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1. Abstract 

Breast cancer is the most common cancer in women. A better understanding of risk factors plays a central 
role in disease prediction and prevention. We aimed to identify potential novel risk factors for breast cancer 
among post-menopausal women, with pre-specified interest in the role of polygenic risk scores (PRS) for risk 
prediction.   

We designed an analysis pipeline combining both machine learning (ML) and classical statistical models with 
emphasis on necessary statistical considerations (e.g. collinearity, missing data). Extreme gradient boosting 
(XGBoost) machine with Shapley (SHAP) feature importance measures were used for risk factor discovery 
among ~1.7k features in 104,313 post-menopausal women from the UK Biobank cohort. Cox models were 
constructed subsequently for in-depth investigation.  

Both PRS were significant risk factors when fitted simultaneously in both ML and Cox models (𝑝 < 0.001). 
ML analyses identified 11 (excluding the two PRS) novel predictors, among which five were confirmed by the 
Cox models: plasma urea (HR=0.95, 95% CI 0.92−0.98, 𝑝 < 0.001) and plasma phosphate (HR=0.67, 95% 
CI 0.52−0.88, 𝑝 = 0.003) were inversely associated with risk of developing post-menopausal breast cancer, 
whereas basal metabolic rate (HR=1.15, 95% CI 1.08−1.22, 𝑝 < 0.001), red blood cell count (HR=1.20, 95% 
CI 1.08−1.34, 𝑝 = 0.001), and creatinine in urine (HR=1.05, 95% CI 1.01−1.09, 𝑝 = 0.008) were positively 
associated. 

Our final Cox model demonstrated a slight improvement in risk discrimination when adding novel features 
to a simpler Cox model containing PRS and the established risk factors (Harrell’s C-index  = 0.670 vs 0.665). 
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2. Introduction 

Breast cancer is the most common cancer among women, with 2.3 million women diagnosed with breast 
cancer in 2020 1. Decades of efforts have established multiple risk factors 2 for the disease, including 
reproductive factors 3–5, lifestyle 6,7, and inherited genetic factors 8–10. Despite the identification of multiple 
modifiable risk factors, breast cancer remains a leading cause of death, with 685,000 deaths in 2020 
worldwide. Pre- and post-menopausal breast cancers are usually regarded etiologically different 11–15. 

Traditionally, risk factor discovery for diseases such as breast cancer is hypothesis-driven. While it is 
reasonable to use classical statistical models (e.g. logistic regression) to assess these risk factors, some novel 
risk factors may be overlooked in the discovery stage in information-rich data prior to constructing a classical 
prediction model. Machine learning (ML) methods are able to handle both a large number of predictors and 
complex non-linear relationships, hence may provide assistance in the discovery of risk factors 16,17. Previous 
ML studies have primarily focused on how ML approaches compare to conventional models for breast cancer 
risk prediction cancer 18–22, but there are a lack of studies on utilising ML for risk factor identification. The 
increasing availability of large and detailed cohorts, such as the UK Biobank (UKB), offer the opportunity to 
utilise hypothesis-free approaches for the identification of potentially novel risk factors. 

Recent years have witnessed the rapid development of polygenic risk scores (PRS) which aggregate the effect 
of a large number (e.g. hundreds or thousands) of genetic variants associated with a specific disease or trait, 
identified using genome-wide association (GWAS) studies. Breast cancer PRS have been incorporated into 
existing risk prediction models such as the Breast and Ovarian Analysis of Disease Incidence and Carrier 
Estimation Algorithm (BOADICEA) 23 and Tyrer-Cuzick model 24. Interactions between PRS and phenotypic 
features (e.g. gene-environment interactions) have been suggested with breast cancer and its subtypes, 
including alcohol consumption, height, hormone therapy 25, family history 26,  hormonal birth control use,  
menopausal status 27, and use of corticosteroids 28.  However, the overall evidence is inconsistent.  

In this paper, we designed an analysis pipeline using two-step approach: ML methods for risk factor 
discovery, followed by classical Cox models for in-depth investigation 17,29. We anticipated differences 
between our ML and Cox models at the design stage of this study. Our intention was neither to seek 
superiority among different approaches, nor to build competing prediction models for breast cancer. Our 
goal was to demonstrate that ML methods can be used to complement classical statistical methods. 
Furthermore, we used SHapley Additive exPlanation (SHAP) feature dependence plots to explore potential 
interactions between PRS and phenotypic features. We also provided necessary statistical considerations 
before constructing classical Cox models to further investigate the novel features discovered by ML methods. 

3. Methods 

 Study Design and Participants 

The UKB is a large-scale population-based prospective cohort with detailed phenotypic and genetic data 
from over half a million participants recruited between 2006 and 2010 across 22 assessment centres in 
England, Wales and Scotland 30. The baseline data were collected in person via questionnaires, verbal 
interview with a trained nurse, physical examinations and biological samples. Follow-up information was 
obtained through linkage to electronic medical records of death and cancer registries and hospital inpatient 
records. 

