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Abstract 
Prostate Cancer is a serious public health concern in the United States. The primary obstacle to effective 

long-term management for prostate cancer patients is the eventual development of treatment resistance. 

Due to the uniquely chaotic nature of the neoplastic genome, it is difficult to determine the evolution of 

tumor composition over the course of treatment. Hence, a drug is often applied continuously past the 

point of effectiveness, thereby losing any potential treatment combination with that drug permanently to 

resistance. If a clinician is aware of the timing of resistance to a particular drug, then they may have a 

crucial opportunity to adjust the treatment to retain the drug usefulness in potential treatment 

combination or strategy. In this study, we investigate new methods of predicting treatment failure due to 

treatment resistance using a novel mechanistic model built on an evolutionary interpretation of Droop 

cell quota theory. We analyze our proposed methods using patient PSA and androgen data from a clinical 

trial of intermittent treatment with androgen deprivation therapy.  Our results produce two indicators of 

treatment failure.  The first indicator is calculated using our mathematical model with a predictive 

accuracy of 87.3% (sensitivity: 96.1%, specificity: 65%). The second indicator is calculated directly from 

serum androgen and PSA data with a predictive accuracy of 88.7% (sensitivity: 90.2%, specificity: 85%). 

The high sensitivity of the first indicator and the high specificity of the second indicator means they can 

complement one another in clinical settings. Our results demonstrate the potential and feasibility of using 

evolutionary tumor dynamics models in combination with the appropriate data to aid in the adaptive 

management of prostate cancer. 

Keywords: mechanistic model of prostate cancer, predictive modeling, evolutionary cell quota 

framework, adaptive cancer management, dynamic indicator of treatment failure. 

Introduction 
Prostate cancer is the most prevalent cancer among men in the US, and therefore is a significant public 

health concern (1). Treatment for prostate cancer has advanced considerably over the past several 

decades (20), but treatment resistance remains a significant threat to every existing therapy. The high 

degree of heterogeneity in prostate cancer means that even treatments with a promising initial response 
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can fail when the neoplasm inevitably evolves to become treatment resistant (21,22). Furthermore, 

applying any therapy to the point of failure only serves to further fortify the existing resistance. If it were 

possible to identify an incipient resistance then a clinician would have an opportunity to change treatment 

strategy to potentially reach a more favorable outcome of the overall regimen (15,23,24).  

By nature, cancer is often highly genomically unstable. As a result the constituent cells of any neoplasm 

are endlessly differentiating (2–4). Therefore, tumors tend not to be homogeneous collections of 

genetically identical cancerous cells (4). New genomic variations arise continually and rapidly, and some 

will inevitably confer traits that allow them to evade a previously effective therapy (4,48). In the presence 

of resistant cancer cells, treatment would select for the dominance of the resistant trait. Once the 

susceptible cells are eliminated, the tumor becomes permanently and irrevocably resistant to that 

treatment. This clonal model of resistance explains why it is undesirable to continue any therapy to the 

point of failure (4,5).  

There is evidence that treatment resistance comes at a fitness cost, which means resistant phenotypes 

are unlikely to become dominant in a treatment-free environment (25). Therefore, it has been suggested 

that one could exploit intracellular competition by adjusting the timing and intensity of treatment to 

effectively reduce the development of treatment resistant phenotypes and thereby manage the 

progression of the tumor. This is the central idea of adaptive therapy, deeply rooted in ecological theory, 

but remains difficult to execute in practice (23-25).  

Pretreatment, prostate cancers are androgen-dependent. Androgens diffuse into prostate cells and bind 

to intracellular androgen receptors, which then activate proliferation and survival pathways in both 

healthy and cancerous prostate cells. For this reason, androgen deprivation therapy (ADT) is the standard 

of treatment for advanced or metastatic prostate cancer (26). The therapy uses an agonist and(or) 

antagonist of luteinizing hormone-releasing factor and antiandrogen drugs to eliminate primary androgen 

production in the testes, respectively. ADT is initially effective at stopping and reversing the growth of the 

tumor, but treatment resistance inevitably arises (1,6,13).  

The standard application of ADT involves continuously applying the treatment at maximum dosage in 

order to eradicate the tumor quickly (continuous androgen suppression, or CAS). However, due to the 

adverse side effects of ADT and the imminent development of treatment resistance, intermittent 

androgen suppression therapy (IAS) was theorized to be the better alternative. IAS is a rigid form of 

adaptive therapy, where ADT is applied at maximum dosage on either on- and off-intervals with fixed 

duration or based on the growth of tumor (7). IAS has several advantages over CAS. Most notably, the off-

treatment periods in IAS give patients a break from the adverse side-effects of ADT, hence improving the 

overall quality of life for patients (27). There was concern regarding the comparative effectiveness of IAS; 

however, meta-analyses show no statistical difference in time to remission between IAS and CAS (28). 

Androgen also triggers secretion of prostate-specific antigen (PSA), a protein normally found in seminal 

fluid. Usually, PSA is contained within the cytoplasm of prostatic acinar cells and ductal epithelium. 

However, when the prostate becomes cancerous, PSA can leak into the bloodstream via disruption in the 

epithelial wall. PSA then can be detected in the serum, where a high level of PSA is a strong indicator of 

prostate cancer presence and growth. Hence, clinicians can monitor prostate cancer progression using 

longitudinal measurements of PSA.  The correlation between PSA levels and tumor volume is imperfect 

and can vary over time due to phenotypical and physiological changes in the tumor (29). Furthermore, 
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PSA is not cancer specific. However, since PSA measurements can be taken frequently at low cost, it 

remains a valuable tool that can be used to gain invaluable insights into the dynamics of the tumor (7,30).  

The development of dynamical models for prostate cancer dates back almost two decades (31). Since 

then, there has been an array of models developed to study different aspects of prostate cancer and its 

treatments (5,8-13,17,25,32-43). Most of these results have been reviewed and synthesized previously 

(15,44,45). 

