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Abstract 

Synaptic loss occurs early in many neurodegenerative diseases and contributes to cognitive 

impairment even in the absence of gross atrophy. Currently, for human disease there are few 

formal models to explain how cortical networks underlying cognition are affected by synaptic 

loss. We advocate that biophysical models of neurophysiology offer both a bridge from 

clinical to preclinical models of pathology, and quantitative assays for experimental 

medicine. Such biophysical models can also disclose hidden neuronal dynamics generating 

neurophysiological observations like electro- and magneto-encephalography (MEG). Here, 

we augment a biophysically informed mesoscale model of human cortical function by 

inclusion of synaptic density estimates as captured by [11C]UCB-J positron emission 

tomography, and provide insights into how regional synapse loss affects neurophysiology. 

We use the primary tauopathy of progressive supranuclear palsy (Richardson’s syndrome) as 

an exemplar condition, with high clinicopathological correlations. Progressive supranuclear 

palsy causes a marked change in cortical neurophysiology in the presence of mild atrophy 

and is associated with a decline in cognitive functions associated with the frontal lobe. Using 

(parametric empirical) Bayesian inversion of a conductance-based canonical microcircuit 

model of MEG data, we show that the inclusion of regional synaptic density—as a subject-

specific prior on laminar specific neuronal populations—markedly increases model evidence. 

Specifically, model comparison suggests that a reduction in synaptic density in inferior 

frontal cortex affects superficial and granular layer glutamatergic excitation. This predicted 

individual differences in behaviour, demonstrating the link between synaptic loss, 

neurophysiology, and cognitive deficits. The method we demonstrate is not restricted to 

progressive supranuclear palsy or the effects of synaptic loss: such pathology-enriched 

dynamic causal models can be used to assess the mechanisms of other neurological disorders, 

with diverse non-invasive measures of pathology, and is suitable to test the effects of 

experimental pharmacology. 
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Introduction 

Human neurodegenerative diseases are heterogeneous in their symptoms, progression and 

molecular biology but they all call for mechanistic explanations of pathophysiology 

underlying cognitive impairment1–4. This may be met by biophysically informed models of 

brain-network dynamics that integrate patient-specific measures of neuropathology. We 

propose that by embedding neuropathological information in individualised disease models, 

one could establish bridges between clinical and preclinical models of disease, facilitate 

experimental medicine, and inform precision medicine. We therefore sought to enrich 

biophysically informed generative models of cortical neurophysiology, inverted from 

magnetoencephalography, with markers of neuropathological severity from positron emission 

tomography.  

We focus on synapse loss as the neuropathology, which is common across many 

neurodegenerative diseases, and closely related to the severity of dementia5–12. This kind of 

synapse loss is a consequence of protein misfolding, aggregation and inflammation in 

multiple disorders, and begins before cell death13. Post-mortem studies have identified cell- 

and region-specific changes in synaptic density14–16. Quantification of region-specific 

synaptic density is now possible in vivo with PET, using ligands for the presynaptic vesicle 

protein 2A (SV2A PET)12,17,18. However, less is known about the impact of this synaptic loss 

on the neurophysiological function of local cortical networks7.  

To characterise the relationship between synaptic loss and cortical neurophysiology, we use 

the primary tauopathy of Progressive Supranuclear palsy (PSP) as an exemplar condition. 

Within the group of frontotemporal lobar degeneration pathologies, PSP has very high 

clinicopathological correlation. Over and above the motor impairments of PSP, it is 

associated with marked decline in cognitive function and physiological responses, especially 

cognitive functions associated with the frontal lobe19–21. These frontal physiological and 

cognitive changes occur in Richardson’s syndrome as well as the PSP-Frontal phenotype, 

despite only mild cortical atrophy22. The discrepancy between severe functional deficits and 

mild atrophy has been proposed to result from changes in synaptic density and loss of major 

neurotransmitter systems in the frontal lobe22–27. PSP synaptic loss is severe in multiple 

cortical regions at post mortem and in vivo10,28, making the disorder ideally suited to 

demonstrate the relationship between synaptic loss and cortical function.  
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We had three principal aims. First, to develop a method for pathology-enriched dynamic 

causal models (DCM), combining magnetoencephalography with PET data. Using this 

method, we could test for a relationship between synaptic density and inferred synaptic 

efficacy within the generators of magnetoencephalography signals. Second, we hoped to 

identify the subject-, layer- and cell-specific parameters that are most sensitive to changes in 

synaptic density. We focus on the synaptic loss and neurophysiological function of the frontal 

lobe (specifically inferior frontal gyrus, IFG) because of the cognitive profile of PSP. The 

third aim was to test the hypothesis that the neuronal parameter estimates would be correlated 

with cognitive function, endowing them with construct validity.  

