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Abstract (Word count: 306)  
The COVID-19 pandemic has highlighted the critical role of genomic surveillance for guiding 

policy and control strategies. Timeliness is key, but rapid deployment of existing surveillance is 

difficult because most approaches are based on sequence alignment and phylogeny. Millions of 

SARS-CoV-2 genomes have been assembled, the largest collection of sequence data in history. 

Phylogenetic methods are ill equipped to handle this sheer scale. We introduce a pan-genomic 

measure that examines the information diversity of a k-mer library drawn from a country’s 

complete set of clinical, pooled, or wastewater sequence. Quantifying diversity is central to 

ecology. Studies that measure the diversity of various environments increasingly use the concept 

of Hill numbers, or the effective number of species in a sample, to provide a simple metric for 

comparing species diversity across environments. The more diverse the sample, the higher the 

Hill number. We adopt this ecological approach and consider each k-mer an individual and each 

genome a transect in the pan-genome of the species. Applying Hill numbers in this way allows 

us to summarize the temporal trajectory of pandemic variants by collapsing each day’s 

assemblies into genomic equivalents. For pooled or wastewater sequence, we instead compare 

sets of days represented by survey sequence divorced from individual infections. We do both 

calculations quickly, without alignment or trees, using modern genome sketching techniques to 

accommodate millions of genomes or terabases of raw sequence in one condensed view of 

pandemic dynamics. Using data from the UK, USA, and South Africa, we trace the ascendance 

of new variants of concern as they emerge in local populations. Using data from San Diego 

wastewater, we monitor these same population changes from raw, unassembled sequence. This 
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history of emerging variants senses all available data as it is sequenced, intimating variant 

sweeps to dominance or declines to extinction at the leading edge of the COVID19 pandemic. 

 
Introduction 
The COVID-19 pandemic has been fueled by the repeated emergence of SARS-CoV-2 variants, 

a few of which have propelled worldwide, asynchronous waves of infection(1). First arising in 

late 2019 in Wuhan, China, the spread of the D614G mutation led to sequential waves of 

Variants of Concern (VOC) about nine months later, significantly broadening the pandemic’s 

reach and challenging concerted efforts at its control (2). Beta and Gamma variants drove 

regional resurgences, but Alpha, Delta and Omicron occurred globally (3)(4). The advent of each 

variant led to the near extinction of the population within which it arose (5). The architecture of 

this pandemic is therefore marked by periods of transition, tipping a population towards an 

emerging variant of concern followed by its near complete sweep to dominance. 

 

At the pandemic’s outset, epidemiological work was focused on transmission networks, but 

SARS-CoV-2’s high rates of infection quickly outstripped our ability to trace it(2). When it 

became clear that even focused global efforts would only characterize a fraction of infections, 

researchers turned to phylodynamic approaches to understand SARS-CoV-2’s population 

structure(6)(7). Genomics was at the center of this effort. Rapid sequencing and whole genome 

phylogeny updated in quasi real time enabled epidemic surveillance that was a few weeks to a 

month behind the edge of the pandemic curve(8). In a crisis of COVID-19’s scale and speed, 

eliminating this analysis lag can mean the difference between timely, reasonable public health 

response and failure to understand and anticipate the disease’s next turn.  

 

Phylodynamics is predicated on genetic variation. Without variation, phylogenetic approaches 

yield star trees with no evolutionary structure. The high mutation rate among pathogens, 

especially among RNA viruses like SARS-CoV2, ensures the accumulation of sufficient 

diversity to reconstruct pathogen evolutionary history even over the relatively short time scales 

that comprise an outbreak. But as a genomic surveillance technique, phylodynamics is costly. 

Tools like Nextstrain align genomes, reconstruct phylogenies, and date internal nodes using 

Bayesian and likelihood approaches(9). These techniques are among the most computationally 

expensive algorithms in bioinformatics. Intractable beyond a few thousand sequences, 

phylodynamic approaches must operate on population subsamples, and subsamples are subject to 

all the vagaries of data curation. More importantly, phylodynamic approaches are yoked to 

references. Most techniques are ill-equipped to respond to evolutionary novelty. We argue that 

genomic surveillance should herald the appearance of previously unseen variants without having 

to resort to comparison with assembled and curated genomes. Surveillance is currently 

hamstrung by the historical bias inherent to marker-based analysis. The existing pandemic 

toolbox therefore lacks unbiased approaches to quickly model the population genomics of all 

sequences available. 