In this study, we focused only on post-menopausal women due to the etiological heterogeneity of breast 
cancer by menopause status 11–15.  We restricted our study population to a sub-cohort of UKB female 
participants who were post-menopausal with age 40-69 at baseline, met UKB internal genetic quality control 
(UKB field 22020), were of genetic White ancestry (UKB field 22006), and had no history of breast cancer, 
breast carcinoma in situ or mastectomy at baseline (Figure 1).  

Our final study population was further randomly divided into training (80%) and test (20%) sets (i.e. training-
test split) for subsequent ML analyses. 
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Figure 1. Flowchart illustrating the selection process for our study population. 

The UK Biobank study received ethical approval from the North West Multi-center Research Ethics 
Committee (REC reference: 11/NW/03820). All participants gave written informed consent before 
enrolment in the study, which was conducted in accordance with the principles of the Declaration of Helsinki. 
This study has been conducted under the UK Biobank application ID 33952. 

 Prevalent and incident post-menopausal breast cancer  

Prevalent breast cancer cases were identified using International Classification of Diseases codes (ICD-9: 
174.X and ICD-10: C50.X) from the linked cancer registry data, with the date of breast cancer diagnosis 
preceding or on the date of baseline assessment. 

Incident cases were identified using cancer registry data, supplemented by record-level hospital inpatient 
data due to the reporting delay in registries. The follow-up time for each participant was calculated as the 
number of years from the date of baseline assessment until the earliest of the following: breast cancer 
diagnosis, date of death from other causes, date of loss to follow-up, date of mastectomy or last date of 
medical record availability in UKB: 28th February 2021 in England, 28th February 2021 in Scotland, and 28th 
February 2018 in Wales. 

 Polygenic risk scores 

Due to the substantial discordance in individual-level risk categorisation between different PRS for the same 
disease 31, we included two breast cancer PRS as potential genetic features: PRS313 9 and PRS120k 32. Neither 
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PRS used UKB data in its derivation stage, hence both are suitable for calculation within the UKB population 
without the concern of inflated effect estimates due to sample overlap. PRS313 consisted of 313 (pre-Quality 
control) independent (correlation < 0.9) genetic variants associated with breast cancer, developed using 
hard-thresholding and stepwise forward regression with 𝑝 < 10−5 in Breast Cancer Association Consortium 
(BCAC) data. PRS120k consisted of 118,388 (pre-Quality control) variants, developed using the lassosum 
method 33 from the same BCAC data. 

We used the imputed genetic data from UKB (version 3, March 2018 release). Full details of genotyping and 
imputation are described elsewhere 34. We performed further variant Quality control (QC) checks across the 
whole cohort using a published pipeline 35, excluding variants that were not available in UKB, variants poorly 
imputed in UKB (imputation information < 0.4), ambiguous variants (A/T or C/G single nucleotide 

polymorphisms (SNPs) with minor allele frequency > 0.49) and variants with minor allele frequency (MAF) 
< 0.005. This led to 305 variants remaining in PRS313 and 115,300 in PRS120k (Supplementary Table 1). 

We then performed sample QC, excluding participants who were related (third degree or higher), sex 
discordant, or identified as outliers for genotype missingness or heterozygosity (as these could indicate poor 
sample quality), using sample QC data provided centrally by UKB (UKB field 22020) that retained a maximal 
set of unrelated individuals. 

Finally, we calculated the PRS as the weighted sum of effect allele dosages, and divided by the number of 
alleles to account for the vastly different number of variants between the two PRS.  

 Phenotypic features  

In a phenome-wide scan of risk factors for breast cancer, we considered 2,315 features from the UKB 
(Supplementary Table 2), reflecting socio-demographics, lifestyle, family history, early life and reproductive 
factors, blood and urine assays, physical measures, cognitive function, medication use and health conditions 
at baseline.  

We mapped the 6,745 unique self-reported medications (UKB field 20003) to 411 distinct codes at level 4 of 
the Anatomical Therapeutic Chemical (ATC) classification system 28,36. For example, if participants self-
reported taking “kliofem tablet” or “kliovance 1mg/0.5mg tablet”, they would be categorised into the 
“G03FA” ATC group (i.e. “contraceptive and hormone replacement therapy (HRT) related medication” 
group). Since our study population is post-menopausal women only, any G03FA medication is assumed to 
be HRT, and is referred to as such throughout this paper.  

We identified prevalent cancer diagnoses (level 2 ICD-10 codes under “Chapter II Neoplasms”, “Chapter XV 
Pregnancy, childbirth, and the puerperium”) from cancer registry data, and prevalent non-cancer diagnoses 
(all ICD-10 codes except Chapters U,V,W,X,Y, and Z) from hospital inpatient data. 

We did not include administrative variables, inapplicable pilot fields, male-specific factors, family history of 
family members of adoptees, history of surgical operations (because they likely reflect existing diagnoses 
that were already included as input features), and fields collected exclusively during follow-up (e.g. imaging 
data).  

The main pre-processing we performed on training data prior to ML analysis was assigning the following 
three categories as missing: “Prefer not to answer”, “Do not know”, and empty entries. We then removed 
features with missing rate > 30%, and those where all participants had the same value (such as rare diseases 
which no participants were affected by at baseline) which were of no discriminative utility, yielding 1,737 
input features for ML models. 