In pursuing these aims, we paid careful attention to the validity of the modelling and data 

analysis: face validity was established in terms of the predictive accuracy (i.e., the model 

could reproduce realistic neurophysiological responses). Construct validity was addressed 

through the use of independent measures of psychopathology and pathophysiology. Finally, 

predictive validity was addressed with a quantitative analysis of reliability using the 

Intraclass Correlation Coefficient and a split half procedure (i.e., odd and even trials). 

 

Materials and Methods 

Participants 

Eleven people with probable PSP Richardson’s syndrome29 underwent structural MRI, 

[11C]UCB-J PET and magnetoencephalography. Whereas prominent presenting features can 

be cognitive and behavioural (e.g. in PSP-Frontal phenotype), all had progressed to 

Richardson’s syndrome by the time of the study. Participants were recruited from the 

Cambridge Centre for Parkinson-plus and gave written informed consent in accordance with 

the Declaration of Helsinki (1991). Their clinical and cognitive assessment included the Mini 

Mental State Examination (MMSE), revised Addenbrookes Cognitive Examination (ACE-R,) 

Cambridge Behavioural Inventory (CBI-R), Hayling sentence completion test, INECO 

Frontal Screening (IFS), Progressive Supranuclear Palsy Rating Scale (PSPRS), Frontal 

Assessment Battery (FAB), and Graded Naming Test. Demographic and clinical data of 

participants are summarised in Supplementary Table 1. 
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Neuroimaging data acquisition 

During magnetoencephalography, participants were exposed to a roving auditory oddball 

stimulus train, as described in Adams et al.19. Magneto/electrophysiological data were 

recorded at 1000 Hz using a 306-channel Vectorview acquisition magnetoencephalography 

system (Elekta Neuromag, Helsinki) located in an Elekta Neuromag magnetically-shielded 

room. Sensors are in triplets, as a pair of gradiometers and a magnetometer. 

Electrooculograms tracked eye movements vertically and horizontally, and 5 head-position 

indicator coils tracked the head position (500 Hz). EEG was simultaneously recorded using a 

70 channel, MEG-compatible, EEG cap (Easycap GmbH). A 3D digitizer (Fastrak Polhemus 

Inc., Colchester, VA) recorded >100 scalp points, nasion and bilateral pre-auricular fiducial 

points. 

For co-registration with the MEG data, T1-weighted structural MRI was collected in a 7T 

Siemens TERRA scanner (MP2RAGE sequence, TE=1.99ms, TR=4300ms, 0.75mm 

isotropic voxels). For one subject the scan was collected in a 3T Siemens PRIMSA scanner 

(with magnetization-prepared rapid gradient-echo (MPRAGE sequence sampling, echo time 

(TE) = 2.9ms, repetition time (TR) = 2000ms, 1.1mm isotropic voxels) at the Wolfson Brain 

Imaging Centre, University of Cambridge. 

Participants underwent a [11C]UCB-J PET scan, on a GE SIGNA PET/MR (GE Healthcare, 

Waukesha, WI), with 90 minutes dynamic imaging following [11C]UCB-J injection, with 

attenuation correction including the use of a multi-subject atlas method30 and improvements 

to the brain MRI coil component. Full details of the post-processing are provided in Holland 

et al.10 In brief, the data were attenuation corrected and aligned to a simultaneous subject-

specific T1-weigthed MRI, TE = 9.2 msec, TR = 3.6 msec, 1.0 mm isotropic voxels, 192 

sagittal slices, in-plane voxel dimensions 0.55×0.55 mm (subsequently interpolated to 

1.0×1.0 mm); slice thickness 1.0 mm). 

Regions were specified using the Hammersmith Atlas. Regional time–activity curves were 

extracted following the application of geometric transfer matrix partial volume correction to 

each dynamic image. Regions of interest were multiplied by a binary grey matter mask 

(>50% on the SPM12 grey matter probability map smoothed to PET spatial resolution). The 

non-displaceable binding potential of [11C]UCB-J was estimated as the measure of synaptic 

density, using the simplified reference tissue model with the centrum semiovale as the 
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reference region (corrected for CSF and grey matter partial volume). Only the right IFG data 

were carried over to this study.  

