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Abstract: The COVID-19 pandemic has highlighted the critical role of genomic surveillance for 36 

guiding policy and control strategies. Timeliness is key, but rapid deployment of existing 37 

surveillance is difficult because most approaches are based on sequence alignment and 38 

phylogeny. Millions of SARS-CoV-2 genomes have been assembled, the largest collection of 39 

sequence data in history. Phylogenetic methods are ill equipped to handle this sheer scale. We 40 

introduce a pan-genomic measure that examines the information diversity of a k-mer library 41 

drawn from a country’s complete set of clinical, pooled, or wastewater sequence. Quantifying 42 

diversity is central to ecology. Studies that measure the diversity of various environments 43 

increasingly use the concept of Hill numbers, or the effective number of species in a sample, to 44 

provide a simple metric for comparing species diversity across environments. The more diverse 45 

the sample, the higher the Hill number. We adopt this ecological approach and consider each k-46 

mer an individual and each genome a transect in the pan-genome of the species. Applying Hill 47 

numbers in this way allows us to summarize the temporal trajectory of pandemic variants by 48 

collapsing each day’s assemblies into genomic equivalents. For pooled or wastewater sequence, 49 

we instead compare sets of days represented by survey sequence divorced from individual 50 

infections. We do both calculations quickly, without alignment or trees, using modern genome 51 

sketching techniques to accommodate millions of genomes or terabases of raw sequence in one 52 

condensed view of pandemic dynamics. Using data from the UK, USA, and South Africa, we 53 

trace the ascendance of new variants of concern as they emerge in local populations months 54 

before these variants are named and added to phylogenetic databases.  Using data from San 55 

Diego wastewater, we monitor these same population changes from raw, unassembled sequence. 56 

This history of emerging variants senses all available data as it is sequenced, intimating variant 57 

sweeps to dominance or declines to extinction at the leading edge of the COVID19 pandemic. 58 
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The surveillance technique we introduce in a SARS-CoV-2 context here can operate on genomic 59 

data generated over any pandemic time course and is organism agnostic.  60 

 61 

One-Sentence Summary: We implement pathogen surveillance from sequence streams in real-62 

time, requiring neither references or phylogenetics. 63 

 64 

Main Text: The COVID-19 pandemic has been fueled by the repeated emergence of SARS-65 

CoV-2 variants, a few of which have propelled worldwide, asynchronous waves of infection(1). 66 

First arising in late 2019 in Wuhan, China, the spread of the D614G mutation led to sequential 67 

waves of Variants of Concern (VOC) about nine months later, significantly broadening the 68 

pandemic’s reach and challenging concerted efforts at its control (2). Beta and Gamma variants 69 

drove regional resurgences, but Alpha, Delta and Omicron occurred globally (3)(4). The advent 70 

of each variant led to the near extinction of the population within which it arose (5). The 71 

architecture of this pandemic is therefore marked by periods of transition, tipping a population 72 

towards an emerging variant of concern followed by its near complete sweep to dominance. 73 

 74 

At the pandemic’s outset, epidemiological work was focused on transmission networks, but 75 

SARS-CoV-2’s high rates of infection quickly outstripped our ability to trace it(2). When it 76 

became clear that even focused global efforts would only characterize a fraction of infections, 77 

researchers turned to phylodynamic approaches to understand SARS-CoV-2’s population 78 

structure(6)(7). Genomics was at the center of this effort. Rapid sequencing and whole genome 79 

phylogeny updated in quasi real time enabled epidemic surveillance that was a few weeks to a 80 

month behind the edge of the pandemic curve(8). In a crisis of COVID-19’s scale and speed, 81 
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eliminating this analysis lag can mean the difference between timely, reasonable public health 82 

response and failure to understand and anticipate the disease’s next turn.  83 

 84 

Phylodynamics is predicated on genetic variation. Without variation, phylogenetic approaches 85 

yield star trees with no evolutionary structure. The high mutation rate among pathogens, 86 

especially among RNA viruses like SARS-CoV2, ensures the accumulation of sufficient 87 

diversity to reconstruct pathogen evolutionary history even over the relatively short time scales 88 

that comprise an outbreak. But as a genomic surveillance technique, phylodynamics is costly. 89 

Tools like Nextstrain align genomes, reconstruct phylogenies, and date internal nodes using 90 

Bayesian and likelihood approaches(9). These techniques are among the most computationally 91 

expensive algorithms in bioinformatics. Intractable beyond a few thousand sequences, 92 

phylodynamic approaches must operate on population subsamples, and subsamples are subject to 93 

the vagaries of data curation. More importantly, phylodynamic approaches are yoked to 94 

references. Most techniques are ill-equipped to respond to evolutionary novelty. We argue that 95 

genomic surveillance should herald the appearance of previously unseen variants without having 96 

to resort to comparison with assembled and curated genomes, and the lag between variant 97 

discovery and a database update is often months. Surveillance is currently hamstrung by the 98 

historical bias inherent to marker-based analysis. The existing pandemic toolbox therefore lacks 99 

unbiased approaches to quickly model the population genomics of all sequences available. 100 

