qX XADJ →  by including other nodes 

(e.g. 4X ) to ensure pX  and qX  are sufficiently separated.  

We use ( ) ( 1,2,3)
p q

i
X XADJ i→ =  to denote that adjusting variables 

p qX XADJ →  obtained by 

the i-th way. The order of MVMR varying across each edge is the same as the topological 

sorting in step 2. The topological sorting avoids the case in Supplementary Fig. 46, in which 

we show the MVMR adjusting for the genetic associations with the phenotypes in 
(3)

p qX XADJ →  

with and without topological sorting. For the latter, when we perform MVMR to test whether 

the edge 4 1X X→  exists, the genetic association with 3X  is adjusted in MVMR. However, 

in A3, 3X  is a collider but is not included in dS , and 2X  is included in dS . Then we 

perform MVMR � � �
1 4 341 31~

j j jX X Xβ α β α β+  and the estimation for direct effect of 4X  on 1X  

is biased because 3X  is a collider. The bias formula of causal estimation when adjusting for 

a collider using MVMR are shown in Supplementary Notes. For the former, this kind of 

problem can be avoided and the process of removing edges is more accurate and faster after 

topological sorting. 

Theorem 1: Under the Assumptions 2-4, for each edge p qX X→  in the marginal causal 

graph �M, given a sufficient separating set { , }
p q p qX X X X pqSSS ADJ U→ →=  such that 

|
p qp q X XX X SSS →⊥ , which can be tested by adjusting for genetic associations with 

p qX XADJ →  using MVMR, 

� � � � 2, ~ (0, ( ) )
qj pj ADJ j qjqj qjX Xp q

X X X Xp q ADJ X Xa a N seβ β β ε ε β
→→= + + , 

where p qa →  determines the existence of edge from pX  to qX  in the true causal graph �, 

then there is no direct edge from pX  to qX  in the true causal graph �. 

Based on Theorem 1, the edges E�M\ E� in the graph �M are removed. After the third step, 

we add an iteration step to perform step 2 and 3 again, using the graph obtained in the 

previous step 3, until the graph is convergence. The aim of this step is to eliminate the random 

error and statistical test error in the UVMR and MVMR and increase the precision of MRSL. 

 

Simulation. We conduct three simulation studies to evaluate the performance of MRSL. 

Firstly, we conduct a simulation study to choose the optimal selection strategy of IVs for 
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MVMR. Secondly, we evaluate the performance of MRSL and other eight published methods 

for structure discovery, when learning the structure of random graph with continuous and 

binary nodes, respectively. Thirdly, we select three representative graphs from previous 

literatures and access the performance of MRSL and other eight published methods. 

Simulation study 1 on IVs selection in MVMR. The basis of MRSL is MR, thus it is 

vital to select valid IVs. We firstly conduct a simulation study to evaluate the performance of 

MVMR when estimate the causal effect of an exposure (X) on an outcome (Y). We consider 

three roles of adjusting variables in MVMR: a collider (S), a mediator (M) or a measured 

confounder (C) in the causal pathway from X to Y (Figure 2 A-C). Based on the three figures, 

there are seven kinds of available SNPs as IVs: (1) 1G : SNPs only associated with X; (2) 2G : 

SNPs associated with X and adjusting variable; (3) 3G : SNPs only associated with the 

adjusting variable; (4) 1 3G G+ ; (5) 1 2G G+ ; (6) 2 3G G+ ; (7) 1 2 3G G G+ + . When the 

adjusting variable is a confounder, 3G  is also associated with X, and it may be selected as 

instrumental variable because practitioners don’t know the true roles of the adjusting variables. 

The process of data generation is shown in Supplementary Notes. We generate 10,000 

individuals and 1,000 repeated datasets. To access the performance of MVMR, we plot a 

boxplot to evaluate the estimation of causal effect of X on Y, and calculate the type I error rate 

for null causal effect and statistical power to detect the non-zero causal effect. The nominal 

level is set to 0.05. 