Data pre-processing 

Magnetoencephalography data were acquired using a standard (roving) auditory mismatch 

negativity (MMN) paradigm. The data were MaxFiltered (v2.2, Elekta Neuromag) to remove 

external noise, correct for head motion and interpolate bad channels. Subsequent data 

processing was performed with the Statistical Parametric Mapping toolbox (SPM12 v7771, 

Wellcome Trust Centre for Neuroimaging, UK) FieldTrip (fieldtriptoolbox.org) and OSL 

(https://github.com/OHBA-analysis/osl-core) software in MATLAB (2019a, Mathworks, 

Natick, MA). Data were downsampled to 500Hz, band-pass filtered between 0.1-125 Hz and 

notched between 45-55Hz and 95-105Hz. Bad channels were removed using 

osl_detect_artefacts, before independent component analysis was used to remove eye-motion 

artefacts. Data were then epoched from -100 ms to 400 ms relative to stimulus onset. Further 

artefact rejection used thresholding of MEG channels to remove bad trials 

(osl_detect_artefacts). The deviant and standard trials—that constitute the roving MMN 

paradigm—were taken as the 1st and 6th trials of each stimulus train respectively, following 

a change in auditory tone. 

Conventional source reconstruction was performed using the COH (i.e. coherence) method in 

SPM12, using subject specific structural images. Source data timeseries were obtained using 

a region of interest—with a radius of 7mm—for the reconstruction of regional responses. A 

single (representative) source was selected for subsequent analysis of between subject 

differences: namely, the right inferior frontal gyrus (RIFG), with the Montreal neurological 

institute template coordinate of [46, 20, 8]. This is the prefrontal source in the auditory 

hierarchy (of five sources) that generate the auditory evoked responses (and accompanying 

differences that constitute the MMN). 

Dynamic Causal Modelling 

A conductance-based DCM with six neuronal populations or cell types was used, modified 

from the CMC-NMDA model as described in Adams et al.31. A list of the mean and variance 

of prior model parameters is provided in Supplementary Table 2. These parameters pertain to 

synaptic time constants and rate constants that parameterise the efficacy of intrinsic (i.e., 

within source) connections among the six populations, which are usually assigned to cortical 
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lamina. The RIFG event-related field (ERF) timeseries for each participant was used for 

model inversion using standard (variational Laplace) procedures (with a maximum of 64 

iterations of the inversion scheme). 

The ensuing parameter estimates for each participant were entered into parametric empirical 

Bayes (PEB) analyses. These between subject analyses were used to test the hypothesis that 

one or more synaptic parameters could be explained by differences in (PET derived) synaptic 

density measures from the RIFG region of interest. The ensuing (PEB) models were created 

from 6 sets of synaptic parameters: superficial and deep AMPA, NMDA and GABA. These 2 

x 3 = 6 groups form a model space of 63 models (as 2^6 – 1 = 63), where each model 

corresponds to a particular combination of synaptic parameters that could be influenced by 

synaptic density. The evidence (a.k.a., marginal likelihood) for each model was evaluated 

using the variational evidence lower bound (i.e., variational free energy). The resulting free 

energies were converted to probabilities over models via the softmax operator. In this work, 

we focused on the synaptic parameters mediating responses to both standard and deviant 

stimuli, where the differential responses (that underwrite the MMN) were modelled with 

parameters, mediating condition-specific changes in connectivity. This allowed us to use the 

amplitude in the MMN window as an independent marker of disease severity as follows. 

A further PEB analysis was undertaken to assess the contributions of two independent 

measures; namely, (i) the cognitive deficits as measured by the Frontal Assessment Battery; 

chosen because of its clinical utility, sensitivity to the presence of PSP and association with 

frontal lobe pathology; and (ii) a simple evoked physiological response, quantified here as the 

single maximal deflection during the mismatch window (130–180ms, noting that the DCM 

inversion uses the full time series of standard and deviant tones, and not a singular parameter 

of the peak MMN response). These PEB analyses looked for influences on the above (six) 

sets of superficial and deep AMPA, NMDA and GABA connections. 