In this study, we use a mathematical model to track the clonal evolution of prostate cancer cells. Using 

longitudinal measurements of androgen and PSA from a clinical trial for IAS, we demonstrate the 

potentials of two new methods for predicting an imminent treatment failure due to the growing 

dominance of resistant cellular strains (7). The first method is developed based on the mathematical 

model, while the second is model-free and based on the underlying theoretical implication of the first 

method. For the purpose of this work, we classify all prostate cancer cell types into two broad categories: 

those susceptible and those resistant to ADT. These two indicators of treatment resistance, or biomarkers, 

each has its own advantages, but both have the potential to be useful in clinical settings.   

Materials and Methods 
Our primary investigative tool is a mathematical model based on the Droop cell quota framework and 

multi-species competition theory (46). The model is presented in detail in the quick-guide box. In 

summary, the model represents a system wherein androgen is produced and secreted into the blood, 

before diffusing into the intracellular spaces of cancerous cells in the prostate. The resulting cell quota of 

androgen, Q(t), is representative of the bound androgen receptors which drive the proliferation and 

apoptosis of prostate cancer cells. In order to proliferate, cancer cells require a certain amount of bound 

androgen receptors. This minimum amount of bound receptors is called the minimum cell quota, or 𝑞, 

within the Droop framework. For example, if a cell lacks a sufficient number of bound receptors to support 

proliferation (𝑄(𝑡) ≤ 𝑞), then the proliferation term becomes 0. The Droop functions have been used 

extensively to model prostate cancer (8–13).  

As prostate cancer cells proliferate, they produce PSA. Previous studies considered the PSA production 

rate to be linearly dependent on the current amount of bound androgen receptors. To be more 

biologically realistic, we assume that PSA production rate is proportional to the proliferation rate of cancer 

cells. That is, if cancer cells do not proliferate, then they do not produce PSA. We test the qualitative 

behaviors of the two assumptions to show that our proposed alternative PSA production rate better 

captures the qualitative behaviors of PSA dynamics (see model formulation in supplementary material). 

These considerations for our modeling framework is highlighted in Figure 1. 
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Figure 1: Schematics of model 

foundation and evolutionary 

framework. (a) Androgens 

(testosterones) enter the 

cancer cells. Some are 

converted to the potent 

dihydrotestosterone (DHT) with 

the help of 5-𝛼 reductase. Both 

then bind to the androgen 

receptors (AR). The bound 

androgen receptors send 

proliferative signals for cancer 

to grow and produce PSA (P). 

PSA is then leaked to the blood 

stream. (b) The distribution of 

the minimum cell quota (q) 

prior to treatment is skewed to 

higher values for q. This means 

most cancer cells are initially 

sensitive to treatment. During 

each treatment, this 

evolutionary landscape shifts 

toward a lower average q, 

meaning an increasing number 

of cells become less dependent 

on exogenous androgen. 

 

Model Quick-Guide Box 
This model is built on previous work by Kuang et al. (8-13). A schematics is provided in Figure 1. 

The total volumes of cancer cells susceptible to treatment (Castration Susceptible or CS) and resistant to 

treatment (Castration Resistant or CR) are represented by 𝑥1 and 𝑥2, respectively. Hence, together 
𝑑𝑥1

𝑑𝑡
 

and 
𝑑𝑥2

𝑑𝑡
 capture the rate of change of the total cancer population as it undergoes intermittent androgen 

suppression therapy (IAS). Our model of this dynamic takes the following form: 

dx1
dt

= max {μ (1 −
q1
Q
)x2,0}

⏟              
proliferation

− dx1(x1 + x2)⏟        
death

− c (
K

Q  +  K
)  x1

⏟        
transformation

, 

 

(1) 

𝑑𝑥2
𝑑𝑡

= max {𝜇 (1 −
𝑞2
𝑄
)𝑥2,0}

⏟              
proliferation

− 𝑑𝑥2(𝑥1 + 𝑥2)⏟        
death

+ 𝑐 (
𝐾

𝑄 + 𝐾
)𝑥1

⏟        
transformation

, 

(2) 
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The maximum functions represent androgen-dependent proliferation. In the presence of sufficient 

androgen (i.e., 𝑄 > 𝑞𝑖), proliferation and PSA production rates are positive. Otherwise, when androgen is 

below the minimum cell quota level, proliferation and PSA secretion rates go to 0 in our model 

formulation. Additionally, androgen also affects the transformation rate based on a standard saturation. 

The density-dependent death term represents the competition between and among the 𝑥1 and 𝑥2 

populations for other resources, including glucose and oxygen. If evolutionary trade-off is to be 

considered, we may select different competition rates 𝑑′𝑠 to reflect the cost of gaining resistance 

(17,25,32). However, for simplification, the current model assumes that even without treatment, the 

tumor is guaranteed to become treatment-resistant given a sufficiently long time because we purposefully 

neglect cost of resistance and the variety of potential subclones in order to simplify the model. This is 

justified because modern theory of treatment, “hit hard, hit fast,” essentially destroys susceptible clones 

entirely (44). Our goal here is to investigate treatment resistance under current clinical practice. A more 

complex model would be required to explore adaptive therapy.   

A crucial component to our modeling framework is the pair of minimum cell quota parameters 𝑞1 and 𝑞2 

that define the threshold amounts of bound androgen receptor required for proliferation of the 2 

subclones. While we elect to have only two subpopulations, the classification is based on a population-

average, so the resistance level of 𝑥2 may change over time to account for evolutionary factors. In 

particular, the resistant population 𝑥2 is expected to decrease its average dependence on androgen as 

the treatment goes on. This means we expect to see a diminishing q2 as we calibrate its value over the 

course of treatment see Figure 1.b. This means 𝑥2 represents the currently dominant resistant clone. 

