
 1 

An individualized Bayesian method for estimating genomic variants of hypertension  1 

Md. Asad Rahman1, Chunhui Cai2, Dennis M. McNamara3, Ying Ding4, Gregory F. Cooper2, 2 

Xinghua Lu2, Jinling Liu1,5* 3 

 4 

1Department of Engineering Management and Systems Engineering, Missouri University of 5 

Science and Technology, Rolla, MO, USA, 2Department of Biomedical Informatics, 6 

University of Pittsburgh, Pittsburgh, PA, USA, 3Department of Medicine, University of 7 

Pittsburgh, Pittsburgh, PA, USA, 4Department of Biostatistics, University of Pittsburgh, 8 

Pittsburgh, PA, USA, 5Department of Biological Sciences, Missouri University of Science and 9 

Technology, Rolla, MO, USA,  10 

 11 

*Corresponding author – email: jinling.liu@mst.edu 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 26, 2022. ; https://doi.org/10.1101/2022.06.25.22276897doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:jinling.liu@mst.edu
https://doi.org/10.1101/2022.06.25.22276897


 2 

Abstract 24 

Background 25 

Genomic variants of disease are often discovered nowadays through population-26 

based genome-wide association studies (GWAS). Identifying genomic variations potentially 27 

underlying a phenotype, such as hypertension, in an individual is important for designing 28 

personalized treatment; however, population-level models, such as GWAS, may not capture 29 

all of the important, individualized factors well. In addition, GWAS typically requires a large 30 

sample size to detect association of low-frequency genomic variants with sufficient power. 31 

Here, we report an individualized Bayesian inference (IBI) algorithm for estimating the 32 

genomic variants that influence complex traits such as hypertension at the level of an 33 

individual (e.g., a patient). By modeling at the level of the individual, IBI seeks to find 34 

genomic variants observed in the individual’s genome that provide a strong explanation of 35 

the phenotype observed in this individual.   36 

Results 37 

We applied the IBI algorithm to the data from the Framingham Heart Study to explore 38 

genomic influences of hypertension. Among the top-ranking variants identified by IBI and 39 

GWAS, there is a significant number of shared variants (intersection); the unique variants 40 

identified only by IBI tend to have relatively lower minor allele frequency than those identified 41 

by GWAS. In addition, we observed that IBI discovered more individualized and diverse 42 

variants that explain the hypertension patients better than did GWAS. Furthermore, IBI found 43 

several well-known low-frequency variants as well as genes related to blood pressure that 44 

were missed by GWAS in the same cohort. Finally, IBI identified top-ranked variants that 45 

predicted hypertension better than did GWAS, according to the area under the ROC curve. 46 

Conclusions 47 
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The results provide support for IBI as a promising approach for complementing 48 

GWAS especially in detecting low-frequency genomic variants as well as learning 49 

personalized genomic variants of clinical traits and disease, such as the complex trait of 50 

hypertension, to help advance precision medicine. 51 

Keywords 52 

individualized Bayesian inference, genome-wide association studies, genomic variants, 53 

single nucleotide polymorphism, hypertension, blood pressure, precision medicine 54 
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Background 67 

Hypertension (HTN) is a key risk factor for many cardiovascular diseases, and it was 68 

primarily responsible for about 7.8 million world-wide deaths in 2015 alone. Previous studies 69 

indicate that in addition to environmental factors, genomic factors play a significant role in 70 

blood pressure (BP) regulation [1]. Hypertension is a polygenic disease [2] burdening a large 71 

population across the globe. Current efforts at identifying significant genomic variants mostly 72 

involve the use of genome-wide association studies (GWAS). Although GWAS has 73 

successfully identified more than 1000 significant single nucleotide polymorphisms (SNPs; 74 

the most common type of genomic variants among people) for BP [3], there are limitations to 75 

this commonly used approach. In general, GWAS requires a large cohort to gain enough 76 

power to identify the significant SNPs, especially the ones with low minor allele frequency 77 

(MAF). That is why before 2015 there were only about 64 significant SNPs identified for 78 

blood pressure, and only recently were more SNPs identified due to the increased sample 79 

sizes (~ 1 million individuals) [4-6]. Still, most of the SNPs identified so far are common 80 

SNPs with small effect sizes, and the total genetic variance in blood pressure explained by 81 

these ~1000 SNPs is small (~5.7%) [3]. It is likely that there are a significant number of non-82 

common variants missed by GWAS that can help explain much of the remaining genomic 83 

variance [7].   84 

GWAS is a population-based approach, and it extracts significant SNPs from a 85 

population level, not considering the specific genome of a given individual. Therefore, 86 

GWAS is not tailored to identify the genomic influences of HTN in an individual, which is the 87 

focus of personalized medicine. It is not uncommon that a HTN patient does not have any of 88 

the significant variants identified at the population level. Thus, identifying the most probable 89 

genomic variants of individual patients is important but remains an unmet need.    90 

We have developed an individualized Bayesian inference (IBI) algorithm for 91 

estimating the genomic factors influencing the development of hypertension and other 92 

complex traits in a given individual. As a general machine learning framework, IBI applies a 93 
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Bayesian method to identify the significant genomic variants in a given individual or patient. 94 

Bayesian methods including Bayesian multiple logistic [8] or linear regression have been 95 

used for identifying the causal SNPs among the significant genomic regions identified by 96 

GWAS (i.e., fine mapping) [9, 10]. However, none of these are individualized. IBI evolved 97 

from a tumor-specific causal inference algorithm (TCI) that members of our team developed 98 

for estimating the somatic mutations driving the development of individual cancerous tumors 99 