 

We propose a method that summarizes the temporal trajectory of pandemic variants by 

collapsing each day’s assemblies into a single metric. In the case of pooled or wastewater 

sequence, this same metric is repurposed to measure survey sequence compression across days. 

Our method does not subsample, perform alignments, or build trees, but still describes the major 

arcs of the COVID19 pandemic. Our inspiration comes from long standing definitions of 
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diversity used in ecology. We employ Hill numbers (10)(11), extensions of Shannon’s theory of 

information entropy(12). Rather than using these numbers to compute traditional ecological 

quantities like the diversity of species in an area, we use them to compute the diversity of 

genomic information. For example, we envision each unique k-mer a species and each genome a 

transect sampled from the pan-genome. Applying Hill numbers in this way allows us to measure 

a collection of genomes in terms of genomic equivalents, or a set of sequence pools as the 

effective number of sets. We show that tracing a pandemic curve with these new metrics enables 

the use of sequence as a real time sensor, tracking both the emergence of variants over time and 

the extent of their spread.  

 
Implementation 

To measure the information diversity of a population, we use ecological definitions that 

condense the influence of millions of genomes or terabases of raw sequence into a single value.  

In ecology, the effective number of species is a quantity used to provide an intuitive and simple 

metric for comparing species diversity across environments. Hill(10) defined the effective 

number of species of order q as  
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where pi is the frequency of a particular species i. As q tends towards one, the limit of this 

equation invokes Shannon’s concept of generalized information entropy. The exponent of the 

Shannon entropy yields the effective number of species, a quantity commonly referred to as the 

Hill number.  
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Hill numbers are best conceptualized as the number of equally abundant species required to 

recapitulate the measured diversity in a sample. The more diverse a sample, the higher the Hill 

number. The Hill number is not unique to ecological analysis. For example, in Natural Language 

Processing (NLP), this same quantity is termed perplexity, a key measure in the evaluation of 

language models(13).  

 

While species Hill numbers are helpful for understanding the nature of any given sample, 

ecologists are often interested in comparisons across samples and communities. The motivation 

is to assess experimental design and/or to gauge the piecemeal complexity of an ecosystem. The 

beta diversity, a measure of differentiation between all local sites, extends species Hill numbers 

to Hill numbers of communities. Ecologists use the effective number of communities to 

understand the competing effects of their sampling and the innate diversity of their 

transects(14)(15)(16). The Hill number based on beta diversity is given as 
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A simple swap of the Shannon entropy for relative entropy, or the Kullback-Leibler 

divergence(17), yields the effective number of communities. Here, psi is the frequency of a 

particular species i in a particular sample s, pi is the frequency of a particular species i across all 

samples, and ws weighs all observations in sample s relative to all individuals censused in the 

experiment.  

 

The effective number of communities measures the compressibility of the samples. If the 

samples share many species and if individuals are evenly distributed across these species, the 

samples essentially collapse, yielding a lower number of effective communities. If the samples 

are highly diverse and the individuals scattered among these divergent organisms, the effective 

number of communities approaches the number of communities sampled (Figure 1A). This 

interpretation of the beta diversity relies heavily on information theoretic principles, reflecting 

the broad and powerful implications of Shannon’s original theory of entropy and 

communication(12). 

 

In the ecological framework we have described, the sample or community functions as a 

container for observations of species and their frequencies. However, the container can be 

anything.  

 

Here, we reframe these equations to describe a system where the containers are either discrete, 

clinical genomes or pools of samples. Pools can be combined at the clinic or gathered 

downstream in wastewater. The species within these containers are enumerated strings of 

information or k-mers. For clinical sample genomes, the effective number of communities 

becomes the effective number of genomes, or genome equivalents. For sequences pooled by day, 

this same quantity becomes the effective number of days. Regardless of container, we term this 

new quantity KHILL. If we consider a set of identical sequence, KHILL will reduce to 1, 

whereas in a set of sequence with no information overlap, KHILL will achieve its maximum, the 

number of sets considered. 

 

Equipped with this new metric of genome diversity, we can track population dynamics across 

any axis of change. For clinical sample genomes, over a defined time course, a stable community 

of species subtypes may experience a disturbance that signifies the emergence of a new variant. 