Finally, the above analyses were re-run for odd and even trials separately, to create 

independent datasets and subsequent model inversion. The Intraclass Correlation Coefficient 

(ICC32) was used as a measure of the within-subject reliability, using the odd/even trials’ 

data. 
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Data Availability 

The MEG data pre-processing pipeline is available at https://github.com/-

AlistairPerry/FTLDMEGMEM. The DCM used in this study was adapted 

from https://gitlab.com/tallie/edcm, as described in Adams et al.31 with prior model 

parameters altered according to Supplementary Table 2. 

 

Results 

The observed ERFs and model ERF predictions (Fig. 1A) were highly correlated (Fig. 1B, 

mean Pearson’s correlation = 0.86 ±0.15), reflecting the face validity of this DCM. 

To identify the relationship between each participant’s regional synaptic density and the 

DCM estimates of synaptic efficacy, PEB was used to search for the best mapping from 

subject specific synaptic density in RIFG to different combinations of synaptic parameters in 

the DCM of the same region. These between subject (PEB) models were compared using 

their free energy (Fig. 2A, with the model space described in the lower matrix). The model 

space covers all combinations of superficial and deep AMPA, NMDA and GABA 

connections. The winning model of all available data (Fig. 2A, top) was the model in which 

superficial AMPA and NMDA synaptic connections were sensitive to PET measures of 

synaptic density (posterior probability = 0.52), followed closely by a model that also included 

deep NMDA connections (posterior probability = 0.32). 

To assess the reliability of the PEB analyses, DCM was applied separately for odd and even 

trials. Results for ‘all’, ‘odd’ and ‘even’ trials are reported in Fig. 2A. The free energies of all 

models for ‘odd’ and ‘even’ conditions were highly correlated (r2 = 0.95, Fig. 2B). The 

overall winning model was identical for the ‘all’ and ‘even’ conditions but differed slightly 

for the ‘odd’ trials’ data. However, this difference shows a related family nesting of synaptic 

groups.  To quantify the relative importance of the nested model features, each set can be 

viewed in isolation in terms of its relative free energy (using all the available data) in Fig. 2C. 

The schematic Fig. 2D illustrates the layout of these connections, colored according to their 

relative free energy. Here, superficial AMPA ranks the highest, followed in order by 

superficial NMDA, deep NMDA, superficial GABA, deep AMPA and finally deep GABA. 
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The ICC was used to assess the reliability of the free energy estimates of the log evidence 

(Fig. 3A), using ‘odd’ and ‘even’ trials. The reliability was high, in terms of free energy of 

the full model (with all effects in play), with ICC=0.83 (P<0.0001). We then tested the 

reliability of the accuracy and complexity that constitute the free energy (where log evidence 

equals accuracy minus complexity). The accuracy of the states, parameters and the precision 

and complexity of the states and parameters were again highly reliable (mean 

ICC=0.85±0.09, P<0.005, Fig. 3B). However, the complexity of precision was not reliable 

(ICC=0.43, P>0.05). 

Having confirmed reliability of model evidence estimates, ICCs were evaluated for DCM 

synaptic parameter estimates showing the most evidence of regional synaptic density effects 

(Fig. 3C). Assessing the reliability of single parameter estimates is not the most efficient way 

to assess reliability, due to conditional dependencies among the parameter estimates. 

Nonetheless, for 4/7 superficial AMPA, superficial NMDA and deep NMDA connections, the 

ICC reliabilities were excellent (>0.8). The two superficial AMPA connections and a deep 

NMDA connection had ICC > 0.6, P<0.005. The schematic in Fig. 3D illustrates the 

connections with their reliability. 

We tested the relationship between the superficial and deep AMPA, NMDA and GABA 

connections and the two independent measures of disease severity: (1) the Frontal 

Assessment Battery (FAB) and (ii) the maximal deflection in the ERF during the mismatch 

window (Ymax). A similar profile was revealed (Fig. 4A), which was highly correlated with 

the [11C]UCB-J result (Fig. 4B, upper). Although both independent measures evidenced an 

effect on synaptic parameters, they did not correlate strongly with each other (Fig. 4B, 

lower). 