[11]. In contrast to TCI, IBI is designed to model and learn the relationships between an 100 

individual genome and a complex trait, such as HTN. Also, IBI was optimized for efficient 101 

computation with whole-genome data, whereas TCI was developed to use whole-exome 102 

data. 103 

IBI identifies significant and potentially causal genomic variants for each individual 104 

based on his or her specific genomic background (and available training data on many 105 

similar individuals).  By concentrating on the genomic variants observed in a particular 106 

individual, IBI has the potential to discover significant variants of low frequency that exist 107 

only in a small number of individuals and could have been missed by GWAS. The genomic 108 

variants identified being significant by IBI could help inform the design of personalized 109 

treatment for individuals with or at-risk for hypertension. 110 

Methods 111 

Overview of Bayesian Networks. 112 

A Bayesian network (BN) [12, 13] is a probabilistic graphical model which has two 113 

components. One is a graphical structure containing nodes and directed edges. Nodes 114 

represent domain variables such as genomic variants or clinical traits. Directed edges 115 

represent conditional dependencies between variables. The other component of a BN is a 116 

set of parameters which are conditional probabilities. Basically, each node has a conditional 117 

probability given its potential causes, which can be described by a conditional probability 118 

function. The joint probabilities of all nodes can be written as a product of each node’s 119 
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conditional probability given its direct causes, based on the local causal Markov condition. A 120 

BN is a flexible framework for modeling the probabilistic relationships among variables in a 121 

complex domain via representing the joint probability of all the variables modeled in a 122 

probabilistic structure. A bipartite BN is a particular class of BN with less complexity, where 123 

there are only two sets of nodes in level 1 and level 2, and potential causal relationships only 124 

occur from nodes in level 1 to nodes in level 2.  125 

How do we search for the most probable BN given data? A very popular class of 126 

methods are score-based algorithms that assign a Bayesian score to the BN model and 127 

return the BN with the highest score [12, 13]. This Bayesian score of the BN model is 128 

assigned based on how well this BN is supported by both the data and prior knowledge [14]. 129 

In this study, we will use a popular Bayesian score for modeling discrete variables, the 130 

Bayesian Dirichlet equivalent uniform (BDeu) score [14] as TCI did [11]. 131 

The general framework of individualized Bayesian inference.   132 

As mentioned, IBI is based on TCI [11] and has been further developed and adapted 133 

to fit the circumstances of modeling a variety of complex diseases or traits and whole-134 

genome genotyping or sequencing data. IBI is designed to estimate the significant genomic 135 

variants, such as SNPs, in a specific individual or patient for downstream clinical and 136 

molecular phenotypes. IBI uses a bipartite BN [12, 13] for modeling the conditional-137 

dependency or predictive relationships between the genomic variants as a set of 𝑉 nodes 138 

and the downstream traits or phenotypes as set of 𝑇 nodes; directed edges between 𝑉 and 139 

𝑇 nodes represent the probabilistic or predictive relationships from variants to traits (Figure 140 

1A). Within this bipartite BN, among all the variants in one individual, IBI assigns a posterior 141 

probability for each variant (represented by an 𝑉 node) in influencing or predicting the trait of 142 

interest (represented by node 𝑇) specific for this individual (Figure 1A, D).  143 
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For a current individual ℎ, let 𝑉𝑠 be a variable that represents a specific genomic 144 

variant s (e.g., a SNP) and let 𝑇𝑖   be a specific trait i (e.g., HTN) of this individual. Let 𝑽𝑆
ℎ be a 145 

vector representing all the genomic variants in individual ℎ. We will examine the predictive 146 

relationship ( 𝑉𝑠 → 𝑇𝑖) in this individual for each possible 𝑉𝑠.  Let 𝑃(𝑉𝑠 → 𝑇𝑖) be the prior 147 

probability for 𝑉𝑠 predicting or influencing  𝑇𝑖 , which could be estimated using biological 148 

background knowledge or could be set using a uniform prior that assumes all the genomic 149 

variants have the same prior probability of predicting or influencing 𝑇𝑖 . Let D be the training 150 

data without inclusion of individual ℎ. Let 𝑀𝑠  represent the log form of the marginal likelihood 151 

of 𝑃(𝐷 |𝑉𝑠 → 𝑇𝑖) that was derived by assuming one genomic variant s as the potential 152 

predictor for the entire population D; 𝑀𝑠  can be further normalized by the summation of 𝑀𝑠′ 153 

across all the SNPs to derive the posterior probability (PP). When scoring 𝑉s → 𝑇𝑖  for the 154 

entire population D (i.e., it is not individualized) using Bayesian learning and a uniform prior, 155 

PP is proportional to 𝑀𝑠; thus, the ranking of the specific driver 𝑉𝑠 by 𝑀𝑠 or PP as a potential 156 

predictor of a trait at the population level is the same. Thus, we will use 𝑀𝑠 as the score for 157 

𝑉s → 𝑇𝑖 . When evaluating the effect of 𝑉s on 𝑇𝑖  in the entire population using GWAS, the p-158 

value is derived to indicate the significance of the association between 𝑉s and 𝑇𝑖  (Figure 1B). 159 

IBI partitions the overall population into two subpopulations (Figure 1C). Suppose the 160 

current patient has 𝑉𝑠 = 1, which represents the minor-allele of this SNP. Let 𝐷𝑉𝑠=1 represent 161 

the patient-like-me subpopulation, where all the patients in this subpopulation contain the 162 

value 𝑉𝑠 = 1. IBI evaluates how well 𝑉𝑠 predicts the HTN status within 𝐷𝑉𝑠=1, which has a 163 

marginal likelihood score of 𝑃(𝐷𝑉𝑠=1|𝑉𝑠 → 𝑇𝑖) that we abbreviate as 𝑀𝑆
1 (Figure 1C, D). Let  164 

𝐷𝑉𝑠=0 represent the remaining cases that do not have  𝑉𝑠 = 1, but rather, have  𝑉𝑠 = 0.  To 165 

predict the data in 𝐷𝑉𝑠=0, IBI finds the SNP 𝑉𝑟 (where “r” denotes the remaining cases) that 166 

maximizes the marginal likelihood of 𝑉𝑟 → 𝑇𝑖 , namely, 𝑃(𝐷𝑉𝑠=0|𝑉𝑟 → 𝑇𝑖), which we abbreviate 167 

as 𝑀𝑟
0. The marginal likelihood for all of the data, given 𝑉𝑠 as an individualized predictor and 168 