Under selective pressure of the treatment, cells may adapt to increase their survivability (i.e., mutations, 

genomic or epigenetic changes). The transformation term represents the rate at which cells adapt and 

become more independent of androgen over time. Previous modeling studies have shown that it is not 

necessary to include a transformation term from resistant to sensitive phenotypes (10). The parameter K 

determines how sensitive this transformation rate is to the level of bound androgen receptors.  

The free androgen and bound androgen receptors are represented by 𝐴(𝑡) and 𝑄(𝑡), respectively. We 

model their dynamics as follows: 

dA

dt
= γ1u(t) (1 −

A

A0
)

⏟          
primary production

+ γ2⏟
secondary production

− δA⏟
degradation

 

(3) 

 
𝑑𝑄

𝑑𝑡
= 𝑚(𝐴 − 𝑄)⏟      

diffusion

−
μ(𝑄 − 𝑞1)𝑥1 + μ(𝑄 − 𝑞2)𝑥2

𝑥1 + 𝑥2⏟                  
used up by cancer cells

 

(4) 

Production of free androgen follows a negative feedback loop with maximum rate parameter γ1 and 

homeostasis androgen level 𝐴0. Testicular production of androgen (primary production) is intermittently 

suppressed by administration of ADT, which is represented by the Heaviside function 𝑢(𝑡). The rate of 
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adrenal androgen production γ2 is constant and fixed at a small percentage of the primary production γ1.  

Serum androgen concentration degrades at constant-per-capita rate δ. 

Free androgen diffuses into cells and binds to androgen receptor at a maximum rate 𝑚. We assume that 

androgen receptor binding happens instantaneously when androgen enters the cell. The term for the 

amount of androgen used up by cancer for growth accounts for changes to intracellular androgen 

concentration due to proliferation, which is derived from conservation laws (10).  

In general, existing prostate cancer models are built on the assumption that the rate of PSA production is 

a linear function of the amount of tumor cells (15). However, PSA production is intrinsically linked to 

cancer proliferation via the same transcription factor (bound androgen receptors), see Figure 1-a. Thus, 

we reflect this observation by formulating PSA production rate as a function of cellular activity in our 

model. In addition, we add a baseline production of PSA due to healthy prostate cells. These assumptions 

lead to the following equation for PSA dynamics: 

𝑑𝑃

𝑑𝑡
= 𝑏𝑄⏟
baseline

+max {σ1 (1 −
𝑞1

𝑄
) 𝑥1,0}⏟              

PSA production by 𝑥1

+max {σ2 (1 −
𝑞2

𝑄
) 𝑥2,0}⏟              

PSA production by 𝑥2

. 

(5) 

One desirable consequence of connecting the cellular proliferation function to the PSA production rate is 

the explicit connection between minimum cell quotas, 𝑞1 and 𝑞2, and the level of PSA. As the neoplasm 

becomes increasingly indifferent to environmental androgen, resistant cancer cells should secrete PSA 

more freely even during active ADT. We hypothesize that in our model the dynamics of PSA will be 

sensitive to changes in the q1 and q2 parameters. Additionally, the model should reflect the divergence 

between PSA and androgen levels observed in later cycles of resistant patients. 

Table 1 contains a summary of model parameters and ranges. Additional information on the model 

formulation and its parameters can be found in the supplemental section.  

Parameter Description Range Unit 

Μ  max proliferation Rate 0.001 – 0.09 [day]-1 

q1 minimum cell quota for 𝑥1 to proliferate 0.41 – 1.73 [nmol][day]-1 

q2 minimum cell quota for 𝑥2 to proliferate 0.01 – 0.41 [nmole][day]-1 

d density death rate 0.001 – 0.30 [L]-1[day]-1 

c maximum mutation rate 0.00015 – 0.00015 [day]-1 

K half-saturation constant for mutation 1 – 1 [nmole][day]-1 

γ1  androgen production by testes 0.008 – 0.8 [nmol][day]-1 

γ2  
androgen production rate by adrenal 
gland 

0.005 – 0.005 [nmol][day]-1 

𝐴0  homeostasis serum androgen level * [nmol] 

Δ  androgen degradation rate 0.03 – 0.15 [day]-1 

b baseline PSA production rate 0.0001 – 0.1 [μg][nmol]-1[day]-1 

σ1  maximum PSA production rate by 𝑥1 0.001 – 1 [μg][nmol]-1[L]-1[day]-1 

σ2  maximum PSA production rate by x2 0.001 – 1 [μg][nmol]-1[L]-1[day]-1 

ϵ  PSA clearance rate 0.0001 – 0.1 [day]-1 
Table 1: Parameter definitions and boundaries: This table describes the physiological interpretations of the fifteen parameters 

used in this model (11, 15). The range column indicates the upper and lower bounds within which an error minimizing function 
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may establish an optimal value with respect to a concrete set of patient data. The * in place of upper and lower bounds of 𝐴0 is 

because the range of 𝐴0 is patient specific and is set to the patient’s maximum recorded androgen data ±10.  

We fit our model to patient data from a clinical study of IAS at the Vancouver Prostate Centre (7). Data 
contains longitudinal measurements of PSA and androgen for 71 patients during IAS. The information on 
the ultimate result of each patient’s treatment is also recorded.   
 
We use MATLAB 2021a to perform our simulation and analysis. In particular, we use MATLAB function 
fmincon to fit model to patient data. To limit potential issues of parameter identifiability, we only estimate 
five key parameters (12). We fit the model to data on each treatment cycle’s on- and off-period to 
estimate the values of these parameters. The remaining parameters are fixed to values determined by a 
test-run performed over a short segment of data. Additionally, we apply more weight to the discrepancy 
between the model simulation and PSA data as compared to androgen data (85% to 15%, respectively). 
Weighted error approaches have been shown to improve overall model fitting (11). The supplemental 
section contains additional details regarding the data used, the method of calculating error, and other 
considerations of the model fitting.   
 
We present two potential biomarkers that may be used to predict the development of resistance to ADT. 