If selection favors this variant, the population will pass through a KHILL peak where genome 

equivalents find a local maximum, and stable subtypes will coexist in almost equal measure with 

the newcomer. This local maximum should erode if the new variant sweeps through the 

population. When prior subtypes are driven to extinction and a single variant pervades, we 

expect a local minimum for KHILL or the effective number of genomes (Figure 1B). For 

sequence pools, we instead compare the most recent day’s survey sequence to sequence from all 

prior days. These pairwise comparisons are similar in spirit to autocorrelation, but our metric is 

KHILL, the information diversity compressed into the effective number of days. If recent pooled 

sequence diverges from past sequence, we expect a bend in the KHILL curve describing a 

change in sequence compression. For pairwise comparisons, KHILL will vary between 1 and 2 

(Figure 1C). We mark significant changes in the time course using Bayesian Change Point 

detection(18). 
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A further application of this approach is to pangenomes, the accrued genomic content of any 

given species(19). Because the KHILL metric functions as a measure of container equivalents 

independent of functional content, it can bring new clarity to how pangenomes change in space 

and time. The state of the art in pangenomes is wedded to genes and/or alignments. 

Phylogenomic methods calculate orthologs(20), and pangenome graphs fork alignments along 

multiple, disparate paths(21). While a number of these methods have achieved significant speed 

(22), KHILL obviates the need for phylogenetics entirely by calculating information theoretic 

quantities on containers of k-mers. We think not in terms of genes, but in terms of unique strings 

of information. As we accumulate information, the KHILL curve of a transitioning population 

will exhibit information diversity of a higher steady state than the simpler population left in the 

wake of a selective sweep (Figure 1D).  

 

Since the KHILL approach operates on containers of unaligned strings our main computational 

challenge is to reduce the number of string comparisons without sacrificing sensitivity. We find 

that a string sketch(23), as implemented in programs like MASH(24), adequately reflects 

calculations made on the whole population. We need only a fraction of available k-mers to carry 

each container’s signal. Using a bottom-k sketch (25) of hashed strings, we accelerate KHILL 

calculations by many orders of magnitude.  

 

Our approach is unusual in that we are not looking for evidence of specific genetic events. With 

sketched strings of unaligned data, we sacrifice most of the products of modern bioinformatics: 

the discovery of mapped genome variation like alleles in particular genes, indels in non-coding 

regions, or genome-scale structural rearrangement. But we gain a fast, intuitive metric that 

summarizes the contributions of both micro-variation on the mutational scale, and macro-

variation such as the presence/absence of genomic elements.  

 

 

Results and Discussion 

The United Kingdom is a model for COVID-19 genomic surveillance(26). The COVID-19 

Genomics UK (COG-UK) consortium has accumulated more genomes and more metadata than 

any other regional health organization. Figure 2 shows how the seven-day moving average of the 

22.2 million UK cases reported as of July 15, 2022 (panel A) has spikes coincident with the 

emergence of the UK’s three main variants of concern: Alpha, Delta and Omicron (panel B). 

Panels A and B rehash the accepted epidemiological approach, case counts augmented by 

phylogenetic annotation. Using the complete set of 2.5 million UK genomes sequenced from 

these reported cases, we add panel C, a single KHILL value calculated for each day. With the 

emergence of each variant, KHILL rises until it reaches a local maximum where sequenced 

genomes are evenly distributed between the old variant and the new.  

 

Against a background of The UK’s dominant variant waves, these peaks mark clear transitions in 

the pandemic. Notably, the stark peaks that presage the emergence of Delta and Omicron occur 

well before each variant’s burden of cases. In May 2021, public measures like masking and 

travel restrictions suppressed new infections, but it is in this month that we observe the KHILL 

peak signaling the arrival of Delta. The changing complexity of the viral population is reflected 

in this curve of daily genome equivalents regardless of the volume of cases and regardless of the 
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variant. Because the expression for the effective number of genomes is weighted, days with just 

tens of sequences scale with days that may have tens of thousands.  

 

In the UK, each population transition signified by the three KHILL peaks, were harbingers of a 

selective sweep. A peak’s ascent reflects the accumulating momentum of a variant of concern, 

while the descent suggests this new variant’s primacy. Alpha swept the population in March 

2021 (27), Delta by July 2021 (28), and Omicron by January 2022 (29). In each case, KHILL 

settles into a local minimum of about 1.03 effective genomes highlighting the near clonality of 

the viral population after a variant achieves dominance. Rising KHILL values within the Delta 

and Omicron waves suggest that we also detect accruing diversity within the Delta (mixing of 

AY.4, B.1.617.2, and AY.4.2) and Omicron (BA.1 and BA.2) lineages over time. Though 

evidence of evolving subvariants requires a deeper sketch (Supplemental Figure 1), this within 

wave signal tracks the information complexity of steady evolution following a selective sweep.  

 

We performed the same type of analysis for both the United States and South African pandemics. 