𝑉𝑟 as the best predictor of the remaining cases, is 𝑀𝑠
1  + 𝑀𝑟

0, which we refer to as 𝑀𝑠,𝑟 169 
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(Figure 1C, D). This score of 𝑀𝑠,𝑟 can be used to evaluate and rank the capability of  𝑉𝑠 in 170 

explaining the patients-like-me subpopulation that contain this minor allele as well as in 171 

helping reduce the noises for the remaining subpopulation. 172 

The marginal likelihood is computed using the BDeu score [14] (Figure 1C, D; refer 173 

to the TCI paper [8]). Individualized posterior probabilities of the form 𝑉𝑠 → 𝑇𝑖 are further 174 

derived relative to the SNPs that are minor alleles in the genome of the current patient h. 175 

Thus, the posterior probability takes into consideration the specific genomic background of 176 

the given individual (Figure 1D, Equation 2). In summary, IBI is individualized in the following 177 

ways: (1) The overall marginal likelihood for each arc 𝑉𝑠 → 𝑇𝑖  (Equation 1) contains an 178 

individualized component that uses the subpopulation of “patients like me” that have the 179 

same variant (i.e., 𝑉𝑠 = 1). (2) Each individual has a unique set of genomic variants. 180 

Depending on the specific set of variants, the posterior probability for the same arc of 𝑉𝑠 → 𝑇𝑖  181 

may be different in different individuals (Equation 2). The individualized nature of IBI makes 182 

it a potential tool for advancing precision medicine where personalized treatments are 183 

desired for individuals of varying genetic backgrounds. IBI is implemented in python with 184 

vectorization and matrix operations for efficient computation involving millions of variants, 185 

and has been tested on whole genome sequencing data on the BioData Catalyst platform 186 

[15]. 187 

Genome-Wide Association Studies.  188 

GWAS is the standard approach for identifying the significant variants associated 189 

with traits at the population level (e.g., p-value < 5 × 10−8 for genome wide significance). 190 

Conventional GWAS uses standard logistic regression models or Fisher’s exact test for 191 

discrete traits [16]. We performed GWAS using Fisher’s exact test on the same datasets to 192 

which we applied IBI and compared results.  193 

Data and data preprocessing.  194 

We used the whole genome genotyping data of Affymetrix HuGeneFocused50K from 195 

the Framingham Heart Study (FHS) cohort (dbGaP Study Accession: phs000007.v30.p11), 196 
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which covered about 50K gene-centric and coding SNPs across the genome [17, 18]. We 197 

used the following functions from plink for further filtration and quality control, and have 198 

acquired 38,342 SNPs: --mind 0.03 --geno 0.03 --maf 0.01 –hwe 10e-6 –me 0.05 0.1 –199 

sexCheck. We filled missing SNP values with the most frequent value for that particular SNP 200 

across the entire population. Dominant coding was then performed in plink, and thus, the 201 

final SNP values are 0 or 1 where 0 represents zero copy of the minor allele (risk allele) and 202 

1 represents one or two copies of the minor allele. The focus of this paper is to predict the 203 

risk (minor) allele SNPs that influence hypertension (high blood pressure) rather than 204 

protecting the subject from hypertension. Therefore, we further removed the SNPs that have 205 

risk ratio smaller than 1 resulting in a total of 19,276 SNPs of interest. 206 

Clinical phenotype data included harmonized systolic BP (SBP) and diastolic BP 207 

(DBP) data which were downloaded from PIC-SURE on the NHLBI BioData Catalyst 208 

platform [15]. SBP and DBP are specifically harmonized by the Trans-omics for Precision 209 

Medicine (TOPMed) Data Coordinating Center [19] by taking the average of two SBP or 210 

DBP measurements obtained at a single clinic visit. 10 and 5mm Hg were specifically added 211 

for SBP and DBP for individuals who were taking antihypertensive drugs [20]. If SBP>=140, 212 

or DBP>=90 or an individual who was taking antihypertensive drugs, we considered this 213 

individual as having HTN and assigned ‘HTN = 1’; otherwise, we classified this individual as 214 

not having HTN, and we assigned ‘HTN = 0’. After merging the SNP data and BP data, we 215 

obtained a total of 6,613 patients with 19,276 SNPs. We performed a stratified random split 216 

to produce an 80% training set (5,290 subjects) and a 20% test set (1,323 subjects), and we 217 

reserved this test set for the prediction task. 218 

Results 219 

To evaluate IBI in inferring significant genomic variants for HTN, we compared its 220 

performance to that of GWAS. As a proof of concept, we applied both IBI and GWAS to the 221 

whole genome data of Affymetrix HuGeneFocused50K measurements and harmonized 222 

phenome data of BP measurements from the FHS cohort [18] as described above. 223 
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A Bayesian method for GWAS analysis.  224 

As was explained in the Methods section, when using a Bayesian method and a 225 

uniform prior to study a single variant’s effect on HTN in the population level, the derived 𝑀𝑠  226 

for this variant is proportional to its global posterior probability (GPP), making it possible to 227 

use the marginal likelihood to find the top predicting SNP (Figure 2A). We observed that 228 

when using a uniform prior, as we did in this study, a population-based (i.e., not 229 

individualized) Bayesian approach to identifying top-ranked SNPs based on 𝑀𝑠 yielded 230 

similar results to the population-based GWAS method (Figure 2A). The Spearman 231 

correlation coefficient between the p-value and 𝑀𝑠 across all the 19,276 SNPs is -0.9. We 232 

further examined and compared the top 189 SNPs ranked by 𝑀𝑠 or p-value. The top SNPs 233 

identified by high 𝑀𝑠 values or low p-values are highly overlapping: 164 out of the top 189 234 

SNPs and 18 out of the top 20 SNPs overlapped between these two rankings (Figure 2). 235 

Furthermore, the ranking of these top SNPs by 𝑀𝑠 and p-value are either exactly the same 236 

or very similar where 𝑀𝑠 is negatively correlated with p-value (Figure 2). 237 

       IBI complements GWAS and better detects significant variants of low MAF.  238 

We applied both IBI and GWAS to the training (discovery) subset of 5,290 FHS 239 

subjects with 19,276 SNPs and HTN status, and derived the IBI marginal values of 𝑀𝑠,𝑟 240 