 Analysis pipeline 

We developed an analysis pipeline for combining ML and statistical approaches (Figure 2). The tree-based 
eXtreme Gradient Boosting (XGBoost) machine learning algorithm 37 was used to discover novel features 
among ~1.7k variables. Features of high importance according to the SHAP measure were regarded as 
potentially novel risk factors, and were subsequently investigated by classical Cox models.  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2022. ; https://doi.org/10.1101/2022.06.27.22276932doi: medRxiv preprint 

https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20003
https://doi.org/10.1101/2022.06.27.22276932
http://creativecommons.org/licenses/by-nc/4.0/


Our analysis pipeline can be readily generalised to other ML methods in the feature discovery stage. This 
section describes our analysis pipeline in detail, with an emphasis on the necessary statistical considerations 
in the process. 

 

Figure 2. Analysis pipeline. ML models were used for risk factor discovery, followed by classical Cox modelling for further 
investigation. The example trees derived from our data are shown for illustrative purposes.  ML: Machine learning. 
XGBoost: extreme gradient boosting machines. SHAP: Shapley Additive Explanation. BrCa: Breast cancer. RF: Risk 
factors. Y/NA: Yes/Missing. N: No. 

 ML model 

Tree-based XGBoost is an ensemble learning method in which decision trees are built in a sequential manner. 
After initialising the model prediction by minimising a regularised loss function, the algorithm builds each 
tree by minimising the residuals from prior ones. The final model prediction is the weighted sum of the 
predictions from these sequential trees. It is capable of revealing non-linear relationships among correlated 
features from large datasets in a memory-efficient manner. The advantages of XGBoost over traditional 
gradient boosting machines (GBM) 38 include fast parallel learning, sparsity-aware split finding, and further 
regularisation that reduces over-fitting and improves model generalisation.  

Our outcome (i.e. response variable) was a binary indicator of incident breast cancer (present/absent), with 
log-loss as the loss function. Missing data was regarded as containing information (i.e. missing not at random 
(MNAR)). During the training of the model, samples with missing values were assigned a default direction in 
each branch to either the left or the right child node, based on the gain. 
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For hyper-parameter tuning, we performed grid search (Supplementary Table 3) with five-fold cross 
validation (CV) on training data using Area Under the receiver operating characteristic Curve (AUC) as the 
evaluation metric. The optimal set of hyper-parameters for XGBoost were found to be: maximum depth = 
2, number of trees = 1,571, learning rate = 0.01, minimum of child weights = 3, gamma = 0.8, subsample 
= 0.8, column sample by tree = 0.9, lambda for regularisation = 18, and scale positive weight = 1. For 
illustrative purpose, the structures of the first and last trees are outlined in Figure 2. The AUC obtained from 
the five-fold CV was 0.6680 on training data and 0.6679 on test data, indicating that the model was not over-
fitted.  

A variety of measures exist for obtaining features of high importance, such as the XGBoost built-in methods 
(“weight” 37, “gain” 39 , “cover”, “total_gain”, and “total_cover”), permutation based feature importance 40 , 
and SHAP values 41. Existing literature 17,42 suggests that SHAP values are the most consistent and stable 
among the above methods. These properties are vital aspects of feature selection as they provide assurance 
that the selected features are robust to the perturbation of input data 43. SHAP values also have the 
advantages of faster computation and better visualisation compared to permutation-based methods 
(Supplementary Materials). 

We therefore chose SHAP values as our main feature importance measure, but also implemented the 
XGBoost default feature importance (“weight”) and permutation-based methods for comparison. The SHAP 
value of each feature was first computed using one sample at a time to reflect the local effect on the sample, 
and then aggregated by taking the mean of absolute SHAP values (SHAPma) across all samples to summarise 
the global attribution of this feature. Global SHAP values of features were presented in a SHAP summary bar 
plot, whereas local SHAP values were visualised in SHAP dependence plots 44 to explore the potential 
relationship between PRS and phenotypic features. 

 Statistical model 

Following the ML analysis, we further examined the extracted features as follows: 

We regarded the top 20 features ranked by SHAPma as “important”. The union of these 20 features with the 
established risk factors forms the set of potentially “important” features. We then computed different forms 
of pairwise correlation 𝑟 among these different types of features from the training data. Spearman’s rank 
coefficient was computed for pairs of numeric features, and Cramer’s V (computed using the Chi-squared 
statistic) for pairs of categorical features. The correlation between a numeric and a categorical feature was 
computed by regressing the numeric feature on the categorical feature and then taking the square root of 
the proportion of variation explained (also called correlation ratio).  

Within each pair of features that was identified as highly correlated (𝑟 > 0.9), we removed either the feature 
with most missing data, or the auxiliary one. This step is necessary to reduce the collinearity prior to 
constructing a linear (e.g. Cox) statistical model. 