Though we see regional differences in terms of which variants were dominant at which times, in 

every case, the KHILL curve tracks the arrival of prevailing variants. Unlike the UK, the start of 

the US pandemic is variably complex with near simultaneous transmission events from around 

the world (30)(31) manifesting as a noisiness in KHILL (Supplemental Figure 2). The 

introduction of Alpha flattens this diversity. In South Africa, the Beta variant achieved a higher 

share of infection than in either the UK or the US (32). Though sparse genomic sampling results 

in a stochastic KHILL curve, in SA we observe clear peaks demarcating the transitions between 

Beta/Delta and Delta/Omicron (Supplemental Figure 3).  

 

As SARS-CoV-2 surveillance transitions from patient genomes gathered in the clinic to pooled 

sequence accumulated in sewage, we extended the KHILL statistic to operate on sequence 

dissociated with individual infections. Sequence of this type is necessarily unassembled. We 

show that since KHILL relies only on sketched strings, reads alone produce a curve that mirrors 

the pattern we see for all assemblies. For the curve in Supplemental Figure 4, we simulated 

250,000 reads from a random sample of 100 genomes selected daily over the course of the UK 

pandemic.  

 

Pooled sequence requires that we dissolve the boundaries between these discrete infections. We 

joined and shuffled simulated reads generated for each day’s infections, retaining only 400,000 

as a kind of daily signature or sensor read for the overall state of the region. The conceptual shift 

here is in the nature of the container. From discrete genomes we transition to days. Figure 3A 

features three curves chosen to highlight KHILL dynamics for the three global variants. In each 

case, we query the curve’s endpoint against sequence surveyed from all days prior. The 

emergence of each variant is marked by a clear, sometimes precipitous, downturn in the value of 

KHILL, creating at least two starkly different populations: days before the variant appeared and 

days after. In the case of Delta and Omicron, shadows of the previous variants are also clearly 

visible. For statistical rigor, we apply Bayesian Change Point analysis to tag significant 

transitions and note that these detected points correspond to known population dynamics. 

Notably, posterior probability peaks within the Omicron transition correspond to Omicron 

subvariants (Figure 3B). 
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Clearly, simulated sequence pools are amenable to KHILL surveillance analysis. But will the 

technique work for real data? In principle, wastewater is an uncontrolled infection pool, but still 

one that should expose new variants. In Figures 3C and D we show that despite the noise 

inherent to wastewater data, we discern two clear transitions in the San Diego pandemic (33): the 

rise of alpha in January of 2021, and the rise of omicron that December. Because KHILL 

measures change in terms of k-mer representation and frequency across days, it is sensitive to the 

technical errors and noise characteristic of metagenomic sequencing in a way that marker-based 

analysis is not. To screen the noisiest time points, we calculated the alpha diversity of k-mers 

sampled from each day and kept only those days within one standard deviation of the mean 

(Supplemental Figure 5). This alpha diversity screen tightened our curve significantly, but the 

emergence of delta, which is known to have dominated San Diego infections by July 2021, 

remains hidden. Karthikeyan et al (33) use references to squash noise by forcing alignment, but 

alignment limits novelty detection through comparison to the known. Given comparable 

sequence coverage and depth across days, KHILL can eliminate the need for references, quicken 

the pace of discovery, and capture incipient novelty likely to be lost to marker-based analysis. 

Computing KHILL from pooled or wastewater reads realizes our ambition of making streamed 

sequence a kind of online sensor (34) that can aggregate signal directly and in real time and the 

very edge of a pandemic. 

 

KHILL is sensitive and capable of monitoring shifts in the viral population despite the handful of 

changes that distinguish each variant. To better understand the number and type of phenomena 

we can detect with KHILL, we simulated blocks of change across 100 30kb genomes varying 

each population from one base to 500 contiguous bases across several classes of mutation 

including insertion, deletion, duplication, and transposition. (Supplemental Figure 6)(35). For 

SARS-CoV-2, blocks of 1 to 5 bases are biologically relevant. Within this scope, we see that 10 

changes raises the effective number of genomes to about 1.05, a value that mirrors biological 

reality. As we would expect, any change that alters the population of k-mers (e.g., insertion) 

results in greater KHILL values than change that simply alters the existing k-mer counts 

(duplication, transposition). With frequent insertion or change over long block sizes, we see a 

KHILL that approaches the number of genomes simulated, a range that conveys the power of the 

KHILL metric to track both subtle and gross genomic change. 