(Figure 3A) and GWAS p-values (Figure 3B) for all the SNPs in the Manhattan plots. In 241 

Figure 3A, the values of 𝑀𝑠,𝑟 were normalized with (-2436 - Ms,r) / (-2436 – (-2463)) 242 

considering -2436 as the maximum and -2463 as the minimum, based on the min-max 243 

normalization technique. For the GWAS analysis, if considering 0.05 / 19276 = 2.59e-6 as 244 

the significance level for p-value after the Bonferroni correction, five SNPs reach such 245 

significance (Figure 3B). In Figure 2, the population-level 𝑀𝑠 values were derived by 246 

assuming one SNP as the global predictor or potential cause of HTN for the entire 247 

population (Figure 1B). When using two SNPs to specifically explain HTN status from two 248 

distinct subpopulations as is done by IBI (Figure 1C), the overall marginal values (𝑀𝑠,𝑟) 249 

significantly increase for many SNPs of 𝑉𝑠. Among all the SNPs, 189 𝑉𝑠 SNPs have 250 
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𝑀𝑠,𝑟  values bigger than the biggest 𝑀𝑠 value derived in the population level from the best 251 

global predictor, represented as 𝑉𝑔 (Figure 3A). The higher score of IBI compared to the 252 

population-based Bayesian method also has theoretical support. It has been proved that 253 

instance-based (i.e., individualized) causal inference methods, a family of algorithms to 254 

which the IBI belongs, are consistent. More specifically, in the large sample limit, the score 255 

of the data-generating instance-specific model will be assigned the highest score of any 256 

model [21]. These results support that the HTN status in the overall population has been 257 

explained better by IBI with any of the top 189 SNPs, 𝑉𝑠, explaining the subpopulation of 258 

𝐷𝑉𝑠=1 and with the remaining population predictor, 𝑉𝑟, explaining the remaining 𝐷𝑉𝑠=0 259 

subpopulation, in comparison to using the best global predictor 𝑉𝑔 itself to explain the entire 260 

population of D.  261 

We performed another evaluation from the perspective of information theory. In this 262 

setting, GWAS analysis is searching for a variant 𝑉𝑠 that has strong information with respect 263 

to a trait 𝑇𝑖  (HTN), and the amount of information can be measured as information gain (IG) 264 

[22]. IG can be calculated by splitting samples according to one variable (𝑉𝑠) and then 265 

measuring the change in the entropy of the other variable (𝑇𝑖) during partitions. Rather than 266 

focusing on just one variant as in a GWAS analysis, the IBI algorithm evaluates how much 267 

information we can gain with respect to the trait 𝑇𝑖  (HTN) if we consider both the specific 268 

variant of interest (𝑉𝑠)  and the remaining-population predictor (𝑉𝑟), IG (𝑉𝑠, 𝑉𝑟 ; 𝑇𝑖) [23]. The 269 

more 𝑉𝑠 and 𝑉𝑟 complement each other (e.g., they are two distinct predictors for different 270 

subgroups) to provide information with respect to 𝑇𝑖 , the higher the IG. In other words, IBI 271 

searches for variants that not only explain HTN well in the “patients-like-me” subpopulation, 272 

but also help enhance the information of 𝑉𝑟 with respect to HTN in the remaining 273 

subpopulation that do not contain this specific variant of interest. Actually, the ranking of the 274 

top 189 SNPs by IBI 𝑀𝑠,𝑟  turned out to be highly correlated (Spearman correlation 275 

coefficient, r = 0.9) to their ranking by IG values: in general, the higher the 𝑀𝑠,𝑟, the higher 276 

the IG. Based on information gain values, top-5 IBI SNPs were rs11574358, rs1794108, 277 
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rs11000217, rs2292664 and rs9928967 while top-5 GWAS SNPs were rs11574358, 278 

rs2292664, rs383306, rs5491 and rs1794108. IG values for the top 189 IBI SNPs of 𝑉𝑠 279 

selected by 𝑀𝑠,𝑟 are significantly higher than those of the top 189 GWAS SNPs selected by 280 

the p-values; IG values for the top 189 GWAS SNPs are also significantly higher than the 281 

values for 189 randomly-selected SNPs (Figure 3C) as expected.  282 

We further examined whether there is any overlap between the top 189 IBI and 283 

GWAS SNPs. We found that 41 of the top 189 SNPs were identified by both IBI and GWAS 284 

(Figure 3D), and 3 of the top 5 IBI and GWAS SNPs are the same (Figure 3A, B). Thus, IBI 285 

and GWAS share many of the same top SNPs, suggesting a mutual agreement between 286 

these two approaches. The unique SNPs for IBI or GWAS support that the two approaches 287 

are also complementary (Fig. 3D). We further examined the MAF distribution for the different 288 

subsets in Figure 3D (Figure 3E). Interestingly, the IBI-only SNPs overall had much lower 289 

MAF than GWAS-only SNPs (Fig. 3E). This result provides support for the hypothesis that 290 

IBI is more capable of identifying lower-frequency significant variants, relative to GWAS, by 291 

concentrating on the genomic variants of a given individual in a specific subpopulation.  292 

IBI discovered more individualized and diverse significant SNPs that better explain 293 

the HTN patients, compared to GWAS. 294 

For a given individual h, IBI derives the posterior probability for each genomic variant 295 

𝑉𝑠, 𝑃(𝑉𝑠
ℎ → 𝑇𝑖

ℎ|𝐷), by normalizing 𝑀𝑠,𝑟 with a summation of all the 𝑀𝑠,𝑟 across all the existing 296 

minor allele SNPs (i.e., the SNP value is 1) in this individual. This posterior probability takes 297 

into consideration the diverse genomic background or context for different individuals. More 298 

specifically, a particular SNP 𝑉𝑠 with the same 𝑀𝑠,𝑟 may have different posterior probabilities 299 

in different individuals due to their distinct genomic background (i.e., different sets of existing 300 

minor allele SNPs). For a given HTN patient, IBI ranked all the minor alleles existing in this 301 

individual based on their individualized posterior probabilities (this ranking will be the same 302 

as the ranking based on 𝑀𝑠,𝑟 in a given patient); the SNP with the highest posterior 303 

probability was considered as the most probable influence of HTN for this given patient. For 304 
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comparison, we designated a top SNP for each HTN patient based on the population-level 305 

p-values derived by GWAS: among the existing minor alleles in a given HTN patient, the 306 

non-protective minor allele with the lowest (most significant) p-value was considered to be 307 

the most probable influence for HTN in this particular patient.  308 

Among all the 930 HTN patients in the discovery dataset, we identified 16 unique 309 