Our first predictive proposed indicator is the ratio between initial and final (most recent) values of 𝑞2. 

Selective pressure during each treatment cycle causes the resistant subclones to become less dependent 

on environmental androgen through a variety of different mechanisms (49). Therefore, we expect the 

value of 𝑞2 to decrease over sequential estimates. We aim to determine, using clinical data fitted to the 

model, if one can define a threshold that is correlated with an increased probability of treatment failure.  

Treatment resistance can also be recognized in the data by the divergence between androgen and PSA 

dynamics. Initially, when a patient begins androgen suppression therapy, the PSA and androgen behavior 

are qualitatively similar during on- and off-treatment. However, as the neoplasm becomes more 

castration resistant, more cells survive cycles of androgen deprivation to secrete PSA regardless of 

treatment. The second proposed biomarker is built on this observation, which takes the ratio of serum 

measurements of androgen and PSA to be an indicator of treatment failure. In essence, the second 

proposed biomarker is a model-free form of the first biomarker. 

In order to evaluate the predictive potential of both proposed biomarkers, we first sorted patients into 

two groups: success or failure. We defined failures as discontinuations due to resistance or death from 

prostate cancer; we classified all other outcomes as successes. Next, we sought to identify a correlation 

between the biomarker values and treatment success or failure. Distinct thresholds were established for 

each ratio that, when reached, signify treatment failure in the next cycle.  

We present here two sets of thresholds calculated with two different methods. The first method 

determines a threshold that maximizes the accuracy of our predictions based on the Vancouver dataset, 

which is denoted as the Max threshold. The second method uses MATLAB’s support vector machine 

function fitcsvm to generate a threshold that, while less accurate than the Max threshold when used with 

the current dataset, is potentially more accurate across a larger cohort of patient. The threshold calculated 

by the second method is referred to as the SVM threshold. We then test the robustness of these 

thresholds with cross-validation. 
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Results 
In general, the model closely captures PSA and androgen dynamics (Fig. 2). However, its fit favors PSA 

data over androgen data [11]. Nevertheless, our model is capable of capturing PSA and androgen 

dynamics sufficiently to generate accurate predictive biomarkers. 

 

 

Figure 2: Model validation: Best-fit model solutions to the dynamics of serum androgen and PSA levels. Circles represent patient 

measurements, and the solid lines are solutions of model (model equation number). ‘CS’ = castration susceptible tumor cell 

population; ‘CR’ = castration resistant population. Panel (a) was produced by a short dataset 1.5 cycles long, and panel (b) by a 

dataset 2.5 cycles long. 
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Figure 3: The predictive potential of the q2 ratio: The scatterplot (a) indicates the value of the q2 ratio for every patient in the 

dataset. The ratio is between the initial and final values of the q2 parameter calculated by the mathematical model. Max (dotted 

line) and SVM (solid line) threshold values are shown. The confusion matrix (b) compares actual patient outcomes with outcomes 

predicted by q2 ratio with respect to the thresholds. 

Figure 3 summarizes the analytical result for the 𝑞2 ratio as a potential predictive biomarker. The result 

demonstrates that when the value of the q2 ratio exceeds either the SVM or Max threshold, it strongly 

indicates an impending treatment failure due to the development of resistance. The q2 Max and SVM 

thresholds classify the data with accuracies of 87.3% (sensitivity: 96.1%, specificity: 65%) and 81.7% 

(sensitivity: 98.0%, specificity: 40%), respectively. 

 

Figure 4: The predictive potential of the Androgen/PSA ratio: Scatterplot (a) shows the value of the androgen/PSA ratio for every 

patient when calculated using mean values of androgen and PSA from the first 200 days of treatment. Scatterplot (a) 

demonstrates that there is little correlation between the value of the ratio and treatment outcome when calculated in this 

manner. Scatterplot b shows the same ratio calculated using mean androgen and PSA values from the patient’s final on-treatment 

cycle, not exceeding 200 days. For the purposes of this figure all ratio values greater than five are represented as five. Scatterplot 

(b) shows two thresholds below which values of the androgen/PSA ratio indicate impending treatment failure. The confusion 

matrix (c) compares actual patient outcomes to outcomes predicted by the ratio with respect to the two thresholds.  
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Figure 4 shows a summary of the analytical result for the androgen to PSA ratio as a potential predictive 

biomarker. The initial values of the androgen/PSA ratio are highly variable across all patients. In the early 

stages of treatment, there is no correlation between the ratio and that treatment’s ultimate outcome, 

which is consistent with the selection criteria of the patients for the clinical trial (9). However, that is not 

the case if the androgen to PSA ratio is calculated using the mean values of the patient’s final on-treatment 

cycle. When the androgen to PSA ratio falls below the Max or SVM thresholds, it strongly indicates 

impending treatment failure due to the development of castration resistance. For the androgen to PSA 

ratio, the Max threshold is 0.19 and classifies patients with 88.7% accuracy (sensitivity: 90.2%, specificity: 

85.0%), while the SVM threshold of 0.30 classifies patients with 84.5% accuracy (sensitivity: 82.4%, 

specificity: 90.0%). It is worth emphasizing that the androgen/PSA biomarker is calculated using only 

serum androgen and PSA data, and therefore does not require a mathematical model to estimate. 

To test robustness of all thresholds, we used a five-fold cross-validation. For the SVM thresholds, we used 

the built-in MATLAB cross-validation function. The predictive accuracy for the q2 ratio SVM threshold was 

79%. The accuracy for the androgen/PSA SVM threshold was 85%. For the Max thresholds, we randomized 

the data, performed the five-fold cross validation, and then replicated the procedure 100 times. The mean 

accuracies of the q2 ratio SVM thresholds were 87% for the training sample, and 84% for the holdout 

sample. The mean accuracies for the androgen/PSA SVM thresholds were 89% for the training sample and 

85% for the holdout sample.  