Simulation study 2 on MRSL with random graphs. To valid the utility of the MRSL 

method for learning structures, we conduct a simulation study for continuous and binary 

variables, respectively. Genetic IVs are generated from binomial distribution (2,0.3)B . Let Y 

denote the N×d matrix of d phenotypes and G denote a N×J matrix of J SNPs. For continuous 

variables, d phenotypes are generated from the following model 

YY P G U ε= + + +β α , 

where YP  represents the parent nodes of Y, β  are the effects of YP  on Y and generated 

from uniform distribution, α  is a d×J matrix of effects of SNPs on phenotypes, U 

represents the confounding factors among d phenotypes and ε  is the residual term 

following normal distribution (0,1)N . For binary variables, d nodes are generated from the 

following model 

log [ ( 1)] Yit P Y P G U= = + +β α . 
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We generate the random graphs with 5, 10 and 15 nodes, respectively. Considering the 

different complexity of network, we set the probability of each edge to be present in a graph 

as 0.2, 0.5 and 0.8. In practice, there may be effects of different magnitude between traits, 

thus we consider β  follows uniform distribution with four parameter settings: U(0,0.25), 

U(0.25,0.5), U(0.5,0.75) and U(0.75,1) for continuous nodes, odd ratio (OR) U(1,1.5), 

U(1.5,2), U(2,2.5) and U(2.5,3) for binary nodes. The IVs are assumed uncorrelated, and 

subdivided into two categories: (1) 1g  SNPs that only predict one phenotype; (2) 2g  SNPs 

that predict all the phenotypes simultaneously. The variance of each phenotype explained by 

all the SNPs is around 10%. We vary across the number of SNPs 1g  and 2g  with 5, 10, 20, 

30, 40 and 50, respectively.  

We compared our method with eight published methods: BIMMER [28], cGAUGE 

based on IVW, MR Egger and MR PRESSO [25], HC algorithm incorporating genetic 

anchors [23] (based on genetic risk score or the most significant SNP) and MRPC algorithm 

[24] (based on genetic risk score or the most significant SNP). BIMMER can be implemented 

using GWAS summary data whereas other seven methods need individual genetic and 

phenotypic data. To access the performance of algorithm, we calculate the mean of F1 score, 

recall, precision and computing time across 100 data sets with 10,000 individuals for each 

method. Recall (i.e., power, or sensitivity) measures how many edges from the true causal 

graph a method can recover, whereas precision (i.e., 1-FDR) measures how many correct 

edges are recovered in the inferred graph, and F1 score is a combined index of recall and 

precision. Details of calculation formula are shown in Supplementary Notes. 

Simulation study 3 on MRSL with fixed graphs. In order to evaluate the performance 

of MRSL in practical application, we choose three representative examples (Figure 3 A-C): A) 

MAGIC-NIAB, a network based on the Multiparent Advanced Generation Inter-Cross 

(MAGIC) winter wheat population produced by the UK National Institute of Agricultural 

Botany (NIAB), seven continuous traits were measured: yield (YLD), flowering time (FT), 

height (HT), yellow rust in the glasshouse (YR.GLASS) and in the field (YR.FIELD), 

Fusarium (FUS), and mildew (MIL). Such a scheme is designed to produce a mapping 

population from several generations of intercrossing among eight founders and has the 

potential to improve quantitative trait loci (QTL) mapping precision. B) ASIA, also called 

lung cancer network, consists of eight binary variables. Lauritzen and Spiegelhalter (1988) 

[36] motivate this example as follows: “Shortness-of-breath (dyspnoea) may be due to 

tuberculosis, lung cancer or bronchitis, or none of them, or more than one of them. A recent 
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visit to Asia increases the chances of tuberculosis, while smoking is known to be a risk factor 

for both lung cancer and bronchitis. The results of a single chest X-ray do not discriminate 

between lung cancer and tuberculosis, as neither does the presence or absence of dyspnea.” C) 

Healthcare Cost, is a recurring theme in most countries’ public discourse due to the 

combination of an ageing population and the availability of more advanced (read, expensive) 

treatments. We use the simple example in Marco et al. (2021) [77], which modeled an 

individual’s yearly medical expenditure by seven mixed variables: age, pre-existing 

conditions, outpatient expenditure, inpatient expenditure, any hospital stay, days of hospital 

stay and taxes. 