 101 

We propose a method that summarizes the temporal trajectory of pandemic variants by 102 

collapsing each day’s assemblies into a single metric. In the case of pooled or wastewater 103 

sequence, this same metric is repurposed to measure survey sequence compression across days. 104 
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Our method does not subsample, perform alignments, or build trees, but still describes the major 105 

arcs of the COVID19 pandemic. Our inspiration comes from long standing definitions of 106 

diversity used in ecology. We employ Hill numbers (10)(11), extensions of Shannon’s theory of 107 

information entropy(12). Rather than using these numbers to compute traditional ecological 108 

quantities like the diversity of species in an area, we use them to compute the diversity of 109 

genomic information. For example, we envision each unique k-mer a species and each genome a 110 

transect sampled from the pan-genome. Applying Hill numbers in this way allows us to measure 111 

a collection of genomes in terms of genomic equivalents, or a set of sequence pools as the 112 

effective number of sets. We show that tracing a pandemic curve with these new metrics enables 113 

the use of sequence as a real time sensor, tracking both the emergence of variants over time and 114 

the extent of their spread.  115 

 116 

Implementation 117 

To measure the information diversity of a population, we use ecological definitions that 118 

condense the influence of millions of genomes or terabases of raw sequence into a single value.  119 

In ecology, the effective number of species is a quantity used to provide an intuitive and simple 120 

metric for comparing species diversity across environments. Hill(10) defined the effective 121 

number of species of order q as  122 

 123 
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where pi is the frequency of a particular species i. As q tends towards one, the limit of this 126 

equation invokes Shannon’s concept of generalized information entropy. The exponent of the 127 

Shannon entropy yields the effective number of species, a quantity commonly referred to as the 128 

Hill number.  129 

 130 
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 132 

Hill numbers are best conceptualized as the number of equally abundant species required to 133 

recapitulate the measured diversity in a sample. The more diverse a sample, the higher the Hill 134 

number. The Hill number is not unique to ecological analysis. For example, in Natural Language 135 

Processing (NLP), this same quantity is termed perplexity, a key measure in the evaluation of 136 

language models(13).  137 

 138 

While species Hill numbers are helpful for understanding the nature of any given sample, 139 

ecologists are often interested in comparisons across samples and communities. The motivation 140 

is to assess experimental design and/or to gauge the piecemeal complexity of an ecosystem. The 141 

beta diversity, a measure of differentiation between all local sites, extends species Hill numbers 142 

to Hill numbers of communities. Ecologists use the effective number of communities to 143 

understand the competing effects of their sampling and the innate diversity of their 144 

transects(14)(15)(16). The Hill number based on beta diversity is given as 145 

 146 
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 148 

an expression that incorporates the Kullback-Leibler divergence(17) to yield the effective 149 

number of communities. Here, psi is the frequency of a particular species i in a particular sample 150 

s, pi is the frequency of a particular species i across all samples, and ws weighs all observations in 151 

sample s relative to all individuals censused in the experiment.  152 

 153 

The effective number of communities measures the compressibility of the samples. If the 154 

samples share many species and if individuals are evenly distributed across these species, the 155 

samples essentially collapse, yielding a lower number of effective communities. If the samples 156 

are highly diverse and the individuals scattered among these divergent organisms, the effective 157 

number of communities approaches the number of communities sampled (Figure 1B). This 158 

interpretation of the beta diversity relies heavily on information theoretic principles, reflecting 159 

the broad and powerful implications of Shannon’s original theory of entropy and 160 

communication(12). 161 

 162 

In the ecological framework we have described, the sample or community functions as a 163 

container for observations of species and their frequencies. However, the container can be 164 

anything.  165 

 166 

Here, we reframe these equations to describe a system where the containers are either discrete, 167 

clinical genomes or pools of samples. Pools can be combined at the clinic or gathered 168 

downstream in wastewater. The species within these containers are enumerated strings of 169 

information or k-mers. For clinical sample genomes, the effective number of communities 170 
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becomes the effective number of genomes, or genome equivalents. For sequences pooled by day, 171 

this same quantity becomes the effective number of days. Regardless of container, we term this 172 

new quantity KHILL. If we consider a set of identical sequence, KHILL will reduce to 1, 173 

whereas in a set of sequence with no information overlap, KHILL will achieve its maximum, the 174 

number of sets considered. The analogy is made explicit in Figure 1. 175 

 176 

Equipped with this new metric of genome diversity, we can track population dynamics across 177 

any axis of change. For clinical genomes over a defined time course, a stable community of 178 

species subtypes may experience a disturbance that signifies the emergence of a new variant. If 179 

selection favors this variant, the population will pass through a KHILL peak where genome 180 

equivalents find a local maximum, and stable subtypes will coexist in almost equal measure with 181 

the newcomer. This local maximum should erode if the new variant sweeps through the 182 

population. When prior subtypes are driven to extinction and a single variant pervades, we 183 

expect a local minimum for KHILL or the effective number of genomes (Figure 2A). For 184 

sequence pools, we instead compare the most recent day’s survey sequence to sequence from all 185 

prior days. In this case, our containers are not discrete clinical genomes. Instead we calculate 186 