The missingness within each feature was carefully assessed at this stage, as the number of features had now 
been sufficiently reduced (e.g. from over 1k to under 30) to permit such close inspection. For example, the 
variables “Age at first birth” and “Number of live births” needed to be considered together to ensure the 
imputed data were reasonable for women who have not had children. We performed multiple imputation 
using the mice package in R (Groothuis-Oudshoorn, 2011) to impute the missing data under the assumption 
of missing at random (MAR). In contrast, the XGBoost machine had assigned a missing category to missing 
data, effectively assuming MNAR. 

We note that the above statistical procedure is essential preparation before constructing classical statistical 
models and must not be overlooked. The analytical power of their elegant equations comes from careful 
attention to model specifications and thorough examination of the underlying assumptions. 

After the necessary preparation above, we constructed a Cox proportional hazard model to assess the 
associations between novel features and incident breast cancer, adjusting for established risk factors. Since 
PRS were present in the model, we also adjusted for genetic array and the first 10 genetic principal 
components to account for the underlying population structure. As a sensitivity analysis to determine 
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whether the novel features identified by ML improve risk discrimination, we built a separate Cox model 
without the new features and compared the Harrell’s C-index  46 of the two Cox models. Both the fully 
adjusted and the simpler Cox models were pre-specified in our statistical analysis plan.  

The proportional hazards assumption of Cox models was visually assessed using scaled Schoenfeld residuals. 
Multicollinearity was assessed by computing the variance inflation factor (VIF); values less than 10 were 
considered acceptable. Statistical tests were two-tailed, and performed using a 5% significance level. 

As sensitivity analyses, we built additional Cox models to investigate the potential “PRS × phenotypic 
features” interactions indicated by the SHAP dependence plots. To further confirm the robustness of feature 
importance ranking, we implemented another machine learning model, histogram-based gradient boosting 
machines (GBM) inspired by LightGBM 47 (Supplementary Materials).  

XGBoost version 1.5.0 and SHAP version 0.40.0 were implemented in Python version 3.8.8 and Cox model 
analyses were conducted using R version 4.0.2.  

4.  Results 

 Participants characteristics  

Baseline characteristics of the study population are presented in Table 1. Of the 104,313 participants 
included in our study, 4,010 (3.8%) developed breast cancer over the median follow-up of 11.9 (IQR 11.0-
12.6) years. The 80% training and 20% test sets had 3252 and 758 incident cases of breast cancer, 
respectively.  

 Input features for ML 

Figure 3 shows the categories of the 1,737 input features for the XGBoost ML models, over half of which 
were in the “Health conditions” category (e.g. infectious diseases, circulatory diseases, and cancers). 
“Lifestyle factors” include alcohol, diet, and sleep. “Medication use” includes medication for blood pressure 
control, and birth control. “Physical measures” include blood pressure, arterial stiffness, and anthropometry. 
“Socio-demographics” include age, education, employment, and deprivation index. “Blood and urine assays” 
include blood counts and biochemistry (e.g. cholesterol). “Early life and reproductive factors” include birth 
weight and age at menarche. “Family history” includes illnesses of father, mother, and siblings. 

 

Figure 3. Categories of the 1,737 input features for ML analyses; n (%) represents the number (percent) of features 
included in each category. 

 ML analysis 

The top 20 features ranked by the highest mean absolute SHAP values (SHAPma) are shown in Figure 4 (full 
list of SHAPma in Supplementary Excel file). There are a total of 14 established risk factors available in the 
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UKB. Two of these are PRS120k and PRS313, occupying the top two positons, with noticeably higher feature 
importance values than the remaining features, indicating that both PRS warrant inclusion in the subsequent 
models. Seven of these (testosterone, age, age at menopause, family history of breast cancer, alcohol intake, 
IGF-1, age at first birth) appeared in the top 20 features. Five of these not shown in Figure 4 are physical 
activity (i.e. Summed MET minutes per week) (ranked 23, SHAPma = 0.016), use of HRT (ranked 25, SHAPma 
= 0.015), body mass index (BMI) (ranked 66, SHAPma = 0.004), age at menarche (ranked 76, SHAPma = 0.003), 
and parity (ranked 88, SHAPma = 0.002). 

 

Figure 4. SHAP summary bar plot showing the top 20 most important features for the risk of breast cancer, according 
to the XGBoost machine and SHAP values. Noticeably, both BrCa PRS are deemed of much higher importance than the 
remaining phenotypic features. BrCa: Breast Cancer. SHAP: SHapley Additive explanation. mean(|SHAP value|): mean 
absolute SHAP value, SHAPma. 

Our XGBoost machine discovered novel predictors of breast cancer from the following categories among its 
top 20 ranked features:  

 Body composition by impedance (UKB Category 100009) (basal metabolic rate, whole body fat 

mass) 

 Blood count (UKB Category 100081) (red blood cell count, monocytes count) 

 Blood biochemistry (UKB Category 17518) (plasma urea, plasma phosphate, aspartate 

aminotransferase, alkaline phosphatase, C-reactive protein) 

 Urine assays (UKB Category 100083) (sodium in urine, creatinine in urine) 

BMI was highly correlated with whole body fat mass (𝑟 = 0.92). Given that both variables had similar 
missingness, we removed BMI and kept whole body fat mass in further investigations, because whole body 
fat mass was regarded as a more accurate measure for capturing body composition, and was ranked higher 
than BMI by the SHAP value. Another anthropometric measure, basal metabolic rate (measured using a 
Tanita BC418MA body composition analyser), showed expected correlation with BMI (𝑟 = 0.73) and whole 
body fat mass (𝑟 = 0.76). We retained basal metabolic rate in the subsequent Cox models, because these 
correlations are below the threshold of 0.9.  