 

Our approach is fast, straightforward and ideally suited to durable but nimble real-time genome 

surveillance. We calculate Figure 2C on all UK genomes available in 1800 CPU hours on low 

memory cores. If we decrease the sketch rate by an order of magnitude, we can calculate the 

same curve in just 180 CPU hours without losing signal from any of the UK’s major variant 

transitions (Supplemental Figure 1). The omicron autocorrelation curve in Figure 3A is similarly 

fast. We calculate all 860 required KHILL values in 2 CPU hours. So we can easily append daily 

KHILL points to the growing epidemiological time series. Recent studies struggle to process all 

available genomes in heavily sampled regions(36). Curation can be a viable strategy. In 

Supplemental Figure 7, we show that genome wide nucleotide diversity (p) of 100 randomly 

selected daily sequences over the UK pandemic mirrors the KHILL curve but distorts its 

amplitude. But the time required to calculate alignments for p makes this an impractical solution 

at the scales we’ve proposed here.  
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Though we prescribe no thresholds for marking the emergence of a new variant, our technique 

affords public health institutions the opportunity to create actionable policy based on a simple, 

quantitative measure. Moreover, we show that the first derivative of the KHILL curve tracks new 

variants as deviations from a critical point, providing another potential metric to trigger policy 

changes. During a KHILL upswing, the increasingly complex population is marked by an 

accelerating slope, which then flattens and decelerates until the downswing settles into a variant 

sweep (Supplemental Figure 8).  

 

Finally, KHILL not only distinguishes the various states of genome populations along an axis of 

change, but also quantifies exactly how much genome diversity emerges during a transition, and 

how much is lost in a sweep. In other words, KHILL not only responds to a changing population, 

but also integrates the effects of genetic distance, merging two primary properties of pan-

genomes. This is true of both the clinical and pooled samples.  

 

Applied to genomes that comprise species level complexes, we believe that KHILL 

accumulation curves can function as a new kind of comparative genomics realized without the 

usual computational burden. For example, in Figure 4 we show that, in the UK population, as we 

accumulate Delta and omicron genomes, we plateau at about 1.05 genome equivalents. Alpha 

and Omicron BA1 asymptote at about 1.03. Higher Delta genome diversity agrees with 

conclusions drawn from slower phylogenetic methods(37). We quickly capture this species level 

trait using the differential saturation rate of a metric that, for any set of genome sequences, 

collapses all genomic diversity into a single point. 

 

KHILL is ideal for population genomics, but the approach is also relevant for biological 

problems at other evolutionary scales. The comparative approach we highlight here might help 

illuminate the species concept itself. With genomic containers, how many genome equivalents 

should a legitimate species contain? Can a comparative genomics of KHILL accumulation 

curves complement or even enhance traditional comparative genomic methods based in 

phylogenies or networks? Moreover, containers of pooled sequence or shotgun metagenomes 

could be used to understand the changing diversity of environmental samples in both time and 

space. We show the potential in this type of analysis in the autocorrelations selected for Figure 3. 

Can we track the diversity of an antibiotic treated gut without resorting to woefully inadequate 

reference databases? Can we understand microbial transition zones in perturbed environments 

without an explicit taxonomy of its constituents? Is there a relationship between KHILL and 

ecosystem functioning? 

 

In this work, we use Hill numbers and the notion of container equivalents to redefine genomic 

surveillance. The response to the COVID-19 pandemic has resulted in some of the richest 

biological datasets in history. Our technique is positioned to stream all this data. The state of the 

art is burdened by alignment and its reliance on known references. We do not stream through 

markers. Our goal is to signal population change regardless of taxonomy. We see great value in a 

simple measure that conflates the evolutionary nuance of phylodynamics without sacrificing a 

pandemic’s actionable signals of transition and sweep. The method we describe here can 

accommodate the massive genomic datasets of future outbreaks, and perhaps signal when 

phylogenetics are needed. KHILL is a new angle on the COVID19 pandemic, a technique that 

takes us closer to the edge of one of the greatest health care challenges of our time.  
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Figure Legends 
Figure 1. The KHILL metric. We adapt ecological definitions for beta diversity to calculate the 

effective number of genomes (KHILL) in any set. Genomes with overlapping k-mer identities 

and similar k-mer frequencies will tend to have a lower KHILL (Panel A). In a population 

genomic context, KHILL can be used to track changing clinical genomic complexity over time 

and/or space. We expect that in a pandemic, a Variant of Concern will increase the information 

diversity of a stable population. If this transition is favored, the variant will sweep the population 

(Panel B). In a pooled or wastewater context, KHILL can function as a measure of compression 

of unassembled, raw sequence across days, with a drastic change revealing the potential arrival 

of a new variant (Panel C). Genomes sampled from a transitioning population will exhibit higher 

KHILL than a population that has settled into a dominant variant (Panel D). 