Discussion and Conclusion 
Perhaps the most troublesome cancer characteristics, when it comes to treatment, is its ability to quickly 

adapt and evade initially effective treatments. Due to genomic instability, new cellular variations are 

continuously appearing, competing, and going extinct, leading to increasing malignancy via natural 

selection (4,23,24). Therefore, in many cases, it is only a matter of time before malignant tumors evolve 

resistance to conventional treatments. When a treatment fails, susceptible subclones have perished and 

been replaced by resistant clones, thus removing the possibility of continued success for first- or even 

second-line treatment. If clinicians could detect incipient resistance in advance, it would allow them an 

opportunity to change tactics that may lead to better clinical outcomes. Such an ability would likely 

improve long-term management and individualized treatment plans for cancer patients (17,25,32).  

In this study, we propose two different tools that can be used to determine approaching castration 

resistance during intermittent ADT with high accuracy. Prediction tools exist to assess clinical prostate 

cancer, including AUC measures of PSA to diagnose clinically significant disease (18) and Gleason score, 

which has some power to measure prostate cancer aggressiveness and predict treatment outcome (19). 

However, neither PSA nor Gleason score are typically used to make real time predictions of cancer 

response to treatment. In contrast, our two proposed indicators rely on measurements of PSA and 

androgen, which are both relatively simple to obtain in real time, and have high predictive accuracies of 

87 – 89%. This observation supports their potential usefulness in the clinical setting and warrants further 

investigation.  

Both proposed biomarkers are developed from the same classical ecological theories. However, they are 

calculated differently. While the androgen to PSA ratio was motivated by a mathematical model, the 

model is not required; it relies entirely on serum data that can be collected as part of the standard 

monitoring routine. However, the model-free biomarker requires consistent, regular measurements of 
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both androgen and PSA serum for calibration and prediction accuracy. In contrast, the 𝑞2 ratio may be 

estimated using only longitudinal PSA data and baseline serum androgen level with the aid of the 

mathematical model. Furthermore, since 𝑞2 reflects the degree of resistance and may be estimated 

independently of androgen data, it is possible to detect approaching treatment failure during the off-

treatment period prior to resuming treatment. Both proposed biomarkers can be used in conjunction to 

improve the overall accuracy.  

In our analysis, we calculate the ratios using data from the last on-treatment to show the predictive 

potential of our proposed biomarkers. This leaves an important question unanswered: how early can 

these indicators predict treatment failure with sufficiently high accuracy? We demonstrate that the 

proposed biomarkers do not indicate treatment failure at the start of treatment and predict treatment 

failure with high accuracy only at the last cycle. Furthermore, we show that there is an increasing trend in 

𝑞2 ratio over each treatment interval (see supplementary figure 8s). This implies that the potential of 

being able to predict the treatment outcome dynamically over the course of treatment. Subsequent 

studies are needed to examine this aspect. 

The high accuracy of these two biomarkers in our analysis supports the growing trend of implementing 

mathematical models in clinical studies (15,44). Furthermore, our analysis reemphasizes the importance 

of careful data collection during treatment. The dataset that we use here contains consistent longitudinal 

measurements of PSA and serum androgen for each patient over several years of treatment. However, 

this is not often the case in practice. For these, or any, biomarkers to have practical value, blood panels 

measuring serum PSA and androgen must be taken regularly and consistently to maximize the usefulness 

of mathematical models (12). Therefore, the development of mathematical models in clinical settings can 

benefit tremendously from incorporating data sets that are specifically designed and collected for the 

validation of the models.  
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Supplemental Material 

Model Formulation: 
The model we present was formulated incrementally as a series of changes, modifications, 

and occasional failures over time. This is a summary of the steps taken to get from an 

established starting point to the final form of the model presented in this publication.  

We began with a model published by Baez et al (1). The Baez model is a system of four 

differential equations that represent: the volumes of two cancer cell subpopulations, the 

cell quota of androgen, and the serum concentration of PSA. The model is as follows:     

𝑑𝑥1
𝑑𝑡

= μ (1 −
𝑞1
𝑄
)𝑥1 − (𝑑1

𝑅1
𝑄 + 𝑅1

+ δ1𝑥1) 𝑥1 − λ𝑥1 

𝑑𝑥2
𝑑𝑡

= μ (1 −
𝑞2
𝑄
)𝑥2 − (𝑑2

𝑅2
𝑄 + 𝑅2

+ δ2𝑥2) 𝑥2 + λ𝑥1 

𝑑𝑄

𝑑𝑡
= (γ1𝑢(𝑡) + γ2)(𝑄𝑚𝑎𝑥 −𝑄) − μ(

(𝑄 − 𝑞1)𝑥1 + (𝑄 − 𝑞2)𝑥2
𝑥1 + 𝑥2

) 

𝑑𝑃

𝑑𝑡
= 𝑏𝑄 + σ(𝑄𝑥1 + 𝑄𝑥2) − ϵ𝑃 

When we reproduced the Baez model, we found that we could rarely recreate the whole 

range of androgen and PSA data.  Peaks of data caused by spikes in data values were often 

truncated to some lower level.  Our original goal was to discover if adjustments could be 

made that would allow the model to better represent these peaks.   

 

Figure 1s: This one result of our recreation of the Baez model.  The data are represented 

by black circles, while the simulated results are solid lines.  The figure titled ‘u’ shows 
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when the patient was on or off treatment. This purpose of this figure is to show that, in the 

case of both androgen and PSA, the model was not reproducing the entire range of data.  

The upper end of measurements, or ‘peaks’, are cut off.       

To that end, our first change was to condense the two death rate parameters into just one 

term.  When we examined the optimized parameters returned to us by the fmincon 

function, we noticed that there was always very little difference between the values of d1 

and d2. We decided that the difference was small enough to justify merging these terms so 

that the model might better identify the other parameters.  On the other hand, we also split 

the 𝜎 parameter into 𝜎1 and 𝜎2. We did this to allow for the possibility that both subclones 

were producing PSA at different rates. This is what the model looked like after making 

those changes. 