During the training of our XGBoost machine, hyper-parameter tuning indicated that allowing each tree to 
grow down to two levels yielded the best model performance, which in turn allowed the discovery of two-
way interactions among features. Given our particular interest in PRS, we used SHAP dependence plots to 
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visualise the main effect of each of the top 20 features and the effect modification by PRS (i.e. interaction 
with PRS) (Supplementary Fig. 3-4). The SHAP dependence plots revealed potential effect modifications but 
with some unexpected patterns, which required further investigations before drawing inference on effect 
modifications. Full results and investigation are presented in Supplementary Materials. 

 Statistical analysis 

Our final multivariable Cox model consists of the 14 established risk factors available in the UKB (including 
the two PRS), the 11 potentially novel features identified by SHAP value rankings, genetic array, and the first 
10 PCs. Among these 11 novel features, the following five had a statistically significant association with 
breast cancer in post-menopausal women: basal metabolic rate, red blood cell count, plasma urea, plasma 
phosphate, and creatinine in urine. Among these five features, blood biochemistry features (i.e. plasma urea 
and plasma phosphate) were inversely associated with risk of developing breast cancer, whereas other novel 
features (i.e. basal metabolic rate, red blood cell count, and creatinine in urine) were positively associated. 

The remaining six novel features that did not reach the 5% significant level are: sodium in urine, aspartate 
aminotransferase, monocytes count, whole body fat mass, alkaline phosphatase, and C-reactive protein. 
Figure 5 shows the hazard ratios (HR) with 95% confidence interval and p-values of covariates in the final 
Cox model. 

 

(a) 
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(b) 

Figure 5. Results obtained from our final multivariable Cox model, separated into two subplots for ease of reading: (a) 
top 8 features ranked by SHAPma, (b) the remaining 16 features, of which the bottom four features are established risk 
factors that are outside the top 20 features by SHAPma. Both PRS were categorised into quintiles, alcohol intake was 
scaled from weekly intake to daily intake for easy interpretation and direct comparison with existing literature. Basal 
metabolic rate, sodium in urine, creatinine in urine, alkaline phosphatase, and summed MET minutes per week were 
standardised using the mean and standard deviation within each imputed dataset, hence the corresponding HR 
represents per 1 standard deviation increase. For other continuous variables, HR represents per 1 unit increase. Genetic 
array and first 10 PCs were adjusted in the model but omitted from the figure. SHAP: SHapley Additive explanation. 
SHAPma: mean absolute SHAP value. BrCa: Breast Cancer. HR: hazard ratio. CI: confidence interval. HRT: hormone 
replacement therapy. MET: Metabolic Equivalent Task. U/L: units per litre. 

As a pre-specified sensitivity analysis, we constructed a separate simpler Cox model containing only PRS and 
the 12 established risk factors (Supplementary Table 5). When adding the additional novel features selected 
by ML, Harrell’s C-index increased from 0.665 to 0.670 in training data, and from 0.660 to 0.661 in test data.  

To interrogate the possibility of reverse causation, we conducted another sensitivity analysis to exclude the 
first two years of follow-up for blood and urine biomarkers (𝑁 = 82,491). We did not find evidence of 
reverse causation (Supplementary Fig. 2). 

5. Discussion 

Our XGBoost machine searched across ~1.7k features in UKB, and discovered 11 potentially novel risk 
factors, as well as established ones (e.g. PRS, age, age at first birth, family history of breast cancer, 
testosterone, and IGF-1). These 11 novel factors came from diverse categories, including body composition 
measure, blood count, blood biochemistry, and urine assays. Five (basal metabolic rate, red blood cell count, 
plasma urea, plasma phosphate, and creatinine in urine) of these were confirmed to be statistically 
significant by the subsequent Cox model.  

 Mechanism behind the novel risk factors 

Here we delineate the potential mechanisms behind the novel factors. Body composition measures were 
expected to be associated with breast cancer as obesity is a well-known risk factor for post-menopausal 
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breast cancer 48. The unexpected observation was that the XGBoost model selected a number of more 
detailed body composition measures (e.g. basal metabolic rate, whole body fat mass) instead of BMI, 
indicating that more precise body composition measures could provide important information above and 
beyond BMI for predicting breast cancer. Previous studies 49–51 have investigated anthropometric factors 
beyond BMI (e.g. waist to hip ratio, weight gain, waist circumference) and found positive associations with 
post-menopausal breast cancer. However more detailed anthropometric factors are worthy of further 
investigation. We were not able to confirm our hypothesis in classical Cox models due to collinearity among 
these anthropometric measures, but future research could deploy different models to dissect this 
hypothesis. Our findings showed that basal metabolic rate is a significant predictor for breast cancer, 
contradicting previous studies that found no such association 52,53. Our positive finding could be due to the 
statistical power conferred by the large sample size of UKB. 