The data generation process and parameters’ settings of these three networks are similar 

with that in simulation study 2. We also use F1 score, recall, precision and computing time to 

evaluate the performance of MRSL. 

Applied example. We apply MRSL to learn the network of 26 biomarkers and 44 

ICD10-defined diseases using GWAS summary data in UK Biobank. For quantitative 

phenotypes, we use the phenotypes that have been inverse rank normalized.  

For MRSL, we first clumped the UK Biobank summary statistics to p<5×10-8 for 26 

biomarkers and 44 diseases, with r2 < 0.0001 and distance 10000 kilobases using the 

European reference panel in mrbase (https://www.mrbase.org/). To avoid the selection bias, 

we choose the IVs in the male population and use the summarized statistics in female 

population. For step 1 in Figure 1, in order to obtain a marginal causal graph using 

bi-directional MR, for each MR analysis, we select the SNPs associated with the exposure but 

not associated with other phenotypes (except exposure and outcome) as IVs. For example, if 

we perform MVMR 3 1 4~X X X+ , SNPs associated with 1X  but not associated with 4X  

are selected as IVs. Next we perform MVMR using three adjustment strategies to obtain the 

true graph. We select SNPs associated with at least one phenotype of exposure and the 

adjusting variables as IVs. For example, if we perform MVMR 3 1 4~X X X+ , SNPs 

associated with at least one of 1X , 3X  and 4X  but not associated with 2X  are selected 

as IVs. For each MVMR, we also need to filter out the SNPs with linkage disequilibrium (r2 > 

0.0001). 
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Data and code availability 

The GWAS summary data in UK Biobank are publicly available at 

http://www.nealelab.is/uk-biobank. All the analysis in our article were implemented by R 

software. MRSL can be implemented by https://github.com/hhoulei/MRSL. BIMMER were 

implemented using R packages bimmer. MRPC were implemented using R packages MRPC. 

HC algorithm were implemented using R packages bnlearn. cGAUGE were implemented 

using functions in https://github.com/david-dd-amar/cGAUGE and R packages 

MendelianRandomization, MRPRESSO. All the networks were plotted using R packages 

igraph. 
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Figure legends 

Figure 1. Workflow and the motivating example of MRSL algorithm. Confounders of d 

phenotypes are omitted. The input data is GWAS summary data for each phenotype. 

Initialization with an empty graph. For the Step 1, a marginal causal graph can be obtained 

using bi-directional MR in pairs. For the Step 2, the topological sorting of marginal causal 

graph should be found using Depth First Search (DFS). For the Step 3, MVMR is performed 

to remove extra edges in the marginal causal graph by adjusting for the genetic associations 

with phenotypes of three strategies of sufficient separating sets. The in the Step 4, iteration for 

step 2 and step 3 is performed until the graph converges. Finally MRSL outputs a conditional 

causal graph. (A-J) Motivating example with five nodes. (A) The true causal graph. (B) 

Marginal causal graph obtained by step 1. (C-J) Perform MVMR for each edge in graph (F) 

based on its topological sorting. Blue nodes denote the exposure and outcome we are 

interested in. MRSL outputs the graph (J). { , }
p q p qX X X X pqSSS ADJ U→ →=  denotes the 

sufficient separating set from pX  to qX . (1)

p qX XADJ →  includes all nodes on the open paths 

from pX  to qX ; (2) (2)

p qX XADJ →  includes the elements in the minimal sufficient adjustment 

set and all the mediators from pX  to qX ; (3) (3)

p qX XADJ → =V\{ pX , qX  and dS }. dS  

refers to the colliders where pX  and qX  have direct edges on them. In the motivating 

example, we omit the unobserved confounders U and the instrumental variables for each 

phenotypes used in MR. 

Figure 2. Diagrams for simulation study 1. X, exposure; Y, outcome; S, collider; M, mediator; 

C, measured confounder; U, unobserved confounder. β  is the causal effect of X on Y. 1α  is 

the causal effect of X on S/M or C on X. 2α  is the causal effect of C/M on Y or Y on S. 1G  

are SNPs only associated with X. 2G  are SNPs associated with X and adjusting variable. 