KHILL from infection pools. These pairwise comparisons of the most recent day’s k-mer pool to 187 

all prior days is similar in spirit to autocorrelation, but our metric is KHILL, the information 188 

diversity compressed into the effective number of days. If recent pooled sequence diverges from 189 

past sequence, we expect a bend in the KHILL curve describing a change in sequence 190 

compression. For pairwise comparisons, KHILL will vary between 1 and 2 (Figure 2B). We 191 

mark significant changes in the time course using Bayesian Change Point detection(18). 192 

 193 
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A further application of this approach is to pangenomes, the accrued genomic content of any 194 

given species(19). Because the KHILL metric functions as a measure of container equivalents 195 

independent of functional content, it can bring new clarity to how pangenomes change in space 196 

and time. The state of the art in pangenomes is wedded to genes and/or alignments. 197 

Phylogenomic methods calculate orthologs(20), and pangenome graphs fork alignments along 198 

multiple, disparate paths(21). While a number of these methods have achieved significant speed 199 

(22), KHILL obviates the need for phylogenetics entirely by calculating information theoretic 200 

quantities on containers of k-mers. We think not in terms of genes, but in terms of unique strings 201 

of information. As we accumulate information, the KHILL curve of a transitioning population 202 

will exhibit information diversity of a higher steady state than the simpler population left in the 203 

wake of a selective sweep (Figure 2C).  204 

 205 

Since the KHILL approach operates on containers of unaligned strings our main computational 206 

challenge is to reduce the number of string comparisons without sacrificing sensitivity. We find 207 

that a string sketch(23), as implemented in programs like MASH(24), adequately reflects 208 

calculations made on the whole population. We need only a fraction of available k-mers to carry 209 

each container’s signal. Using a bottom-k sketch (25) of hashed strings, we accelerate KHILL 210 

calculations by many orders of magnitude.  211 

 212 

Our approach is unusual in that we are not looking for evidence of specific genetic events. With 213 

sketched strings of unaligned data, we sacrifice most of the products of modern bioinformatics: 214 

the discovery of mapped genome variation like alleles in particular genes, indels in non-coding 215 

regions, or genome-scale structural rearrangement. But we gain a fast, intuitive metric that 216 
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summarizes the contributions of both micro-variation on the mutational scale, and macro-217 

variation such as the presence/absence of genomic elements.  218 

 219 

Results and Discussion 220 

The United Kingdom is a model for COVID-19 genomic surveillance(26). The COVID-19 221 

Genomics UK (COG-UK) consortium has accumulated more genomes and more metadata than 222 

any other regional health organization. Figure 3 shows how the seven-day moving average of the 223 

22.2 million UK cases reported as of July 15, 2022 (panel A) has spikes coincident with the 224 

emergence of the UK’s three main variants of concern: Alpha, Delta and Omicron (panel B). 225 

Panels A and B rehash the accepted epidemiological approach, case counts augmented by 226 

phylogenetic annotation. Using the complete set of 2.5 million UK genomes sequenced from 227 

these reported cases, we add panel C, a single KHILL value calculated for each day. With the 228 

emergence of each variant, KHILL rises until it reaches a local maximum where sequenced 229 

genomes are evenly distributed between the old variant and the new.  230 

 231 

Against a background of The UK’s dominant variant waves, these peaks mark clear transitions in 232 

the pandemic. Notably, the stark peaks that presage the emergence of Delta and Omicron occur 233 

well before each variant’s burden of cases. In May 2021, public measures like masking and 234 

travel restrictions suppressed new infections, but it is in this month that we observe the KHILL 235 

peak signaling the arrival of Delta. The changing complexity of the viral population is reflected 236 

in this curve of daily genome equivalents regardless of the volume of cases and regardless of the 237 

variant. Because the expression for the effective number of genomes is weighted, days with just 238 

tens of sequences scale with days that may have tens of thousands.  239 
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 240 

In the UK, each population transition signified by the three KHILL peaks, were harbingers of a 241 

selective sweep. A peak’s ascent reflects the accumulating momentum of a variant of concern, 242 

while the descent suggests this new variant’s primacy. Alpha swept the population in March 243 

2021 (27), Delta by July 2021 (28), and Omicron by January 2022 (29). In each case, KHILL 244 

settles into a local minimum of about 1.03 effective genomes highlighting the near clonality of 245 

the viral population after a variant achieves dominance. Rising KHILL values within the Delta 246 

and Omicron waves suggest that we also detect accruing diversity within the Delta (mixing of 247 

AY.4, B.1.617.2, and AY.4.2) and Omicron (BA.1 and BA.2) lineages over time. Though 248 

evidence of evolving subvariants requires a deeper sketch (Supplemental Figure 1), this within 249 

wave signal tracks the information complexity of steady evolution following a selective sweep.  250 

 251 

We performed the same type of analysis for both the United States and South African pandemics. 252 

Though we see regional differences in terms of which variants were dominant at which times, in 253 

every case, the KHILL curve tracks the arrival of prevailing variants. Unlike the UK, the start of 254 

the US pandemic is variably complex with near simultaneous transmission events from around 255 

the world (30)(31) manifesting as a noisiness in KHILL (Supplemental Figure 2). The 256 

introduction of Alpha flattens this diversity. In South Africa, the Beta variant achieved a higher 257 

share of infection than in either the UK or the US (32). Though sparse genomic sampling results 258 

in a stochastic KHILL curve, in SA we observe clear peaks demarcating the transitions between 259 