The SHAP feature importance ranking supported the associations of novel biomarkers with post-menopausal 
breast cancer, but little literature exists on this topic. While absolute monocytes count was identified as a 
potential prognostic factor for breast cancer 54, the association of red blood cell count with breast cancer 
has not been studied explicitly. Plasma urea, a blood biomarker related to kidney function, was reported to 
have null causal relationship with breast cancer 55, but our study suggests it may be associated with breast 
cancer. Aspartate aminotransferase and alkaline phosphatase are both blood biomarkers related to liver 
function and were not previously associated with non-metastatic breast cancer 56. In contrast, C-reactive 
protein (CRP), a marker of systemic inflammation, was reported to be associated with breast cancer via 
meta-analysis 57,58. To our knowledge, no previous studies have reported the association of plasma 
phosphate, sodium in urine or creatinine in urine with breast cancer. 

Our findings of novel risk factors should be treated with caution, and further examined in independent 
datasets. These novel features could be surrogates for other processes that are not modelled in our analyses. 
There is still the possibility of chance findings by the ML model, although we have pre-specified our classical 
Cox models. We did not observe evidence of reverse causation, but such absence of evidence should not be 
regarded as evidence of absence.  

 Undiscovered well-established risk factors 

Five well-established risk factors are unavailable (mammographic density, plasma oestrogen, progesterone) 
or unusable (plasma oestradiol) in the UKB. Plasma oestradiol is measured in UKB, but the measured 
concentrations of nearly all post-menopausal women were below the reportable range 13, hence were 
regarded as missing values and could not be included in the analysis. 

We identified 19 established risk factors for post-menopausal breast cancer from the literature, 14 of which 
are available in UKB. Five out of these 14 risk factors were not ranked in the top 20 by the SHAP values:  BMI 
was ranked at 66, probably because its related factor (e.g. whole body fat mass) were already ranked among 
the top 20; Physical activity and HRT use were on the borderline of inclusion in top 20 (ranked 23 and 25 
respectively), whereas age at menarche and parity were ranked further behind (ranked 76 and 88 
respectively). 

This highlights the need for establishing a criterion to decide which features should be regarded as 
important. Some suggested considering 3% of total number of features as important 59, while others 
advocated a cut-off value of 0.05 for the SHAP feature importance measure 17. We pre-specified the top 20 
features due to the practical need for keeping the number of features in a manageable range, in the absence 
of established criteria on this empirical choice. 

 PRS 

We had an a priori interest in PRS, and intended to explore the relationship between the two PRS for breast 
cancer based on the existing understanding of their correlation. We discovered that both PRS were ranked 
as the strongest risk factors by the agnostic ML methods, which is surprising given that both PRS were 
developed using largely the same GWAS data for the same disease. We then conducted in-depth Cox 
regression simultaneously fitting both PRS as predictors, and concluded that both PRS are significant 
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predictors for post-menopausal breast cancer. This raises the general question of whether multiple PRS 
should be used to improve risk prediction obtained from a single PRS. 

SHAP dependence plots are useful for (i) visualising non-linear relationships between features and outcome, 
and (ii) revealing potential pairwise interactions between features. However, in this study, we noticed 
unexpected patterns arising from these plots, indicating that careful investigations are required before 
drawing firm conclusions. 

 From ML to classical statistical models 

ML methods are well suited for large-scale feature selection, and ongoing methodological development is 
making ML models more interpretable. It is beneficial to incorporate classical statistical models in feature 
selection for the following reasons. First, compared to feature importance ranking, statistical models (e.g. 
Cox regression) are able to quantify the strength of association of each feature with the outcome (e.g. via 
hazard ratio with 95% confidence interval) with straightforward interpretation. Second, model coefficients 
(i.e. betas) and p-values are typically used to infer feature importance in classical models, providing a 
different perspective from the feature importance measure in the ML setting (e.g. SHAP values utilise the 
impact in model predictions with and without a particular feature). Third, feature importance measures by 
ML methods may select spurious features purely due to confounding 17, and therefore should be further 
examined in classical statistical models. 

When the search scope includes highly correlated features, one needs to carefully choose ML (e.g. tree-
based) models that are capable of handling correlations, and then perform correlation and collinearity 
checks before including the selected features in classical statistical models.  

We did not expect the results obtained from an ML method to be fully compatible with those from a classical 
statistical model, because each approach has its own strengths and limitations. Instead, we aimed to 
complement Cox models with the insight from the XGBoost machine in this study. There are several possible 
explanations on the observed differences between the ML method and classical Cox models in this study.  

First, our XGBoost machine characteristically makes binary splits of the input features among thousands of 
trees (Figure 2) assuming non-linear relationship among features, whereas our Cox models are essentially 
linear. Although it is possible to incorporate non-linearity in Cox models (e.g. using splines or fractional 
polynomials), it would result in an overly complex model for interpretation. It is neither necessary nor 
appropriate to anticipate full agreement between ML and classical statistical models. Second, the criteria for 
inferring feature importance are different between ML and classical models, as described above.  