SNPs according to GWAS ranking (Figure 4A) and 25 unique SNPs based on IBI ranking 310 

(Figure 4B); each of these unique SNPs was assigned by GWAS or IBI as a top-1 SNP for at 311 

least one HTN patient. The number of HTN patients explained by each of these unique SNP 312 

can be derived by the differences of the accumulated number of explained HTN patients 313 

showed in Figure 4A, B. The more unique SNPs identified by IBI suggested IBI was able to 314 

find a more diverse set of significant SNPs with a more personalized approach. IBI identified 315 

13 SNPs that explain less than 10 HTN patients individually while GWAS found 6 such 316 

SNPs. Interestingly, at the same time, IBI assigns the intronic SNP ‘rs13265032’ in the 317 

CSMD1 loci as the top-1 SNP with the highest PP or 𝑀𝑠,𝑟  for each of the 425 (46%) of HTN 318 

patients (Figure 4B). 319 

For the GWAS analysis, if considering 0.05/19276 = 2.59e-6 as the significance level 320 

for p-value after the Bonferroni correction, then 120 out of 930 (12.9%) HTN patients can be 321 

assigned a significant SNP identified by GWAS; even with a relaxed significance level of 322 

1.09e-5, only 146 out of 930 (15.7%) HTN patients are covered or explained by these 323 

significant GWAS SNPs (Figure 4A). This suggests that the significant SNPs of HTN 324 

identified at the population level by GWAS do not necessarily exist in a given HTN patient, 325 

leaving a significant portion of HTN patients unexplained by these significant SNPs. 326 

On average, there are 7,767 out of 19,276 minor allele SNPs existing in the HTN 327 

patients. If assuming all these existing risk alleles have the same prior probability in causing 328 

HTN, and only one of them is causing HTN, then the prior probability for each risk allele is 329 

1.0 / 7767 = 1.3e-4.  Interestingly, the top one SNP selected by IBI for each HTN patient has 330 

much higher posterior probability ranging from 0.08 to 0.99 (Figure 4C). If considering 0.1 as 331 
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a significant posterior probability threshold, then 922 out of 930 (99.1%) HTN patients can 332 

be assigned a significant IBI SNP as the potential cause for their HTN status; with a more 333 

restrictive threshold of 0.2, 741 out of 930 (79.7%) HTN patients can be explained. These 334 

results suggested that IBI was able to find a top SNP with significant posterior probability 335 

(>=0.1), relative to the random chance (1.3e-4), for the majority of HTN patients as a 336 

potential genomic cause. 337 

Table 1. Novel SNPs in BP-associated genes identified by IBI as the individualized and 338 

most-probable HTN cause 339 

rs ID Genes: Variant type MAF IBI 

rank 

GWAS 

rank 

p-

value 

# HTN 

explained 

rs13265032 CSMD1: Intron Variant 0.34 12 5361 0.26 425 

rs1564573 CSMD1: Intron Variant 0.42 20 1858 0.08 27 

rs2449184 CSMD1: Intron Variant 0.42 33 3760 0.17 0 

rs1803274 BCHE: Missense Variant 0.20 23 221 0.01 9 

rs948028 GRIK4: Intron Variant 0.16 38 14922 0.78 2 

rs12779623 MALRD1: Missense Variant 0.20 48 303 0.01 1 

As is shown in Table 1, the intronic SNP ‘rs13265032’ in the CSMD1 loci that was 340 

assigned as the top-1 SNP by IBI for 46% (425) of HTN patients, was also ranked high (12) 341 

by IBI 𝑀𝑠,𝑟 among all the SNPs. By contrast, this SNP was never assigned as a top-1 SNP 342 

for any HTN patient by GWAS and this SNP was ranked very low (5361) by GWAS among 343 

all the SNPs. Interestingly, other intronic SNPs in the CSMD1 loci have been reported to be 344 

associated with hypertension [24] or blood pressure response to hydrochlorothiazide [25, 345 

26], an antihypertensive drug. Among all the 86 SNPs located in the CSMD1 loci in our 346 

dataset, three of them were ranked very high by IBI as is shown in Table 1, while all of them 347 

were ranked relatively low by GWAS. These three novel SNPs identified by IBI in the 348 

CSMD1 loci provide evidence to support the reported role of CSMD1 in HTN, which 349 

themselves may warrant further analysis for their potential causal influence on CSMD1 350 
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regulation. In addition to SNPs in the CSMD1 loci, IBI also identified a novel missense 351 

variant of ‘rs1803274’ in the BCHE loci, a novel intron variant of ‘rs948028’ in the GRIK4 loci 352 

and a novel missense variant of ‘rs12779623’ in the MALRD1 loci as top-1 likely cause of 353 

HTN in 9, 2 and 1 HTN patient, respectively (Table 1). Interestingly, BCHE [27, 28] loci, 354 

GRIK4 [29] loci and MALRD1 loci [4] have been reported to be associated with blood 355 

pressure regulation, although GWAS analysis ranked their SNPs relatively low (Table 1). 356 

Overall, these results provide support for IBI being able to identify novel and biologically 357 

meaningful SNPs or genes associated with HTN that were missed by GWAS analysis. 358 

IBI found well-known significant variants or genes that were missed by the parallel 359 

GWAS analysis in the same cohort. 360 

We list several missense variants (Table 2) as well as the gene loci (Table 3) that 361 

were previously reported for their influence on blood pressure regulation, in addition to the 362 

ones discussed in Table 1. In Tables 2 and 3, IBI ranks were determined by 𝑀𝑠,𝑟 while 363 