Beta/Delta and Delta/Omicron (Supplemental Figure 3).  260 

 261 
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As SARS-CoV-2 surveillance transitioned from patient genomes gathered in the clinic to pooled 262 

sequence accumulated in sewage, we extended the KHILL statistic to operate on sequence 263 

dissociated with individual infections. Sequence of this type is necessarily unassembled. We 264 

show that since KHILL relies only on sketched strings, reads alone produce a curve that mirrors 265 

the pattern we see for all assemblies. For the curve in Supplemental Figure 4, we simulated 266 

250,000 reads from each genome of a random sample of 100 genomes selected daily over the 267 

course of the UK pandemic.  268 

 269 

Pooled sequence requires that we dissolve the boundaries between these discrete infections. 270 

Rather than sampling individual infections, we pool a population. To model these pools, we 271 

joined and shuffled simulated reads generated for each day’s infections, retaining only 400,000 272 

as a kind of daily signature or sensor read for the overall state of the region. The conceptual shift 273 

here is in the nature of the container. From containers of discrete genomes we transition to days 274 

of pooled infections. Figure 4 features three curves chosen to highlight KHILL dynamics for the 275 

three global variants. In each case, we query the curve’s endpoint (most recent time point) 276 

against sequence surveyed from all days prior. The emergence of each variant is marked by a 277 

clear, sometimes precipitous, downturn in the value of KHILL, creating at least two starkly 278 

different populations: days before the variant appeared and days after. In the case of Delta and 279 

Omicron, shadows of the previous variants are also clearly visible. For statistical rigor, we apply 280 

Bayesian Change Point analysis to tag significant transitions and note that these detected points 281 

correspond to known population dynamics. Notably, posterior probability peaks within the 282 

Omicron transition correspond to Omicron subvariants (Figure 4B). 283 

 284 
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Clearly, simulated sequence pools are amenable to KHILL surveillance analysis. But will the 285 

technique work for real data? In principle, wastewater is an infection pool. Changes in 286 

wastewater information diversity should expose new variants. In Figures 4C and D we show that 287 

despite the noise inherent to wastewater data, we discern two clear transitions in the San Diego 288 

pandemic (33): the rise of alpha in January of 2021, and the rise of omicron that December. 289 

Because KHILL measures change in terms of k-mer representation and frequency across days, it 290 

is sensitive to the technical errors and noise characteristic of metagenomic sequencing in a way 291 

that marker-based analysis is not. To screen the noisiest time points, we calculated the alpha 292 

diversity of k-mers sampled from each day and kept only those days within one standard 293 

deviation of the mean (Supplemental Figure 5). This alpha diversity screen tightened our curve 294 

significantly, but the emergence of delta, which is known to have dominated San Diego 295 

infections by July 2021, remains hidden. Karthikeyan et al (33) use references to squash noise by 296 

forcing alignment, but alignment limits novelty detection through comparison to the known. 297 

Given comparable sequence coverage and depth across days, KHILL can eliminate the need for 298 

references, quicken the pace of discovery, and capture incipient novelty likely to be lost to 299 

marker-based analysis. Computing KHILL from pooled or wastewater reads realizes our 300 

ambition of making streamed sequence a kind of online sensor (34) that can aggregate signal 301 

directly and in real time and the very edge of a pandemic. 302 

 303 

To illustrate how traditional methods lag in their detection of variant changes in a population, we 304 

revisit the UK KHILL curve, focusing on the emergence of BA2. Figure 5A shows the curve 305 

overlayed on version 1.2.101 Pangolin annotations. This version was released on January 28th, 306 

2022. Prior to this release, it is already clear that a steady increase in the effective number of 307 
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genomes is underway, culminating in a peak just a few weeks later. But the 1.2.101 Pangolin 308 

annotation conflates this additional heterogeneity into a single annotation for B.1.1.529. About 309 

one month later, in panel B we see that the KHILL trace anticipated the arrival of a new Omicron 310 

subvariant, BA2. BA2 entered the lexicon too late to offer useful classification for what was 311 

clearly an emerging variant as early as January 1st, 2022. The BA2 classification seems to trail 312 

the BA2 KHILL peak by a full month and the beginning of the BA2 curve by two months. 313 

KHILL was picking up something new well before BA2 was fixed into the databases offering an 314 

immediacy that phylogenetic, reference-bound, and annotated techniques like Pangolin lack. 315 

 316 

KHILL is sensitive and capable of monitoring shifts in the viral population despite the handful of 317 

changes that distinguish each variant. To better understand the number and type of phenomena 318 

we can detect with KHILL, we simulated blocks of change across 100 30kb genomes varying 319 

each population from one base to 500 contiguous bases across several classes of mutation 320 

including insertion, deletion, duplication, and transposition. (Supplemental Figure 6)(35). For 321 