Finally, we emphasise that while agreement between ML and classical models raises the confidence of 
discovery, differences do not necessarily imply superiority of either approach or compelling us to choose 
one over the other. The differences could serve as a signal for further investigations where critical thinking 
should be exercised. 

 Challenges and solutions 

It is worth highlighting the challenges we encountered when implementing our analysis pipeline, and 
providing potential solutions here. The main challenge is how to handle missing data when combining ML 
and classical statistics for interpretation. Existing literature 60,61 has compared various imputation strategies 
(e.g. response augmentation framework, K-nearest neighbour, mean imputation) and suggested utilising the 
method that yields the best prediction accuracy depending on the dataset. However, the potential biases 
arising from missing data must not be overlooked, particularly in the context of statistical modelling.  

It is difficult to keep a consistent approach for handling missing data between ML and classical statistics. In 
classical statistics, one usually performs multiple imputation that generates multiple completed datasets 
(usually around 10-20), fits the model using each dataset, and then pools model estimates using Rubin’s rule 
62. However, it is not feasible to train a ML model on each imputed dataset due to the extensive computation 
time this would require. One alternative is to perform a single imputation, but this was not compatible with 
our complex variables where some are missing at random and some are not. For example, “Age at first birth” 
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is not missing at random and if one blindly performs a single imputation, the imputed data would not make 
sense for women who have not had children. Although manual inspections can be performed on small 
datasets, it is practically impossible to carefully assess the missing mechanisms of the high (~1.7k) 
dimensional data in our study. 

Our solution is as follows: For the ML analysis, we treated missing data as a separate category and used the 
default setting for XGBoost (i.e. when the value needed for the split was missing, a default direction was 
assigned with the maximum gain). Once we had reduced the number of features to a workable size (~20), 
we carefully inspected the missingness and performed multiple imputation as appropriate in the classical 
statistical setting. One might argue that the missing mechanism for each feature should be consistent 
throughout the analyses, but such purity is impractical when dealing with large datasets. This issue could be 
a potential topic for future research.  

 Strengths and limitations 

We performed an agnostic search of potential risk factors for breast cancer in post-menopausal women 
among ~1.7k features. We developed an analysis pipeline for combined ML and classical statistical models, 
and incorporated necessary statistical considerations in our pipeline while acknowledging the anticipated 
inconsistency between different models. The presence of well-established risk factors, the large sample size, 
and the long follow-up period of UKB data have enabled us to perform rigorous analyses in the process. 

Our study has several limitations. A few well-known risk factors (e.g. mammographic density, plasma 
oestrogen, progesterone, plasma oestradiol) and detailed family history data were either unavailable or   
unusable in UKB, hence could not be investigated in our study. We did not investigate subtypes (Estrogen-
receptor [ER]-positive or negative) of breast cancer, due to incomplete data on tumour type in UKB. We did 
not incorporate exome data that are necessary for identifying BRCA1/BRCA2 carriers, or other high 
penetrance variants. Our study population consists only of genetically white individuals, and therefore 
should be not generalised to other ethnicities without further research. Finally, we did not compare our 
model with existing risk prediction models for breast cancer, such as BOADICEA 23, Cuzick model 24, due to 
their complexity and incomplete mapping to UKB variables. 

6. Conclusion 

In conclusion, combining ML with Cox models, we identified five statistically significant novel association 
with post-menopausal breast cancer for blood counts, blood biochemistry and urine biomarkers. We 
demonstrated a slight improvement in risk discrimination (Harrell’s C-index) when adding these five novel 
features to the Cox model that only contains PRS and established risk factors. We discovered that both of 
our pre-specified PRS were ranked as the most important features by SHAP value, and can be simultaneously 
included in our final Cox model. Our findings support further investigation on using more precise 
anthropometry measures for improved breast cancer prediction. Other directions for future research include 
the utility of multiple PRS for better risk prediction, and validating the link between blood/urine biomarkers 
and risk of breast cancer. 

7. Data availability 

The data reported in this paper are available via application directly to the UK Biobank, 
https://www.ukbiobank.ac.uk. 

The code used for analyses are available at https://github.com/xiaonanl1996/MLforBrCa.  
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13. Figure legends 

Figure 1. Flowchart illustrating the selection process for our study population. 

Figure 2. Analysis pipeline. ML models were used for risk factor discovery, followed by classical Cox modelling 
for further investigation. The example trees derived from our data are shown for illustrative purposes.  ML: 
Machine learning. XGBoost: extreme gradient boosting machines. SHAP: Shapley Additive Explanation. BrCa: 
Breast cancer. RF: Risk factors. Y/NA: Yes/Missing. N: No. 

Figure 3. Categories of the 1,737 input features for ML analyses; n (%) represents the number (percent) of 
features included in each category. 

Figure 4. SHAP summary bar plot showing the top 20 most important features for the risk of breast cancer, 
according to the XGBoost machine and SHAP values. Noticeably, both BrCa PRS are deemed of much higher 
importance than the remaining phenotypic features. BrCa: Breast Cancer. SHAP: SHapley Additive 
explanation. mean(|SHAP value|): mean absolute SHAP value, SHAPma. 