3G are SNPs only associated with the adjusting variable 

Figure 3. Simulation results of MVMR in simulation study 1. (A-C) Causal effect estimation 

of X on Y when causal effect 0β = ; (D-F) Type I error rates of causal effect estimation of X 

on Y when causal effect 0β = ; (G-I) Causal effect estimation of X on Y when causal effect 

0.1β = ; (J-L) Statistical power of causal effect estimation of X on Y when causal effect 

0.1β = . The x-axis represent the other edges’ effect ( 1α  and 2α  in Figure 2). 

Figure 4. F1 score with 10 continuous nodes. The x axis represents the number of IVs. 
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Considering the different complexity of network, we set the probability of each edge to be 

present in a graph as 0.2, 0.5 and 0.8. The effects of any two traits β  follows uniform 

distribution with four parameter settings: U(0,0.25), U(0.25,0.5), U(0.5,0.75) and U(0.75,1) 

for continuous nodes. MRSL_min_sep_set indicates the MRSL adjusting for minimal 

sufficient adjustment set and all the mediators; MRSL_open_path indicates the MRSL 

adjusting for all the nodes on the open paths; MRSL_remove_collider indicates the MRSL 

adjusting for V\{ pX , qX  and dS }. 

Figure 5. Precision and recall with 10 continuous nodes when there is 20 IVs.  

Figure 6. Diagrams of practical example in the simulation study 3. Green and yellow circles 

denote continuous and binary variables, respectively. MAGIC, Multiparent Advanced 

Generation Inter-Cross; NIAB, National Institute of Agricultural Botany; YLD, yield; FT, 

flowering time; HT, height; YR.GLASS, yellow rust in the glasshouse; YR.FIELD, yellow 

rust in the field; FUS, Fusarium; MIL, mildew. 

Figure 7. F1 score of MRSL when learning the structure of MAGIC-NIAB, ASIA and 

Healthcare Cost. 

Figure 8. Structures of 26 biomarkers and 44 diseases in applied example 2. A) the marginal 

causal graph obtained by MRSL-step1; B) the conditional causal graph obtained by 

MRSL-step2; C) mediation pathways of several diseases. The color of an edge indicates 

whether the effect is positive or negative. Yellow edges represent the positive effects and 

green edges represent the negative effects. Blue nodes represent the ICD10-defiend diseases. 

Pink nodes represent the biomarkers. 
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Table 1. Computing time with network of 10 continuous nodes in simulation study 2 (seconds). 

Edge effect g prob MRSL1 MRSL2 MRSL3 MRPC1 MRPC2 HC1 HC2 BIMMER cGAUGE1 cGAUGE2 cGAUGE3 