SARS-CoV-2, blocks of 1 to 5 bases are biologically relevant. Within this scope, we see that 10 322 

changes raises the effective number of genomes to about 1.05, a value that mirrors biological 323 

reality. As we would expect, any change that alters the population of k-mers (e.g., insertion) 324 

results in greater KHILL values than change that simply alters the existing k-mer counts 325 

(duplication, transposition). With frequent insertion or change over long block sizes, we see a 326 

KHILL that approaches the number of genomes simulated, a range that conveys the power of the 327 

KHILL metric to track both subtle and gross genomic change. 328 

 329 
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Our approach is fast, straightforward and ideally suited to durable but nimble real-time genome 330 

surveillance. We calculate Figure 2C on all UK genomes available in 1800 CPU hours on low 331 

memory cores. If we decrease the sketch rate by an order of magnitude, we can calculate the 332 

same curve in just 180 CPU hours without losing signal from any of the UK’s major variant 333 

transitions (Supplemental Figure 1). The omicron autocorrelation curve in Figure 3A is similarly 334 

fast. We calculate all 860 required KHILL values in 2 CPU hours. We can therefore easily 335 

append daily KHILL points to the growing epidemiological time series. Recent studies struggle 336 

to process all available genomes in heavily sampled regions(36). Curation can be a viable 337 

strategy. In Supplemental Figure 7, we show that genome wide nucleotide diversity (p) of 100 338 

randomly selected daily sequences over the UK pandemic mirrors the KHILL curve but distorts 339 

its amplitude. But the time required to calculate alignments for p makes this an impractical 340 

solution at the scales we’ve proposed here.  341 

 342 

Though we prescribe no thresholds for marking the emergence of a new variant, our technique 343 

affords public health institutions the opportunity to create actionable policy based on a simple, 344 

quantitative measure. Moreover, we show that the first derivative of the KHILL curve tracks new 345 

variants as deviations from a critical point, providing another potential metric to trigger policy 346 

changes. During a KHILL upswing, the increasingly complex population is marked by an 347 

accelerating slope, which then flattens and decelerates until the downswing settles into a variant 348 

sweep (Supplemental Figure 8).  349 

 350 

Finally, KHILL not only distinguishes the various states of genome populations along an axis of 351 

change, but also quantifies exactly how much genome diversity emerges during a transition, and 352 
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how much is lost in a sweep. In other words, KHILL not only responds to a changing population, 353 

but also integrates the effects of genetic distance, merging two primary properties of pan-354 

genomes. This is true of both the clinical and pooled samples.  355 

 356 

Applied to genomes that comprise species level complexes, we believe that KHILL 357 

accumulation curves can function as a new kind of comparative genomics realized without the 358 

usual computational burden. For example, in Figure 6 we show that, in the UK population, as we 359 

accumulate Delta and omicron genomes, we plateau at about 1.05 genome equivalents. Alpha 360 

and Omicron BA1 asymptote at about 1.03. Higher Delta genome diversity agrees with 361 

conclusions drawn from slower phylogenetic methods(37). We quickly capture this species level 362 

trait using the differential saturation rate of a metric that, for any set of genome sequences, 363 

collapses all genomic diversity into a single point. 364 

 365 

KHILL is ideal for population genomics, but the approach is also relevant for biological 366 

problems at other evolutionary scales. The comparative approach we highlight here might help 367 

illuminate the species concept itself. With genomic containers, how many genome equivalents 368 

should a legitimate species contain? Can a comparative genomics of KHILL accumulation 369 

curves complement or even enhance traditional comparative genomic methods based in 370 

phylogenies or networks? Moreover, containers of pooled sequence or shotgun metagenomes 371 

could be used to understand the changing diversity of environmental samples in both time and 372 

space. We show the potential in this type of analysis in the autocorrelations selected for Figure 3.  373 

 374 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 6, 2023. ; https://doi.org/10.1101/2022.06.23.22276807doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.23.22276807
http://creativecommons.org/licenses/by-nc/4.0/


 

 

In this work, we use Hill numbers and the notion of container equivalents for genomic 375 

surveillance. The response to the COVID-19 pandemic has resulted in some of the richest 376 

biological datasets in history. Our technique is positioned to stream all this data. The state of the 377 

art is burdened by alignment, a reliance on known references, and the lag characteristic of 378 

retrospective databases. We do not stream through markers. Our goal is to signal population 379 

change regardless of taxonomy. We see great value in a simple measure that conflates the 380 

evolutionary nuance of phylodynamics without sacrificing a pandemic’s actionable signals of 381 

transition and sweep. The method we describe here can accommodate the massive genomic 382 

datasets of future outbreaks regardless of organism, and perhaps signal when phylogenetics are 383 

needed. KHILL is a new angle on the COVID19 pandemic, a technique that takes us closer to the 384 

edge of one of the greatest health care challenges of our time.  385 

 386 

Figure Legends 387 

Figure 1. The KHILL metric. We adapt ecological definitions for beta diversity to calculate the 388 

effective number of genomes (KHILL) in any set. We explicitly describe the analogy in terms of 389 

variables in the KHILL expression (Panel A). Genomes with overlapping k-mer identities and 390 

similar k-mer frequencies will tend to have a lower KHILL (Panel B).  391 

 392 

Figure 2. KHILL cartoons. In a population genomic context, KHILL can be used to track 393 

changing clinical genomic complexity over time and/or space. We expect that in a pandemic, a 394 