Finally, we assessed whether all connections were necessary to explain the above effects of 

synaptic density and measures of disease severity, or whether some connections could be 

eliminated as redundant (i.e., increasing model complexity more than accuracy). We used 

Bayesian Model Reduction (BMR) to find the best PEB model, after removal of redundant 

connections (Fig. 4C): (i) synaptic density, Ymax and FAB were positively correlated with 

NMDA activation of superficial pyramidal cells by projections from layer 4 stellate cells; (ii) 

synaptic density and FAB were negatively correlated with AMPA activation of superficial 

pyramidal cells by projections from layer 4 stellate cells; and (iii) Ymax was negatively 
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correlated with AMPA activation of superficial interneurons by projections from superficial 

pyramidal cells. 

 

Discussion 

There are three principal findings of this study—based on the integration of PET measures of 

neuropathology with MEG measures of pathophysiology— using PEB-DCM33. First, 

regional synaptic density had an effect on the functional synaptic gain in a neurotransmitter- 

and laminar-specific fashion. Specifically, the superficial and granular glutamatergic synaptic 

efficacy in the intrinsic connections of an inferior frontal gyrus source—inferred from 

DCM—was a function of the local synaptic density as measured by [11C]UCB-J PET. This 

corroborates the region- and laminar-specific post mortem findings in frontotemporal lobar 

degeneration16, where both AMPA and NMDA receptors are reduced in frontal lobes34,35. 

Second, we found that even though synaptic density, cognition and MMN responses were not 

strongly correlated with each other, their effects were mediated by very similar local synaptic 

gains. Third, the DCM approach was highly reliable in terms of estimating model evidence, 

which is necessary to test hypotheses through model selection (and model reduction). The 

DCM was highly reliable (for the full model), in terms of the accuracies for the parameters, 

precision and states. Even at the level of some individual synaptic connections (e.g., AMPA 

and NMDA), reliability can be high despite the posterior dependencies and multivariate 

context in which these parameters were estimated. 

The relationship between synaptic density and functional change has been examined 

previously through correlational methods. For example, in Alzheimer’s disease6,36, 

progressive supranuclear palsy10, and frontotemporal dementia12 synaptic density correlates 

with cognitive function. Magnetoencephalographic evidence of abnormal oscillatory 

dynamics has been linked to lower [11C]UCB-J uptake in the occipital cortex7, while 

tauopathies have been correlated with spectral differences and spectrally-constrained changes 

in connectivity in a range of neurodegenerative disorders; including Alzheimer’s disease and 

frontotemporal dementia21,37–41. These correlative approaches however do not directly support 

inferences on the pathophysiological mechanisms. In preclinical transgenic tauopathy 

models, it has been possible to study the mechanisms of abnormal neuronal dynamics, 

confirming the neurophysiological consequences of pyramidal cell depletion and their 
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reduced synaptic density42–44. Despite the presence of tauopathy, these models differ from 

sporadic human PSP. We chose PSP as an exemplar condition because of the high 

clinicopathological correlations and mildness of cortical cell loss, despite marked 

neurophysiological and cognitive changes associated with the prefrontal cortex25,45,46.  

PSP impairs cognition,  particularly in domains associated with frontal cortex such as 

executive function, cognitive flexibility, response inhibition, verbal fluency and social 

cognition22,25,47–49. These deficits are common in PSP Richardson’s syndrome, and prominent 

at the presentation of PSP-Frontal phenotype (but not restricted to it). The severity of 

cognitive change, despite the generally mild cortical atrophy, led to the hypothesis that the 

impact of PSP on cognition and cognitive physiology is the result of cortical synaptic loss10. 

By translating the synaptic loss in PSP into a generative model of cortical neurophysiology, 

one can begin to focus on candidate solutions with targeted pharmacology19, and link to 

preclinical models of the synaptopathy in genetic tauopathies50. The formal integration of 

synaptic density into the canonical microcircuit, in which synaptic density forms subject- and 

cell-specific empirical priors on the microcircuit, goes beyond previous correlative 

approaches. Given the multivariate nature of the cortical circuits, the use of model 

comparison—rather than univariate analyses of mean a posteriori parameter estimates—

properly accommodates the posterior covariance among parameters and increases reliability; 

two highly desirable properties when anticipating interventional studies.    

We probed the cortical circuits using responses evoked in the roving auditory mismatch 

paradigm. Such tasks and change detection paradigms have been used to study many forms of 

dementia, ageing and other neurological diseases51–54. This paradigm reliably evokes signals 

in temporal, parietal and frontal regions55. The relative simplicity of the task and robustness 

of the activity it generates makes the paradigm highly suited to these types of modelling19,31. 