 

Figure 2. The United Kingdom (UK) COVID-19 pandemic. We show new case burden (Panel A) 

and gross phylogenetic classification (Panel B) for the UK pandemic since its inception. The 

three distinct KHILL peaks signal the arrival of Alpha (November 2020), Delta (May 2021), and 

Omicron (November 2022) well before each variant’s spike in cases (Panel C). 

 

Figure 3. SARS-CoV-2 in raw, pooled sequence. We extract three curves from an autocorrelation 

analysis of simulated reads from the UK pandemic. The curves chosen focus on the three major 

variant transitions: alpha, delta and omicron. In each case, the large downward swing marks 

turnover from one type to another (Panel A). We show that these transitions are significant using 

Bayesian Changepoint Detection (Panel B). San Diego wastewater data shows similar – albeit 

noisier – transitions between variants. Comparison of raw sequence from a day dominated by 

omicron to all prior days shows clear (Panel C) and significant (Panel D) separation between 

alpha/epsilon and delta/omicron. 

 

Figure 4. SARS-CoV-2 comparative genomics. We randomly sampled 10,000 Alpha, Delta and 

Omicron genomes from the UK pandemic. As genomes are randomly accumulated, information 

diversity accrues. We show that Delta and Omicron converge on similar information diversity, 

but that Delta is more complex. Both are far more diverse than either Alpha or Omicron BA1 

alone, an observation confirmed by phylogenetic methods on far fewer genomes. 

 

Supplemental Figure 1. Sketch depth and the detection of subvariants. We used a generalized 

additive model to fit a cubic spline (lines) with a kurtosis of 50 to the UK covid pandemic KHill 

statistics (y-axis, as a response to date on the x-axis), calculated with sketch rates of 100 and 

1,000. Red arrows indicate the additional diversity captured with a deeper sketch during the 

Delta and Omicron waves. 

 

Supplemental Figure 2. The United States (US) COVID-19 pandemic. We show new case 

burden (Panel A) and gross phylogenetic classification (Panel B) for the US pandemic since its 

inception. The arrival of Alpha (March 2021) seems to have homogenized a previously variable 

US viral population. The Delta surge (June 2021) moderately increases complexity, while the 

arrival of Omicron (December 2021) is accompanied by a KHILL spike followed by a rapid 

descent after Delta is forced into near extinction (Panel C). 
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Supplemental Figure 3. The South Africa (SA) COVID-19 pandemic. We show new case burden 

(Panel A) and gross phylogenetic classification (Panel B) for the SA pandemic since its 

inception. The arrival of both Delta and Omicron lead to KHILL spikes. Because of sparser 

sequencing in this population, the SA data is considerably noisier than either the UK or USA. 

Note that we also include the Beta variant here as it was a significant variant in the SA 

pandemic.  

 

Supplemental Figure 4. Simulated reads. We simulated 3 Mbases of Illumina sequence from 

each of 50 randomly selected genomes taken daily over the course of the UK pandemic. We 

show that the KHILL pandemic curve in this unassembled sequence mirrors that shown in Figure 

2 for assembled genomes. 

 

Supplemental Figure 5. Alpha diversity of wastewater k-mers. We plot the alpha diversity of 

sequence gathered from each day of the San Diego wastewater sample. Because the sample is 

amplicon based and enriched for SARS-CoV-2, higher alpha diversity indicates more unique 

viral k-mers sequenced at a higher depth, while lower diversity is likely characteristic of over-

amplified, less even coverage. We remove these low complexity (and some high complexity) 

days by taking only those samples with sequence one standard deviation from the alpha diversity 

mean. 

 

Supplemental Figure 6. Simulations. We simulated mutations in populations of 29.9Kb SARS-

CoV-2 genomes using the EMBOSS tool msbar (24) and the SARS-CoV-2 reference (NCBI 

Reference Sequence: NC_045512.2) to understand how numbers of mutations and mutation 

classes impact the KHILL statistic. Each population differs in the number of mutations (x-axis), 

mutation class (legend), and the block size of each mutation (as below). Panels A and B report 

the KHILL statistic (y-axis) calculated from populations of 1,000 genomes with 1bp SNP 

mutations. Mutations were simulated to represent 1% - 50% of the genome in steps of 1% (i.e. 