Variant of Concern will increase the information diversity of a stable population. If this 395 

transition is favored, the variant will sweep the population (Panel A). In a pooled or wastewater 396 

context, KHILL can function as a measure of compression of unassembled, raw sequence across 397 
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days, with a drastic change revealing the potential arrival of a new variant (Panel B). Genomes 398 

sampled from a transitioning population will exhibit higher KHILL than a population that has 399 

settled into a dominant variant (Panel C). 400 

 401 

Figure 3. The United Kingdom (UK) COVID-19 pandemic. We show new case burden (Panel A) 402 

and gross phylogenetic classification (Panel B) for the UK pandemic since its inception. The 403 

three distinct KHILL peaks signal the arrival of Alpha (November 2020), Delta (May 2021), and 404 

Omicron (November 2022) well before each variant’s spike in cases (Panel C). 405 

 406 

Figure 4. SARS-CoV-2 in raw, pooled sequence. We extract three curves from an autocorrelation 407 

analysis of simulated reads from the UK pandemic. The curves chosen focus on the three major 408 

variant transitions: alpha, delta and omicron. In each case, the large downward swing marks 409 

turnover from one type to another (Panel A). We show that these transitions are significant using 410 

Bayesian Changepoint Detection (Panel B). San Diego wastewater data shows similar – albeit 411 

noisier – transitions between variants. Comparison of raw sequence from a day dominated by 412 

omicron to all prior days shows clear (Panel C) and significant (Panel D) separation between 413 

alpha/epsilon and delta/omicron. 414 

 415 

Figure 5. KHILL anticipates new variants. We show that in New York State clinical isolates, a 416 

KHILL peak around December 2022 forecast the emergence of the new Omicron subvariant, 417 

XBB. But this variant was not properly classified until two months later, well after XBB had 418 

saturated the population (Panels A and B). We show that in the UK population, BA2’s 419 
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classification was similarly delayed and only properly fixed into the Pangolin databases well 420 

after KHILL indicated BA2’s population suffusion (Panels C and D).  421 

 422 

Figure 6. SARS-CoV-2 comparative genomics. We randomly sampled 10,000 Alpha, Delta and 423 

Omicron genomes from the UK pandemic. As genomes are randomly accumulated, information 424 

diversity accrues. We show that Delta and Omicron converge on similar information diversity, 425 

but that Delta is more complex. Both are far more diverse than either Alpha or Omicron BA1 426 

alone, an observation confirmed by phylogenetic methods on far fewer genomes. 427 

 428 
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Supplemental Methods 1 

UK Clinical Genomes 2 

Genomes and metadata were downloaded from the Covid-19 Genomics UK Consortium (COG-3 

UK) https://www.cogconsortium.uk/. A custom R script (R version 4.1.3) was used to read the 4 

genomes and metadata into memory and sort genomes into one directory per day. We used 5 

collection dates to sort into daily directories. A total of 2,794,151 genomes were analyzed. The 6 

KHILL program was run on each directory with the following parameters: -k 19 -m 1 -n 100 -s 7 

1e99 -p 6. To calculate daily cases, we downloaded covid cases data from Our World In Data 8 

https://ourworldindata.org/covid-cases. The csv file was loaded into R and filtered to include 9 

only data from the UK. To assign each genome to a clade, we used Pangolin for each genome, 10 

https://github.com/cov-lineages/pangolin (pangolin version 4.1.2; data version 1.12). The scorpio 11 

call output was used, and we summarized the clade assignments with the modifications shown in 12 

Table 1 below. Plots were made with R and ggplot2 (version 3.3.5) 13 

 14 

USA Clinical Genomes 15 

Genomes and metadata were downloaded from the Covid 19 Data portal 16 

(https://www.covid19dataportal.org/). A table of metadata for each genome were downloaded 17 

from the web interface. The search parameter was (country:"USA") AND (coverage:["95" TO 18 

"100"]).  The accessions were fed into the CDP-File-Downloader 19 

(https://www.covid19dataportal.org/bulk-downloads), and genomes were downloaded and put 20 

into directories (one directory per day). A total of 1,926,292 genomes were analyzed for the USA 21 

using the same methods outlined for the UK above.  22 

 23 
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SA Clinical Genomes 24 

Genomes were downloaded from GISAID EpiCov https://www.epicov.org/ We searched for 25 

Location = "Africa / South Africa", selecting "Complete" and "Collection Date Complete". We 26 

downloaded genomes directly from the web interface (selecting Download and then input for 27 