Figure 5. Results obtained from our final multivariable Cox model, separated into two subplots for ease of 
reading: (a) top 8 features ranked by SHAPma, (b) the remaining 16 features, of which the bottom four 
features are established risk factors that are outside the top 20 features by SHAPma. Both PRS were 
categorised into quintiles, alcohol intake was scaled from weekly intake to daily intake for easy interpretation 
and direct comparison with existing literature. Basal metabolic rate, sodium in urine, creatinine in urine, 
alkaline phosphatase and summed MET minutes per week were standardised using the mean and standard 
deviation within each imputed dataset, hence the corresponding HR represents per 1 standard deviation 
increase. For other continuous variables, HR represents per 1 unit increase. Genetic array and first 10 PCs 
were adjusted in the model but omitted from the figure. SHAP: SHapley Additive explanation. SHAPma: mean 
absolute SHAP value. BrCa: Breast Cancer. HR: hazard ratio. CI: confidence interval. HRT: hormone 
replacement therapy. MET: Metabolic Equivalent Task. U/L: units per litre.
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14. Tables 

Table 1. Baseline characteristics of the study population by incident breast cancer status (N= 104,313). Median 
(interquartile ranges, IQR) are presented for continuous variables, frequency (percentage) are reported for categorical 
variables. Percentages may not add up to 100 due to rounding. N is the number of non-missing values. Note*: Both PRS 
were multiplied by the number of alleles in the score for easy comparison. BrCa: Breast Cancer. BMI: Body mass index. 
HRT: hormone replacement therapy. ML: machine learning. MET: Metabolic Equivalent Task. U/L: units per litre. 

 Without incident BrCa 
(n=100,303) 

With incident BrCa 
(n=4,010) 

N 

    

 𝑃𝑅𝑆120𝑘* -0.14 (-0.32, 0.03) -0.02 (-0.19, 0.16) 104313 

 𝑃𝑅𝑆313* -0.42 (-0.83, -0.01) -0.13 (-0.54, 0.27) 104313 

Established risk factors    

Testosterone, nmol/L 0.97 (0.69, 1.33) 1.03 (0.75, 1.43) 81362 

Age at recruitment, years 61.30 (57.08, 64.91) 61.83 (58.00, 65.14) 104313 

Age at menopause, years 50.00 (48.00, 53.00) 51.00 (48.00, 54.00) 97540 

Alcohol units per week 6.00 (0.00, 12.00) 6.00 (0.00, 13.50) 104313 

IGF-1, nmol/L 20.16 (16.56, 23.71) 20.40 (16.64, 23.89) 98843 

Age at first birth (Categorical)    

   No Births 16164 (16.1%) 643 (16.0%) 16807  

   <20 7616 (7.6%) 278 (6.9%) 7894  

   20-30 60526 (60.4%) 2371 (59.2%) 62897  

   30-40 15181 (15.2%) 685 (17.1%) 15866  

   >=40 690 (0.7%) 30 (0.7%) 720 

BMI, Kg/m2 26.12 (23.54, 29.55) 26.78 (24.12, 30.32) 103958 

Family history of BrCa 10807 (10.8%) 621 (15.5%) 104313 

Summed MET minutes per week 1786.00 (834.00, 3546.00) 1667.25 (797.50, 3336.38) 79981 

HRT user 2257 (2.3%) 159 (4.0%) 104313 

Age at menarche, years 13.00 (12.00, 14.00) 13.00 (12.00, 14.00) 101470 

Number of live births 2.00 (1.00, 2.00) 2.00 (1.00, 2.00) 104261 

Novel predictors selected by ML    

Whole body fat mass, Kg 25.50 (20.20, 32.00) 26.90 (21.40, 33.70) 102571 

Plasma urea, mmol/L 5.35 (4.61, 6.18) 5.31 (4.57, 6.17) 99337 

Basal metabolic rate, KJ 5489.00 (5138.00, 5912.00) 5598.00 (5226.00, 6021.00) 102593 

Plasma phosphate, mmol/L 1.21 (1.12, 1.31) 1.20 (1.10, 1.29) 90431 

Sodium in urine, mmol/L 55.20 (35.50, 83.70) 57.20 (37.73, 86.00) 100733 

Red blood cell count, 10^12/L 4.34 (4.12, 4.55) 4.37 (4.15, 4.58) 101089 

Aspartate aminotransferase, U/L 23.80 (20.80, 27.60) 23.60 (20.60, 27.20) 99091 

Creatinine (enzymatic) in urine, 
mcmol/L 

5530.00 (3412.00, 9027.00) 5872.00 (3622.50, 9612.00) 101036 

Monocytes count, 10^9/L 0.41 (0.33, 0.50) 0.42 (0.35, 0.52) 100903 

Alkaline phosphatase, U/L 86.60 (73.10, 102.30) 86.45 (72.90, 101.60) 99411 

C-reactive protein, mg/L 1.42 (0.69, 2.95) 1.61 (0.79, 3.29) 99211 
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