GWAS ranks were determined by the p-value.  364 

Table 2. SNPs well-known for blood pressure regulation identified by IBI but missed 365 

by GWAS. 366 

rs ID Genes: Variant type MAF IBI rank GWAS rank p-value 

rs11575542 DDC: Missense Variant 0.01 79 599 0.02 

rs37369 AGXT2: Missense Variant 0.08 93 748 0.03 

rs723580 CLIC5: Missense Variant 0.04 189 11851 0.61 

In Table 2, the missense variant of rs37369 [30] has been shown to be one of the 4 367 

functional SNPs of AGXT2, which has been reported to have strong associations with 368 

several cardiorenal traits, such as coronary heart disease [31]. Its significant association with 369 

hypertension was very recently reported via multiple regression analysis involving only 370 

several targeted SNPs [32]. The missense variant rs11575542 was very recently identified 371 

as a functional variant of the DOPA Decarboxylase (DDC) gene during the systematic 372 
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polymorphism screening across the 15-Exon DCC locus [33]. The SNP was shown to alter 373 

the enzyme activity of DCC and result in changes in renal DA excretion that is linked to 374 

hypertension [33]. The missense variant of rs723580 was reported to be a top trans-eSNP 375 

[34] for the expression level of EPO associated with the red blood cell traits that were 376 

strongly linked to hypertension [35]. Intriguingly, with low MAF in our relatively small 377 

discovery cohort, these three SNPs were ranked much higher by IBI than by the parallel 378 

GWAS analysis (Table 2). This result provides support that IBI can recognize biologically 379 

meaningful genomic variants of low MAF, relative to GWAS, particularly when the sample 380 

size is small compared to the number of SNPs to be tested.  381 

Table 3. Genes well-known for blood pressure regulation identified by IBI but ranked 382 

relatively low by GWAS. 383 

rs ID Genes: Variant type MAF 
IBI 

rank 

GWAS 

rank 

Top 

GW

AS 

rank 

p-value 

rs3211938 CD36 [36, 37]: Stop Gained 0.01 32 141 141 3.8E-03 

rs6730396 ALLC [38]: Missense Variant 0.01 45 192 192 5.5E-03 

rs9896904 ANKFN1 [39]: Intron Variant 0.07 57 14392 2130 7.5E-01 

rs11899922 THSD7B [4, 40]: Intron Variant 0.07 70 9415 929 4.8E-01 

rs10968668 LINGO2 [41, 42]: Intron Variant 0.08 80 1237 1237 4.9E-02 

rs13261739 PDGFRL [43, 44]: Intron Variant 0.13 94 7156 7156 3.6E-01 

rs6140644 PLCB1 [45]: Intron Variant 0.17 116 9947 699 5.1E-01 

rs7647302 KCNAB1 [46]: Intron Variant 0.01 158 9528 1964 4.9E-01 

Table 3 shows a list of genes that have been reported to be associated with BP 384 

regulation or HTN where at least one related paper is listed for each gene. IBI identified 385 

these genes as candidate genes influencing HTN since these gene loci contain at least one 386 

novel SNP that is highly ranked by IBI for its association with HTN. Interestingly, all of these 387 
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genes were ranked relatively low by GWAS even considering the highest SNP rank by 388 

GWAS (‘Top GWAS rank’ in Table 3) within each gene locus; all of these novel SNPs were 389 

also ranked relatively low by GWAS (‘GWAS rank’ in Table 3) with non-significant p-values 390 

(Table 3). Moreover, among these eight SNPs highly-ranked by IBI and lowly-ranked by 391 

GWAS, six have MAF lower than 0.1 and three have MAF as low as 0.01 (Table 3). This 392 

together with Table 2 supports that IBI is more capable in identifying significant variants of 393 

low MAF, compared to GWAS. 394 

IBI top SNPs identify genetic risk scores that are more predictive for HTN than do the 395 

GWAS top SNPs.  396 

We further compared the capabilities of significant SNPs, identified by IBI and 397 

GWAS, in predicting HTN. After running IBI and GWAS on the training (discovery) dataset, 398 

we were able to rank all the SNPs based on 𝑀𝑠,𝑟 derived from IBI or p-values obtained from 399 

GWAS. For each subject in the test set, based on IBI ranking or GWAS ranking, we 400 

identified the top 1 and 3 SNPs that exist in this subject (with a value of ‘1’ denoting a minor 401 

allele). We then used these top SNPs to calculate the genetic risk scores (GRS) for each 402 

subject by the sum of his or her risk alleles, weighted by odds ratio for GWAS top SNPs or 403 

by 𝑀𝑠,𝑟 for IBI top SNPs. We further use min-max normalization to normalize both the IBI 404 

and GWAS GRS to avoid potential bias from the different scales of the original values. We 405 

then directly calculated the area under ROC curve (AUROC or AUC) using the normalized 406 

GRS for each patient (Figure 5). We also trained a logistic regression model for HTN 407 

prediction using this feature of normalized GRS, which gave very similar results (data not 408 

shown).  409 

As expected, using randomly selected SNPs showed poor prediction performance, 410 

with an AUROC of 0.50 (Figure 5A, D); the GWAS-selected top one or three SNPs both 411 

have an AUROC of 0.55 (Figure 5B, E) suggesting some level of prediction; the IBI-selected 412 

top SNP had an AUROC of 0.59 (Figure 5C) and the top 3 SNPs had an AUROC of 0.60 413 
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(Figure 5F). The higher AUROC achieved by IBI provides support that the top SNPs it 414 

selects predict hypertension better than the top SNPs selected by GWAS.   415 

Discussion 416 

In this study, we developed and applied a novel and individualized method (IBI) to 417 

estimate the personalized genomic variants for the complex trait of hypertension. We 418 

compared its performance with the population-based GWAS method using a real dataset 419 

from the FHS cohort. The significant overlap of the top-ranked SNPs by both IBI and GWAS 420 

suggest a degree of agreement of these two approaches. On the other hand, the unique 421 

SNPs they found support a complementary role of IBI to current GWAS analyses. 422 