"Input for the Augur pipeline"). Genomes were sorted into directories (one directory per day). A 28 

total of 32,623 genomes were analyzed for South Africa using the methods outlined for the UK 29 

above. 30 

 31 

Supplemental Table 1: Scorpio Calls 

Scorpio Call Modified Name 

[blank] Other 

A.* and Alpha.* Alpha 

B.* and Beta.* Other† 

Delta.* Delta 

Epsilon.* Other 

Eta.* Other 

Gamma.* Other 

Iota.* Other 

Lambda.* Other 
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Mu.* Other 

Omicron (XE-like) Omicron 

Omicron (Unassigned) Omicron 

Omicron (BA.1-like) Omicron.BA.1 

Omicron (BA.2-like) Omicron.BA.2 

Omicron (BA.3-like) Omicron.BA.3 

Omicron (BA.4-like) Omicron.BA.4 

Omicron (BA.5-like) Omicron.BA.5 

Probable.* Other 

Theta.* Other 

Zeta.* Other 

 32 

Pooled Clinical Samples Simulation 33 

We generated survey sequence for each day during the UK pandemic by randomly selecting 100 34 

genomes. We simulated Illumina reads from each of these 100 genomes using wgsim. These 35 

reads can stand in for genomes in an analysis of clinical isolates, or they can be combined, 36 

scrambled, and surveyed as representative of any one day. We simulated 1 million reads from 37 

each sample but kept only 400,000 after all read libraries were joined. These 400,000 reads 38 
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formed the basis of pairwise KHILL calculations between each day and all days that came 39 

before. 40 

 41 

Sketch Depth Comparison 42 

We tested how the sketch depth used during the KHILL calculation impacts the detection of 43 

subvariants by calculating KHILL during the course of the UK SARS-CoV-2 pandemic using 44 

sketch depths of 100 and 1,000. We used a generalized additive model to fit a cubic spline (lines) 45 

with a kurtosis of 50 to these datasets independently in R using the package mgcv (https://cran.r-46 

project.org/web/packages/mgcv/index.html). We find that additional genetic diversity is captured 47 

with deeper sketch rates, as evidenced by more variation in KHILL during the Delta and 48 

Omicron waves (Supplemental Figure 1). 49 

 50 

Diversity Simulations 51 

We simulated mutations in populations of 29.9Kb SARS-CoV-2 genomes using the EMBOSS 52 

tool msbar (24) and the SARS-CoV-2 reference (NCBI Reference Sequence: NC_045512.2) to 53 

understand how numbers of mutations and mutation classes impact the KHill statistic. First, we 54 

simulated populations of 1,000 genomes with 1bp SNP mutations. Mutations were simulated to 55 

represent 1% - 50% of the genome in steps of 1% (i.e. 299 – 14,952 SNP mutations). Next, we 56 

explored how variation in the bock size of mutations (1, 5, 10, 20, 50, 75, 100, 250 and 500 bp) 57 

and mutation class impacted the KHILL statistic in populations of 100 genomes. For each block 58 

size, we simulated mutation classes: insertion, deletion, SNP (or replacement for block mutations 59 

greater than 1 bp), duplication, transposition (copy/paste), or “any”, which is a random 60 

combination of all mutation forementioned classes (Supplemental Figure 6). 61 
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 62 

KHILL vs. Nucleotide Diversity (p) 63 

We tested how KHILL compares to an existing metric of population genetic diversity, Nei’s 64 

nucleotide diversity (p). First, we randomly subsampled 100 SARS-CoV-2 genomes from each 65 

day of the UK pandemic and aligned these using clustal omega (www.clustal.org). Next, we 66 

calculated genome-wide p from each subsample alignment using custom perl scripts. For each 67 

day, we compared the KHILL measure to the subsample genome-wide p, and fit a linear model 68 

to this relationship. Finally, we benchmarked the time required to align 2, 5, 10, 25, 50, 100, 250, 69 

500, and 1,000 randomly subsampled SARS-CoV-2 genomes (from a single day during the UK 70 

pandemic) using clustal omega. We did this to estimate the computational burden of aligning 71 

genomes on the scale sequenced during the UK pandemic. Alignments are required to calculate 72 

traditional population genetic measures such as p. It is important to note that these estimates of 73 

computational time do not include the time required to: demultiplex and trim raw sequencing 74 

data, align this data to a reference genome, generate the consensus sequences used in whole 75 

genome alignment, or the calculation of p itself. We sought only to illustrate that when the 76 

number of genomes reaches the thousands, the computational time to calculate traditional 77 

population genetic measures becomes unmanageable (Supplemental Figure 7). 78 

 79 

Slopes Analysis 80 

We used the R package mgcv (https://cran.r-project.org/web/packages/mgcv/index.html) to fit a 81 

cubic spine with a kurtosis of 50 to the UK covid pandemic KHILL data using a generalized 82 

additive model. We extracted the first derivative F’(x), or slope, of the cubic spline to better 83 

understand the rate of change of the spline fit to the KHILL data, and the general trend of the 84 
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underlying KHILL data during variant sweeps. Positive F’(x) values indicated a positive slope 85 

(increasing KHill), while negative F’(x) values indicated a negative slope (decreasing KHill). 86 

Rapid shifts in F’(x) mark rapid variant sweeps, especially when the population is dominated by 87 

a single variant, and then swept to extinction rapidly by a genetically distant variant (e.g. Delta to 88 

Omicron.BA.1 sweep) (Supplemental Figure 8). Sweeps between genetically similar subvariants 89 

(e.g. Omicron.BA.1 to Omicron.BA.2) produce more modest fluctuations in F’(x). 90 