𝑑𝑥1
𝑑𝑡

= μ (1 −
𝑞1
𝑄
)𝑥1 − (𝑑

𝑅1
𝑄 + 𝑅1

+ δ1𝑥1) 𝑥1 − λ𝑥1 

𝑑𝑥2
𝑑𝑡

= μ (1 −
𝑞2
𝑄
)𝑥2 − (𝑑

𝑅2
𝑄 + 𝑅2

+ δ2𝑥2) 𝑥2 + λ𝑥1 

𝑑𝑄

𝑑𝑡
= (𝛾1𝑢(𝑡) + 𝛾2)(𝑄𝑚𝑎𝑥 − 𝑄) − 𝜇 (

(𝑄 − 𝑞1)𝑥1 + (𝑄 − 𝑞2)𝑥2
𝑥1 + 𝑥2

) 

𝑑𝑃

𝑑𝑡
= 𝑏𝑄 + (σ1𝑥1 + σ2𝑥2)𝑄 − 𝜖𝑃 

 

Figure 2s:  An example of the results produced by the first series of modifications to the 

Baez model.  The two death terms, d1 and d2, were merged into one, d, and the σ 
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parameter was split into σ1 and σ2. The apparent result of these two adjustments was an 

improved capacity for the model to represent the data.  

Taken together, these two changes were found to somewhat improve the model’s ability to 

simulate larger measurements.  An example of the results may be seen in Figure 2s.  These 

changes were tested separately, and it was found that making the change to 𝜎 alone was 

not sufficient to apparently improve the result. 

Next, we implemented three substantial modifications. These changes were tentative and 

experimental, so they were all tested separately and in combination with each other.  In 

addition, all of these model variations were tested with and without the addition of a 

degradation term to the dQ equation.   

The first modification was the complete removal of the death terms.  Negative growth is 

already made possible by the Droop equations in the growth terms (growth is negative 

when 𝑄 < 𝑞i), and we wanted to see if this negative pressure would be sufficient to 

control the cell populations without the death terms.   

The second modification was the removal of the dx2 equation. We wanted to know exactly 

how much the second layer of complexity contributed to the outcome. We thought it 

possible, since we were continually fitting the parameter q, that resistance might be 

adequately modeled by the dynamics of q alone.  If we could remove one of the 

differential equations without substantially damaging the result, it would make it much 

easier for fmincon to identify the remaining critical parameters (see section below for 

more information on fitting and critical parameters). 

The third modification was a substantial change to the PSA equation and involved 

incorporating the Droop functions from the growth terms into the PSA production terms. 

This is a novel modification that introduces an entirely different interpretation of what 

motivates PSA production and is discussed in the main body of this publication.   

This is the system of differential equations that incorporates all three of these 

modifications, and includes the degradation term in the dQ equation: 

𝑑𝑥

𝑑𝑡
= μ (1 −

𝑞

𝑄
) 

𝑑𝑄

𝑑𝑡
= γ(𝑡)(𝑄𝑚𝑎𝑥 −𝑄) − μ(𝑄 − 𝑞) − δ𝑄 

𝑑𝑃

𝑑𝑡
= bQ + σ(1 −

𝑞

𝑄
) − ϵP 

The products of this system were surprising, but still useful, and may be seen in Figure 3s.  

Clearly this is a failed result, but it was immediately apparent where we had made the 

mistake: by applying the Droop functions to the dP equation, we had conferred the 

possibility for negative growth (due to a lack of androgen) to PSA as well. Furthermore, 

we can see that by removing the death terms that the tumor volumes and PSA 

concentrations have both grown far beyond the limits of believability. 
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Figure 3s: This figure shows the result of removing the death terms and applying Droop 

functions to PSA production. This is clearly a failed attempt.  PSA oscillates between 

positive and negative values, which is clearly impossible.  Furthermore, by the end of 

treatment the magnitude of the tumor volume is entirely incredulous. 

To rectify this mistake, we applied maximum functions to all the related Droop terms. 

Negative growth needed to be eliminated from PSA production, but for consistency we 

applied the maximum functions to the growth terms as well.  In doing so, we eliminated 

the built-in capacity for negative growth in the dx equations, where it was needed.  This, 

in addition to the explosive, runaway growth of the cell volumes seen the previous result, 

required us to reintroduce death terms to the model.  

We initially tested two variations on these death terms, 𝑑1𝑥1 vs 𝑑1𝑥1
2, and found that the 

latter was necessary to keep the populations under control.  When we reintroduced these 

death terms we used two separate death rate parameters: d1 and d2. 

After experimenting with all the variations, and implementing these corrections, the best 

performing model was this (see also Figure 4s): 

𝑑𝑥1
𝑑𝑡

= 𝑚𝑎𝑥 {μ (1 −
𝑞1
𝑄
)𝑥1, 0} − 𝑑1𝑥1

2  

𝑑𝑥2
𝑑𝑡

= 𝑚𝑎𝑥 {𝜇 (1 −
𝑞2
𝑄
)𝑥2, 0} − 𝑑2𝑥2

2 

𝑑𝑄

𝑑𝑡
= γ(𝑡)(𝑄𝑚𝑎𝑥 − 𝑄) − μ(

(Q − q1)x1 + (Q − q2)x2
x1 + x2

) − δQ 
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𝑑𝑃

𝑑𝑡
= bQ +𝑚𝑎𝑥 {σ1 (1 −

𝑞1
𝑄
) x1,0} + 𝑚𝑎𝑥 {σ2 (1 −

𝑞2
𝑄
) x2,0} − ϵ𝑃 

   

 

 

Figure 4s: This figure is an example of the result produced by the model when the Droop 

functions were applied to the PSA production terms and upon reintroducing death terms to 

the growth equations.  This result was viewed as a success, but we identified a remaining 

challenge in that the volume of the resistant cell colony was still unrealistically large. 