0-0.25 

5 

0.2 0.44 0.63 0.01 10.18 9.98 1.38 1.09 9.63 89.86 93.17 153.23 

0.5 1.16 1.55 0.01 12.42 11.49 2.24 1.62 10.06 104.54 106.87 167.74 

0.8 2.86 2.49 0.01 11.00 11.73 2.70 2.27 9.62 107.74 105.53 162.45 

20 

0.2 0.25 0.33 0.01 318.35 6.99 2.00 0.86 3.47 187.00 180.95 374.32 

0.5 0.79 0.89 0.02 524.53 5.94 2.47 1.08 4.07 188.95 185.82 375.04 

0.8 1.97 1.95 0.03 225.19 5.92 2.44 1.54 5.02 189.15 186.96 377.61 

50 

0.2 0.43 0.54 0.08 454.50 13.33 2.69 1.45 6.33 769.21 755.44 1177.71 

0.5 1.62 1.62 0.15 620.90 11.57 3.31 1.86 7.64 761.88 716.36 1161.77 

0.8 3.58 3.66 0.24 556.61 11.41 3.33 2.51 11.42 740.36 716.61 1130.72 

0.25-0.5 

5 

0.2 1.17 1.74 0.01 7.78 11.09 2.06 1.33 12.31 112.22 108.91 141.70 

0.5 6.29 4.16 0.02 5.34 10.03 2.65 2.99 8.63 115.11 112.67 139.95 

0.8 8.35 6.30 0.03 3.90 8.87 2.25 3.50 6.98 122.92 111.16 122.10 

20 

0.2 1.10 1.39 0.03 110.26 9.65 2.77 1.21 8.42 338.80 332.62 610.84 

0.5 6.15 5.02 0.07 33.04 8.77 2.73 3.06 11.34 362.36 353.72 571.79 

0.8 8.54 10.07 0.08 5.60 7.53 2.00 3.34 7.43 344.11 339.55 523.73 

50 

0.2 1.31 1.47 0.14 56.75 8.11 1.90 1.17 8.64 743.79 757.10 960.77 

0.5 7.11 7.50 0.28 25.80 8.48 2.41 2.76 14.58 791.12 733.85 942.95 

0.8 15.77 18.18 0.11 4.00 7.47 1.77 3.15 7.90 773.35 755.31 895.70 
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0.5-0.75 

5 

0.2 1.28 1.81 0.01 4.77 10.17 2.06 1.53 10.40 110.09 105.68 132.13 

0.5 6.99 4.42 0.02 2.86 5.44 2.43 3.53 6.77 116.25 108.11 115.02 

0.8 9.75 8.56 0.03 1.91 3.25 1.85 3.15 5.42 114.58 108.85 117.62 

20 

0.2 1.52 1.83 0.04 24.12 7.52 2.41 1.50 9.56 344.63 323.82 551.96 

0.5 8.27 8.21 0.06 4.20 4.94 2.04 3.21 7.29 351.35 350.21 442.85 

0.8 12.58 17.88 0.03 1.52 2.70 1.51 2.73 5.55 354.66 347.40 377.69 

50 

0.2 1.20 1.23 0.08 15.27 3.37 1.05 0.78 5.15 417.83 416.32 517.33 

0.5 8.42 12.04 0.10 2.00 3.54 1.53 2.63 5.72 589.59 651.33 864.82 

0.8 15.49 23.46 0.03 1.43 3.10 1.41 2.77 5.86 779.40 762.43 789.32 

0.75-1 

5 

0.2 1.38 1.68 0.01 2.50 5.55 1.86 1.55 8.89 105.81 99.97 113.52 

0.5 8.34 6.12 0.02 1.71 3.30 2.30 3.33 6.15 119.01 112.45 113.43 

0.8 10.01 10.06 0.02 1.22 1.30 1.41 2.20 4.24 101.53 92.05 103.46 

20 

0.2 1.86 2.07 0.04 11.28 4.41 2.05 1.49 8.57 334.46 335.41 429.89 

0.5 11.23 13.83 0.05 1.61 2.68 1.87 2.98 6.15 359.54 347.45 374.20 

0.8 14.08 20.04 0.02 1.24 1.38 1.26 2.25 4.97 345.71 338.63 342.01 

50 

0.2 3.44 3.46 0.16 40.28 7.01 1.82 1.64 9.37 758.43 758.60 928.54 

0.5 15.67 19.07 0.09 1.38 3.44 1.74 3.26 6.63 780.50 776.38 821.59 

0.8 13.79 20.74 0.02 0.99 1.55 1.13 2.19 4.56 629.16 589.81 590.85 

 

MRSL1, MRSL when adjusting for all nodes on the open paths; MRSL2, MRSL when adjusting for minimal sufficient adjustment set and all the 

mediators; MRSL3, MRSL when adjusting for D\{ pX , qX  and dS }. MRPC1, MRPC algorithm based on the most significant SNP; MRPC2, 
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MRPC algorithm based on genetic risk score. HC1, HC algorithm incorporating genetic anchors based on the most significant SNP; HC2, HC 

algorithm incorporating genetic anchors based on genetic risk score. cGAUGE1, cGAUGE based on IVW; cGAUGE2, cGAUGE based on MR 

Egger; cGAUGE3, cGAUGE based on MR PRESSO. 
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