299 – 14,952 mutations). Panel A reports the KHILL statistic for zero to 1,500 mutations, while 

the maximum number of mutations in panel B is 14,952, or 50% of the genome. Panels C and D 

report KHILL statistics for populations of 100 genomes and are faceted and annotated (top) by 

mutation block size (1, 5, 10, 20, 50, 75, and 100 bp in panel C, and 250 and 500 bp in panel D). 

We simulated mutation classes: insertion, deletion, SNP (or replacement for block mutations 

greater than 1 bp), duplication, transposition (copy/paste), or “any”, which is a random 

combination of all mutation forementioned classes. 

 

Supplemental Figure 7. Comparison between KHILL and genome wide nucleotide diversity (p). 

We show that genome wide p of 100 subsampled genomes per day across the UK pandemic, 

closely approximates the more data heavy KHILL curve (Panels A and B). Genome wide p is 

well correlated with KHILL (Panel C), but its calculation is expensive for anything beyond 100 

genomes per day because of the cost incurred by whole genome alignment (Panel D).  

 

Supplemental Figure 8. Slopes. In Panel A we used a generalized additive model to fit a cubic 

spline (blue line) with a kurtosis of 50 to the UK covid pandemic KHill statistics (y-axis, as a 

response to date on x-axis). Panel B presents the first derivative F’(x), or slope, of the cubic 

spline presented in Panel A. Positive values indicated a positive slope (increasing KHill), while 

negative values indicated a negative slope (decreasing KHill). The grey shaded area represents 
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the 95% confidence interval of F’(x). Panel C presents F’(x) (right y-axis) overlayed on the 

SARS-CoV-2 clade frequency (left y-axis) of the UK covid pandemic dataset. Alpha, Delta, and 

Omicron sub-variants have been collapsed (legend). In Panel B and C the horizontal dashed line 

at F’(x) = 0 indicates the transition point from positive to negative slopes of the fitted cubic 

spline. 

 

Supplemental Online Methods 
 

UK Clinical Genomes 

Genomes and metadata were downloaded from the Covid-19 Genomics UK Consortium (COG-

UK) https://www.cogconsortium.uk/. A custom R script (R version 4.1.3) was used to read the 

genomes and metadata into memory and sort genomes into one directory per day. We used 

collection dates to sort into daily directories. A total of 2,794,151 genomes were analyzed. The 

KHILL program was run on each directory with the following parameters: -k 19 -m 1 -n 100 -s 

1e99 -p 6. To calculate daily cases, we downloaded covid cases data from Our World In Data 

https://ourworldindata.org/covid-cases. The csv file was loaded into R and filtered to include 

only data from the UK. To assign each genome to a clade, we used Pangolin for each genome, 

https://github.com/cov-lineages/pangolin (pangolin version 4.1.2; data version 1.12). The scorpio 

call output was used, and we summarized the clade assignments with the modifications shown in 

Table 1 below. Plots were made with R and ggplot2 (version 3.3.5) 

 

USA Clinical Genomes 

Genomes and metadata were downloaded from the Covid 19 Data portal 

(https://www.covid19dataportal.org/). A table of metadata for each genome were downloaded 

from the web interface. The search parameter was (country:"USA") AND (coverage:["95" TO 

"100"]).  The accessions were fed into the CDP-File-Downloader 

(https://www.covid19dataportal.org/bulk-downloads), and genomes were downloaded and put 

into directories (one directory per day). A total of 1,926,292 genomes were analyzed for the USA 

using the same methods outlined for the UK above.  

 

SA Clinical Genomes 

Genomes were downloaded from GISAID EpiCov https://www.epicov.org/ We searched for 

Location = "Africa / South Africa", selecting "Complete" and "Collection Date Complete". We 

downloaded genomes directly from the web interface (selecting Download and then input for 

"Input for the Augur pipeline"). Genomes were sorted into directories (one directory per day). A 

total of 32,623 genomes were analyzed for South Africa using the methods outlined for the UK 

above. 

 

Supplemental Table 1: Scorpio Calls 

Scorpio Call Modified Name 

[blank] Other 

A.* and Alpha.* Alpha 
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B.* and Beta.* Other† 

Delta.* Delta 

Epsilon.* Other 

Eta.* Other 

Gamma.* Other 

Iota.* Other 

Lambda.* Other 

Mu.* Other 

Omicron (XE-like) Omicron 

Omicron (Unassigned) Omicron 

Omicron (BA.1-like) Omicron.BA.1 

Omicron (BA.2-like) Omicron.BA.2 

Omicron (BA.3-like) Omicron.BA.3 

Omicron (BA.4-like) Omicron.BA.4 

Omicron (BA.5-like) Omicron.BA.5 

Probable.* Other 

Theta.* Other 

Zeta.* Other 

 

Pooled Clinical Samples Simulation 

We generated survey sequence for each day during the UK pandemic by randomly selecting 100 

genomes. We simulated Illumina reads from each of these 100 genomes using wgsim. These 

reads can stand in for genomes in an analysis of clinical isolates, or they can be combined, 

scrambled, and surveyed as representative of any one day. We simulated 1 million reads from 

each sample but kept only 400,000 after all read libraries were joined. These 400,000 reads 

formed the basis of pairwise KHILL calculations between each day and all days that came 

before. 