Our next challenge was that the simulated tumor volumes were often impossibly large.  In 

Figure 4s, for example, we see that the volume of the treatment-resistant subpopulation is 

approaching four liters.  Our next task was to implement changes that might affect a 

reduction in those numbers.  

We first tested a range of new values for the death rate parameters, with varying levels of 

success, before again merging them into a single parameter d.  We also tested a range of 

new values for the growth parameter μ. Unable to find the bounds for 𝜇 that gave the 

desired result, we incorporated a change in how the 𝜇 parameter was optimized. Whereas 

before we programmed fmincon to optimize 𝜇, alongside other parameters, against a short, 

two-cycle test segment, the program was changed such that 𝜇 was fitted first, before any 

other parameters, against an even shorter, half-cycle segment.  The resulting value of 𝜇 

was then fixed before any other parameters were optimized.  This was found to 
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successfully reduce the upper bounds of our tumor volumes without substantially 

changing the underlying dynamics.   

 

Figure 5s: Changing the method of optimizing the single parameter 𝜇 resulted in a more 

realistic range of resistant tumor volume.  Notable is that the CS and CR populations co-

exist throughout the course of treatment, with one never overtaking the other.  

Feeling that the volumes of x1 and x2 were now under control, we moved on to something 

new.  We noticed that the resistant and susceptible tumor populations, x1 and x2, often 

coexisted together throughout the course of the treatment.  This can be seen in Figure 5s 

where, although both populations grow and shrink according to treatment status, one is 

never seen to outcompete the other. This did not conform to our expectations, which were 

for the resistant subpopulation to become dominant as treatment is applied repeatedly over 

time.  To address this, we decided to modify the death terms once again, this time to 

introduce an element of interspecific competition between these two subpopulations.   

These are the first two differential equations after the introduction of interspecific 

competition: 

𝑑𝑥1
𝑑𝑡

= 𝑚𝑎𝑥 {μ (1 −
𝑞1
𝑄
) 𝑥1,0} − 𝑑𝑥1(𝑥1 + 𝑥2) 

𝑑𝑥1
𝑑𝑡

= 𝑚𝑎𝑥 {μ (1 −
𝑞1
𝑄
) 𝑥1,0} − 𝑑𝑥2(𝑥1 + 𝑥2) 

Implementing this change had some of the desired effect on the dynamics of the 

susceptible population. Figure 6s shows that, upon the implementation of these new death 

terms, the susceptible population was indeed seen to go extinct.  This was, however, only 
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a partial success.  We would have preferred to see less oscillation in the resistant 

population, and for the susceptible population to fail over a longer period.  Ideally, we 

want to see that PSA dynamics are driven by oscillations in the susceptible population, 

and that extinction of the susceptible population coincided with a deviation between 

androgen and PSA behavior. This is open challenge that we may address in the future.  

At the time, however, the primary problem was that by introducing interspecific 

competition we had significantly damaged the model’s ability to reproduce androgen data. 

Therefore, we undertook one final modification in the hopes of improving upon that 

shortcoming: the introduction of a fifth differential equation. 

 

Figure 6s: This figure shows the result of introducing interspecific competition.  The 

susceptible subpopulation is now seen to die off, as expected. This result is only a partial 

success.  The desired outcome was achieved, but likely too early, and too abruptly.  We 

would also have preferred to see less oscillation in the resistant subpopulation.  Finally, 

the ability of the model to reproduce androgen values has noticeably worsened.  

The purpose of introducing a fifth differential equation was to compartmentalize the 

serum androgen, for which we had measurements, from the cell quota of androgen that 

motivated tumor growth and PSA production. We tested two different forms of this fifth 

differential equation. The first was published by Phan et al, and the second by Reckell et 

al (2,3).  We found that, in the context of this model, the second equation produced better 

results.   

Androgen equation (Phan et al): 

𝑑𝐴

𝑑𝑡
= γ2 + γ1(𝐴0 − 𝐴) − 𝐴0γ1(1 − 𝑢(𝑡)) 
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Androgen equation (Reckell et al): 

dA

dt
  =  γ2  +  γ1  (1  −  

A

A0
) u(t)  −  δA 

Implementing this fifth differential equation gives the final form of the model presented in the 

main body of the publication.  Using this model, we were able to accomplish some of the goals 

we had when we began, but there remain opportunities for improvement. Upon introducing the 

fifth differential equation, we saw that the volumes of the resistant subpopulations again started 

to approach unrealistically large values.  Furthermore, the model still struggles to reproduce 

androgen data for many of the patient datasets we tested.  This is, to an extent, an expected 

consequence of how we weigh error (80% in favor of PSA), but we still believe that improvement 

is possible. 

 

Figure 7s:  One result of compartmentalizing serum androgen from cell quota of androgen.  

The model’s ability to recreate androgen has been improved, but the volumes of the 

resistant subpopulation have again grown to levels that may yet be too large.  This is the 

final form of the model presented in this publication.  

Objective Function: 
Essential for the operation of the Matlab’s fmincon function is the definition of the 

objective function, used to calculate the discrepancy between the model output and the 

actual data. We used the following objective function: 

√∑ (
𝑐𝑖 − 𝑑𝑖
𝑐𝑖 + 𝑑𝑖
2

)

2

𝑁
𝑖=1

𝑁
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We chose to use this rather than something like sum of squared errors because we did not 

want the function to disproportionally weigh the largest errors.  This reduced the power of 

outliers to disproportionally influence the optimized parameters.  For the purposes of this 

investigation, PSA error was weighed far more heavily than androgen error (80% vs 

20%).   

 

Parameters and Fitting 
The parameter values and ranges used in this model follow directly from work done by 

Phan et al (2).   