 91 
 92 

Supplemental Figures Legends 93 

 94 

Supplemental Figure 1. Sketch depth and the detection of subvariants. We used a generalized 95 

additive model to fit a cubic spline (lines) with a kurtosis of 50 to the UK covid pandemic KHill 96 

statistics (y-axis, as a response to date on the x-axis), calculated with sketch rates of 100 and 97 

1,000. Red arrows indicate the additional diversity captured with a deeper sketch during the 98 

Delta and Omicron waves. 99 

 100 

Supplemental Figure 2. The United States (US) COVID-19 pandemic. We show new case 101 

burden (Panel A) and gross phylogenetic classification (Panel B) for the US pandemic since its 102 

inception. The arrival of Alpha (March 2021) seems to have homogenized a previously variable 103 

US viral population. The Delta surge (June 2021) moderately increases complexity, while the 104 

arrival of Omicron (December 2021) is accompanied by a KHILL spike followed by a rapid 105 

descent after Delta is forced into near extinction (Panel C). 106 

 107 
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Supplemental Figure 3. The South Africa (SA) COVID-19 pandemic. We show new case burden 108 

(Panel A) and gross phylogenetic classification (Panel B) for the SA pandemic since its 109 

inception. The arrival of both Delta and Omicron lead to KHILL spikes. Because of sparser 110 

sequencing in this population, the SA data is considerably noisier than either the UK or USA. 111 

Note that we also include the Beta variant here as it was a significant variant in the SA 112 

pandemic.  113 

 114 

Supplemental Figure 4. Simulated reads. We simulated 3 Mbases of Illumina sequence from 115 

each of 50 randomly selected genomes taken daily over the course of the UK pandemic. We 116 

show that the KHILL pandemic curve in this unassembled sequence mirrors that shown in Figure 117 

2 for assembled genomes. 118 

 119 

Supplemental Figure 5. Alpha diversity of wastewater k-mers. We plot the alpha diversity of 120 

sequence gathered from each day of the San Diego wastewater sample. Because the sample is 121 

amplicon based and enriched for SARS-CoV-2, higher alpha diversity indicates more unique 122 

viral k-mers sequenced at a higher depth, while lower diversity is likely characteristic of over-123 

amplified, less even coverage. We remove these low complexity (and some high complexity) 124 

days by taking only those samples with sequence one standard deviation from the alpha diversity 125 

mean. 126 

 127 

Supplemental Figure 6. Simulations. We simulated mutations in populations of 29.9Kb SARS-128 

CoV-2 genomes using the EMBOSS tool msbar (24) and the SARS-CoV-2 reference (NCBI 129 

Reference Sequence: NC_045512.2) to understand how numbers of mutations and mutation 130 
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classes impact the KHILL statistic. Each population differs in the number of mutations (x-axis), 131 

mutation class (legend), and the block size of each mutation (as below). Panels A and B report 132 

the KHILL statistic (y-axis) calculated from populations of 1,000 genomes with 1bp SNP 133 

mutations. Mutations were simulated to represent 1% - 50% of the genome in steps of 1% (i.e. 134 

299 – 14,952 mutations). Panel A reports the KHILL statistic for zero to 1,500 mutations, while 135 

the maximum number of mutations in panel B is 14,952, or 50% of the genome. Panels C and D 136 

report KHILL statistics for populations of 100 genomes and are faceted and annotated (top) by 137 

mutation block size (1, 5, 10, 20, 50, 75, and 100 bp in panel C, and 250 and 500 bp in panel D). 138 

We simulated mutation classes: insertion, deletion, SNP (or replacement for block mutations 139 

greater than 1 bp), duplication, transposition (copy/paste), or “any”, which is a random 140 

combination of all mutation forementioned classes. 141 

 142 

Supplemental Figure 7. Comparison between KHILL and genome wide nucleotide diversity (p). 143 

We show that genome wide p of 100 subsampled genomes per day across the UK pandemic, 144 

closely approximates the more data heavy KHILL curve (Panels A and B). Genome wide p is 145 

well correlated with KHILL (Panel C), but its calculation is expensive for anything beyond 100 146 

genomes per day because of the cost incurred by whole genome alignment (Panel D).  147 

 148 

Supplemental Figure 8. Slopes. In Panel A we used a generalized additive model to fit a cubic 149 

spline (blue line) with a kurtosis of 50 to the UK covid pandemic KHill statistics (y-axis, as a 150 

response to date on x-axis). Panel B presents the first derivative F’(x), or slope, of the cubic 151 

spline presented in Panel A. Positive values indicated a positive slope (increasing KHill), while 152 

negative values indicated a negative slope (decreasing KHill). The grey shaded area represents 153 
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the 95% confidence interval of F’(x). Panel C presents F’(x) (right y-axis) overlayed on the 154 

SARS-CoV-2 clade frequency (left y-axis) of the UK covid pandemic dataset. Alpha, Delta, and 155 

Omicron sub-variants have been collapsed (legend). In Panel B and C the horizontal dashed line 156 

at F’(x) = 0 indicates the transition point from positive to negative slopes of the fitted cubic 157 

spline. 158 
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