Interestingly, by focusing on each individual and its patient-like-me subgroup, IBI was 423 

capable of identifying significant SNPs of low MAF in the same cohort, relative to GWAS. IBI 424 

was also able to identify more diverse and individualized top SNPs to explain the HTN 425 

patients. Moreover, the top SNPs identified by IBI from the discovery cohort were able to 426 

predict HTN better than the top ones derived from GWAS when applied to an unseen test 427 

cohort. We also identified evidence from the literature to support the biological significance 428 

of top SNPs found by IBI, especially the ones highly-ranked by IBI and lowly-ranked by 429 

GWAS. In summary, our study provides support that IBI can serve as a complementary 430 

approach in discovering novel and personalized genomic variants that may be missed by 431 

GWAS. 432 

Contemporary GWAS studies often involve a large sample size (~1 million) to gain 433 

sufficient power, especially for variants of low MAF. Considering the large genomic 434 

heterogeneity among different individuals, as well as the nature of complex diseases often 435 

being affected by many variants of small effect size, an alternative approach is to focus on 436 

the subpopulation containing the specific variant of low MAF under evaluation, as IBI does. 437 

In this way, IBI may be able to better evaluate the effect of low-MAF variants in a patient-438 

like-me subpopulation, without the potential noise from a large remaining population not 439 
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containing such variants; moreover, this large remaining population could be explained 440 

better with a remaining population driver. The fact that the top-ranked SNPs by IBI in general 441 

have a higher overall marginal likelihood, 𝑀𝑠,𝑟,  and higher information gain with respect to 442 

the HTN status, provide support that IBI may have found specific drivers that better explain 443 

the subpopulations. Our results also support that IBI is not compromised in identifying 444 

significant high-MAF SNPs. IBI’s population partition strategy aligns well with the concept of 445 

personalized medicine in which different individuals or subpopulations may have different 446 

underlying genomic influences on producing complex clinical phenotypes such as HTN.  447 

As a general Bayesian framework, IBI can be applied to any discrete trait. It can also 448 

be applied to continuous traits by changing the marginal likelihood function from using the 449 

BDeu score for discrete variables to using the Bayesian information criterion (BIC) score for 450 

continuous variables [14]. For the current approach presented in this study, one limitation is 451 

that it only considers the genomic factors of HTN, while not modeling the effects of other 452 

factors such as age, sex, population structure and the family relatedness that may exist in 453 

this FHS cohort. To model the effects from non-genomic factors, we plan to incorporate 454 

linear mixed models [47-51] into our current framework. Also, due to confounding factors 455 

such as population structure, as well as linage disequilibrium (LD), the predictive variants 456 

described in this paper are not guaranteed to be causal. Further fine mapping approaches, 457 

functional analysis, or Mendelian randomization can be used to further pinpoint the potential 458 

causality. Another interesting future direction is to search for more than one genomic variant 459 

that might work together to affect and predict the phenotypes of individuals and 460 

subpopulations.    461 

Conclusions 462 

In summary, we described a novel Bayesian method for identifying personalized 463 

genomic variants that predict complex traits, such as HTN. IBI can serve as a 464 

complementary approach to GWAS, especially in detecting significant genomic variants of 465 
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low frequency. The novel SNPs we identified for HTN warrant further analysis for their 466 

possible causal role in blood pressure regulation. 467 

List of abbreviations 468 

GWAS: Genome Wide Association Study 469 

IBI: Individualized Bayesian inference 470 

TCI: tumor-specific causal inference 471 

HTN: Hypertension 472 

BP: Blood pressure 473 

SBP: Systolic blood pressure 474 

DBP: Diastolic blood pressure 475 

FHS: Framingham Heart Study 476 

MAF: Minor allele frequency 477 

CBN: Causal Bayesian network 478 

BDeu: Bayesian Dirichlet equivalent uniform 479 

TOPMed: The Trans-Omics for Precision Medicine 480 

IG: Information gain 481 

GRS: Genetic risk score 482 

AUROC or AUC: area under ROC curve 483 

BIC: Bayesian information criterion 484 
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Figures 703 

 704 

Figure 1. The IBI Algorithm. A. IBI uses a bipartite BN to model the probabilistic 705 

relationships from genomic Variants to Traits. V nodes denote variants and T nodes denote 706 

traits; the arcs denote the predictive relationships from V to T with only one assumed 707 

predictive variant being evaluated at a time indicated by the solid arc. B. Using the entire 708 

dataset (D) or population to evaluate the association between a particular genomic variant 709 

and a trait, GWAS methods output the p-value while the Bayesian method uses the marginal 710 

likelihood (𝑀𝑠) and global posterior probability (GPP). C. Based on the value of a particular 711 

variant 𝑉𝑠 , IBI partitions the whole population into two subpopulations, 𝐷𝑉𝑠=1 and 𝐷𝑉𝑠=0, and 712 

derives the subpopulation-specific marginals, 𝑀𝑆
1  and 𝑀𝑟

0, using 𝑉𝑠 and 𝑉𝑟 as the assumed 713 

cause specifically. The overall marginal 𝑀𝑠,𝑟 and the individual-specific posterior probability, 714 

𝑃(𝑉𝑠
ℎ → 𝑇𝑖

ℎ|𝐷) for the SNP 𝑉𝑠 can be further derived. D. Pseudo code for the IBI algorithm.  715 

 

A 

D 

a  Input:  𝑽𝒔,  𝑻𝒊,  𝑽𝒓,  𝑷ሺ𝑽𝒔 →𝑻𝒊ሻ, D, and  𝑽𝑺
𝒉 

b  Output: Marginal likelihood, 𝑴𝒔,𝒓; 

                  Posterior probability of predictive relationship (𝑽𝒔 →𝑻𝒊ሻ in individual 𝒉, 𝑷൫𝑽𝒔
𝒉 →𝑻𝒊

𝒉ห𝑫൯   
c  Procedure: 