Three of the fifteen parameters used in this model, c, K, and 𝛾2, are permanently fixed at 

some static value.  We do this following the sensitivity analysis done by Phan et al, which 

led to them permanently fixing five of their parameters: c, K, 𝛿1, 𝛿2, and 𝛾2  (Note: Where 

they use 𝛿 for the density-dependent death rate, we use d) (2).  

The mutation rate parameters c and K govern the rate that members of the susceptible 

population dynamically respond to treatment, and therefore move from the treatment 

susceptible to the treatment resistant population. The sensitivity analysis done by Phan et 

al demonstrated that these parameters were particularly insensitive, and that fixing these 

parameters was therefore a reliable way to improve the identifiability of the more critical 

parameters. A basis for the range of c was first published by Ideta et al (4). Following that, 

subsequent models, including this model, have used a fixed value of 0.00015 for c, and of 

1 for K (1,2,5). 

The next parameter 𝛾2 stands for the rate of secondary (adrenal) androgen production.  

This parameter is so insensitive that Phan et al set it to zero in their work (2). We did not 

set it to zero, but instead fixed it such that it would be a small percentage of 𝛾1, the 

primary androgen production parameter.   

When it comes to the density death rate parameter d we deviate from the values used in 

earlier publications. The changes made to this model, and in particular the introduction of 

interspecific competition, require entirely new parameters. We therefore had no basis for 

setting a fixed value for d and allowed the parameter to be fitted by fmincon.   

The twelve remaining parameters, including d, are all fitted in some way by fmincon.  

These parameters may be sorted into three different groups: four critical parameters, μ in a 

category by itself, and seven partially fitted parameters. The four parameters most 

sensitive and most important to our investigation are re-optimized for every half-cycle of 

treatment. In other words, every time the data indicates a switch in treatment status 

fmincon calculates a new best-fit value for that segment of treatment. This allows us to 

study the dynamics of these parameters over the whole course of treatment. μ is only fitted 

against the first half-cycle of treatment.  The program runs for one half-cycle, discovers a 

set of best-fit parameters for that single half-cycle, and then fixes μ at that value. The 

seven remaining parameters are fitted against a two-cycle test segment, and then fixed at 

the resultant optimal value. In order, first the program runs the single half-cycle to find the 

fixed value of μ, then it runs for two whole cycles to find the fixed values of the seven 
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partially-fitted parameters, and then the program runs the whole dataset, fitting and re-

fitting only the four critical parameters.   

The four sensitive, critical parameters are: q2, representing the minimum amount of 

androgen required by the resistant cell population to survive and proliferate; 𝛾1, the 

primary (testicular) rate of androgen production; A0, the maximum serum level of 

androgen; and 𝜎2, the rate of PSA production by the resistant cell population.   

 

We cannot overstate the importance of the parameters q2 and 𝜎2 to this investigation. It is 

q2 that is most responsible for simulating the development of resistance, and it forms a 

critical component of one of our proposed predictive indicators. Likewise, 𝜎2 is directly 

related to resistance, because it is a key driver of the divergence between androgen and 

PSA seen in patients as they become resistant to treatment.  It is due to their direct effect 

on the modeling of resistance that these two parameters are considered critically 

important, and therefore re-fitted against every half-cycle of treatment. 

We use the same upper and lower bounds for q1 and q2 as those published by Phan et al 

(2).  They discovered work wherein was published the lowest and highest recorded serum 

androgen levels caused by hormonal therapy (0.41 nMol/L and 1.73 nMol/L) (6).  We 

invariably see that androgen suppression therapy initially succeeds at reducing the volume 

of a tumor, so we may safely infer that the minimum cell quota for the susceptible 

population, q1, lies somewhere in that range.  Furthermore, we assume that q2 is always 

less than q1, and therefore set the upper bound of q2 at the lower bound of q1. There is no 

data to support the range of q2, and so the lower bound is an estimate.   

The maximum serum androgen, A0, is one of the critical parameters because it is both 

patient-specific and especially sensitive. The data demonstrates that although values are 

typically below 27nm/mole, there is still considerable variation in each patient’s 

maximum serum androgen measurement (7).  For the purposes of this investigation, each 

patient’s maximum measurement was identified and the upper and lower bounds of A0, for 

that patient, were set to be ±10 nMol from that maximum.  

The parameter 𝛾1 has a singular impact on the shape and behavior of simulated androgen 

and PSA levels.  Unfortunately, there is no known clinical value for the rate of testicular 

androgen production.  This parameter is considered one our critical parameters both 

because of its sensitivity and because we have no basis from which to estimate its value. 

In their work, Phan et al started from a range published by Ideta et al, and then reduced 

that range until it suited their investigation (2,4). We follow their lead and use the same 

upper and lower bounds. 

Regarding the remaining parameters: the sequence of modifications made in the 

formulation of our model have left us unable to use prior, published values for the density 

death rate parameter d. Therefore, we tested a range of estimated bounds, and selected the 

best performers. The bounds of q1 are identical to the bounds of q2, which have already 

been discussed. Likewise, the bounds for σ1 are identical to the bounds for σ2. Like d, we 

tested the upper and lower bounds of μ by testing a range of estimated values. In the end, 
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however, we determined that the best performing bounds were the same as those 

published by Phan et al (2).  Those bounds for μ were derived from work done by Berges 

et al, wherein they measured the proliferation rates of prostate cancer cell populations in 

both androgen-rich and androgen-poor environments (8).  The work to establish the 

bounds of the remaining parameters: ϵ, b, m, and 𝛿, was done by Baez et al, and Portz et al 

(1,5). 

   

Trend of 𝑞2 
We examine the evolution of the cell quota parameter for the resistant cancer population, 𝑞2. In 

theory, 𝑞2 should decrease with each treatment, making the ratio 𝑞1/𝑞𝑛 an increasing sequence 

where n is the current treatment cycle. We fit a linear model to this ratio for all patients. 

 

Figure 8s: increasing trend of 𝑞2 over each treatment cycle. 
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