 

Sketch Depth Comparison 
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We tested how the sketch depth used during the KHILL calculation impacts the detection of 

subvariants by calculating KHILL during the course of the UK SARS-CoV-2 pandemic using 

sketch depths of 100 and 1,000. We used a generalized additive model to fit a cubic spline (lines) 

with a kurtosis of 50 to these datasets independently in R using the package mgcv (https://cran.r-

project.org/web/packages/mgcv/index.html). We find that additional genetic diversity is captured 

with deeper sketch rates, as evidenced by more variation in KHILL during the Delta and 

Omicron waves (Supplemental Figure 1). 

 

Diversity Simulations 

We simulated mutations in populations of 29.9Kb SARS-CoV-2 genomes using the EMBOSS 

tool msbar (24) and the SARS-CoV-2 reference (NCBI Reference Sequence: NC_045512.2) to 

understand how numbers of mutations and mutation classes impact the KHill statistic. First, we 

simulated populations of 1,000 genomes with 1bp SNP mutations. Mutations were simulated to 

represent 1% - 50% of the genome in steps of 1% (i.e. 299 – 14,952 SNP mutations). Next, we 

explored how variation in the bock size of mutations (1, 5, 10, 20, 50, 75, 100, 250 and 500 bp) 

and mutation class impacted the KHILL statistic in populations of 100 genomes. For each block 

size, we simulated mutation classes: insertion, deletion, SNP (or replacement for block mutations 

greater than 1 bp), duplication, transposition (copy/paste), or “any”, which is a random 

combination of all mutation forementioned classes (Supplemental Figure 6). 

 

KHILL vs. Nucleotide Diversity (p) 

We tested how KHILL compares to an existing metric of population genetic diversity, Nei’s 

nucleotide diversity (p). First, we randomly subsampled 100 SARS-CoV-2 genomes from each 

day of the UK pandemic and aligned these using clustal omega (www.clustal.org). Next, we 

calculated genome-wide p from each subsample alignment using custom perl scripts. For each 

day, we compared the KHILL measure to the subsample genome-wide p, and fit a linear model 

to this relationship. Finally, we benchmarked the time required to align 2, 5, 10, 25, 50, 100, 250, 

500, and 1,000 randomly subsampled SARS-CoV-2 genomes (from a single day during the UK 

pandemic) using clustal omega. We did this to estimate the computational burden of aligning 

genomes on the scale sequenced during the UK pandemic. Alignments are required to calculate 

traditional population genetic measures such as p. It is important to note that these estimates of 

computational time do not include the time required to: demultiplex and trim raw sequencing 

data, align this data to a reference genome, generate the consensus sequences used in whole 

genome alignment, or the calculation of p itself. We sought only to illustrate that when the 

number of genomes reaches the thousands, the computational time to calculate traditional 

population genetic measures becomes unmanageable (Supplemental Figure 7). 

 

Slopes Analysis 

We used the R package mgcv (https://cran.r-project.org/web/packages/mgcv/index.html) to fit a 

cubic spine with a kurtosis of 50 to the UK covid pandemic KHILL data using a generalized 

additive model. We extracted the first derivative F’(x), or slope, of the cubic spline to better 

understand the rate of change of the spline fit to the KHILL data, and the general trend of the 

underlying KHILL data during variant sweeps. Positive F’(x) values indicated a positive slope 

(increasing KHill), while negative F’(x) values indicated a negative slope (decreasing KHill). 

Rapid shifts in F’(x) mark rapid variant sweeps, especially when the population is dominated by 

a single variant, and then swept to extinction rapidly by a genetically distant variant (e.g. Delta to 
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Omicron.BA.1 sweep) (Supplemental Figure 8). Sweeps between genetically similar subvariants 

(e.g. Omicron.BA.1 to Omicron.BA.2) produce more modest fluctuations in F’(x). 

 

Code 
https://github.com/narechan/khill 
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Supp Fig 6
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Supp Fig 7
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Supp Fig 8
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