   1. Identify sub-population of cases in D with 𝑉𝑠  = 1,  denoted as 𝐷𝑉𝑠= 1  

   2. Assess how well the specific variant of 𝑉𝑠 explains 𝑇𝑖  in the subpopulation of 𝐷𝑉𝑠= 1   by calculating 

marginal likelihood,  𝑃ሺ𝐷𝑉𝑠= 1ȁ𝑉𝑠 →𝑇𝑖ሻ , whose log form is referred as 𝑀𝑆
1   

    3. Assess how well the variant of 𝑉𝑟  explains 𝑇𝑖  in the remaining sub-population of 𝐷𝑉𝑠= 0 , by calculating the 

marginal likelihood, 𝑃ሺ𝐷𝑉𝑠= 0ȁ𝑉𝑟 →𝑇𝑖ሻ, the log form of which is referred as 𝑀𝑟
0   

   4. Calculate the overall marginal likelihood by multiplication: 

          𝑃ሺ𝐷ȁ𝑉𝑠 →𝑇𝑖ሻ = 𝑃ሺ𝐷𝑉𝑠= 1ȁ𝑉𝑠 →𝑇𝑖ሻ 𝑃ሺ𝐷𝑉𝑠= 0ȁ𝑉𝑟 →𝑇𝑖ሻ, the log form is referred as 𝑀𝑠,𝑟        Equation 1 

   5. Calculate the posterior probability for each test individual ℎ, considering the individualized genomic 
background:    

          𝑃൫𝑉𝑠
ℎ →𝑇𝑖

ℎห𝐷൯= 𝑃ሺ𝐷ȁ𝑉𝑠→𝑇𝑖ሻ𝑃ሺ𝑉𝑠→𝑇𝑖ሻ

𝑃ሺ𝐷ሻ
=

𝑃ሺ𝐷ȁ𝑉𝑠→𝑇𝑖ሻ𝑃ሺ𝑉𝑠→𝑇𝑖ሻ

σ 𝑃ሺ𝐷ȁ𝑉′ →𝑇𝑖ሻ𝑃ሺ𝑉′→𝑇𝑖ሻ𝑉′ ∈  𝑽𝑆
ℎ

                                            Equation 2 

         where the marginal likelihoods of P ሺ𝐷ȁ𝑉𝑠 →𝑇𝑖ሻ & P ሺ𝐷ȁ𝑉′ →𝑇𝑖ሻ can be derived using Equation 1. 

   6. Return 𝑀𝑠,𝑟  &  𝑃൫𝑉𝑠
ℎ →𝑇𝑖

ℎห𝐷൯ 

𝑫𝑽𝒔= 𝟏 𝑴𝑺
𝟏 

C 

𝑴𝒔,𝒓 

𝑫𝑽𝒔= 𝟎 𝑴𝒓
𝟎 

𝑷൫𝑽𝒔
𝒉 →𝑻𝒊

𝒉ห𝑫൯ 

B 

𝑴𝒔 & GPP  

𝑫 

P-value 
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716 

Figure 2. A Bayesian method for GWAS analysis. A. The p-value ranks and 𝑀𝑠 or GPP 717 

ranks are the same or similar for the top 189 SNPs selected by 𝑀𝑠 or p-value ranking. B. 718 

The p-values were very much negatively correlated with the 𝑀𝑠 values of the top 189 SNPs 719 

selected by 𝑀𝑠 or p-value ranking. C. The p-values were very much negatively correlated 720 

with the global posterior probabilities (GPP) of the top 189 SNPs selected by 𝑀𝑠 or p-value 721 

ranking. 722 

 723 

 724 

 725 

 726 
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 727 

Figure 3. Comparison of IBI and GWAS. A. A Manhattan plot of SNPs’ chromosome 728 

location and normalized 𝑀𝑠,𝑟 values acquired by IBI. The threshold lines in blue and red 729 

together with the corresponding threshold 𝑀𝑠,𝑟 values were labeled for both top 5 and top 730 

189 SNPs ranked by 𝑀𝑠,𝑟. Top five SNPs were annotated with rs IDs. B. A Manhattan plot of 731 

SNPs’ chromosome location and p-values acquired by GWAS. The threshold lines in blue 732 

and red together with the corresponding threshold p-values were labeled for both top 5 and 733 

top 189 SNPs ranked by p-values. Top five SNPs were annotated with rs IDs. C. Information 734 

gain from top 189 SNPs ranked by IBI, GWAS and randomly-selected 189 SNPs. The black 735 

dots represent the information gain values for individual SNPs. D. A Venn diagram of top 736 

189 SNPs ranked by IBI and GWAS. E. Violin plots of the MAF distributions of the SNPs in 737 

the three sections of D, IBI, Intersection, GWAS. The black dots represent the MAF values 738 

for individual SNPs. The thick vertical gray bars show the interquartile range and the three 739 

white dots represent the medians. Wider sections suggest higher probability for the given 740 

MAF values.  741 
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 742 

Figure 4. HTN patient coverage. A. The 16 unique GWAS SNPs ranked by p-values were 743 

plotted against the cumulative number of HTN patients explained. B. The 25 unique IBI 744 

SNPs ranked by 𝑀𝑠,𝑟 were plotted against the cumulative number of HTN patients explained. 745 

The number of HTN patients covered by each of these SNPs can be derived by taking the 746 

difference of the two adjacent cumulative numbers of explained HTN patients as showed for 747 

rs13265032 covering 425 HTN patients. C. Histogram of the individualized posterior 748 

probability of the top-1 SNP assigned by IBI to each of the 930 HTN patient. 749 
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750 

Figure 5. ROC curves for predicting hypertension from top SNPs. Top 1 SNP (A, B, C) 751 

and top 3 SNPs (D, E, F) selected by GWAS (p-value ranking), IBI (𝑀𝑠,𝑟 ranking) or 752 

randomly were used to calculate the genetic risk scores for each test patient, which were 753 

further used to derive the AUROC for predicting hypertension. For these two experiments, 754 

random SNPs have AUROC as 0.50 (Top 1/3 SNP; (A, D); GWAS-selected top SNPs have 755 

AUROC as 0.55 (B, E); IBI-selected top SNPs have AUROC as 0.59 for top 1 SNP and 0.60 756 

for top 3 SNPs. 757 
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