Due to the canonical nature of the local network and the optimization procedure for inversion 

between the model and MEG (or EEG) data, there is considerable potential for the extension 

of this method to other disorders, other brain regions, and other multi-modal markers of 

pathology. The pathology-enriched dynamic causal modelling approach could include other 

subject-specific markers of pathology, such as magnetic resonance spectroscopy estimates of 

principal neurotransmitters46, or PET ligand markers for the severity of amyloid or Tau 

burden56 or neuroinflammation57; or even post-mortem quantitative pathology58. Other 

anatomical regions may be more relevant to hypotheses or mechanisms of other diseases, but 
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the DCM method can be applied to other single regions, or a set of regions connected in 

networks of distributed sources; with the caveat that increasing complexity of the requisite 

DCMs may reduce reliability of model inversion.   

There are limitations to the study. It is based on data from a small cohort, which could raise 

the question of type II power for frequentist tests. However, our conclusions are not based on 

frequentist statistics or the rejection of a null hypothesis. Rather, the ‘power’ in the Bayesian 

approaches used here derives from making the best sense of data, by posing constrained and 

informed questions in the form of models or hypotheses and comparing the resulting model 

evidence. The variational free-energy (i.e., a lower bound approximation to log model 

evidence) differences reported above means that there is sufficient evidence for hypothesis 

testing in this cohort, even when accounting for the random effects of being a particular 

subject, implicit in the PEB analyses. This is not a surprise in view of the severity of PSP, 

and large effect sizes for both synaptic loss and neurophysiological change10. A related issue 

is the reliability of the DCM approach, which is not guaranteed in this sort of complex system 

of modelling. However, we provide evidence of excellent reliability, in terms of the 

inferences based on model selection and high reliability of many individual parameters. 

A second limitation is that diagnosis was based in clinical criteria, without neuropathology in 

most of our cases. However, the cases are typical of PSP, which has the very high 

clinicopathological correlation expected of Richardson’s syndrome, noting that the cognitive 

changes are common in those with Richardson’s syndrome and not confined to those with 

PSP-Frontal phenotype59. Third, there is the potential for off-target binding with PET ligands. 

However, [11C]UCB-J has been shown to be reliable and highly correlated with other 

synaptic markers like synaptophysin60, and none of the participants were taking a drug 

treatment known to interfere with the binding of [11C]UCB-J (such as levetiracetam).  There 

are also limitations of the neuronal model. We used canonical microcircuit models, extended 

in accordance with the favourable model-evidence in Adams et al.31. However, these neural 

mass models are approximations and aggregate many cells and cell types within the broad 

categories set out. Other connections and neuromodulators may exist, for the task and brain 

regions concerned. Despite their simplification models are useful to characterise features of a 

system under investigation. Our biophysically informed and constrained model aims to 

recapitulate the neuronal dynamics of the MMN paradigm, with statistical economy, but we 

recognise that hypotheses related to other hidden dynamics may call for modification of the 

model, or analysis of other cortical regions.  
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In summary, the current study highlights the potential of pathologically-enriched dynamic 

causal models to elucidate the mechanisms of human neurodegenerative disease. The 

methodology is suitable for use with other biomarkers of pathology, from PET or 

spectroscopy, and the assessment of selective pharmacological interventions that target the 

mechanisms installed in the model. As a potential platform for experimental medicine, the 

methodology shows good reliability within session, but future assessment of reliability 

between sessions and during longitudinal follow-up will be useful. We suggest that this 

methodology could assist the assessment of novel therapies emerging from pre-clinical 

disease models, aiming to preserve or restore human cognitive neurophysiology. 
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Figure Captions 

Figure 1. The accuracy of the generative model of the evoked 

response 

A) ERFs for the standard and deviant trials shown as a mean with SEM over all subjects. 

Observed data is in black and data predicted by the canonical microcircuit model is in 

purple.  

B) The histogram illustrates the high correlations between observed and predicted ERFs 

for each participant. 

Figure 2. The reliability of the free energy estimation over 

independent data per subject and over subjects.  

A) The free energy (FE, blue bars) for all 63 models for all trials (top), even trials 

(middle) and odd trials (bottom). The righthand y-axis (and pink bars) shows the 

posterior probability of each model. The model space, aligned with the bar charts 

above, is shown as the black and white matrix below. 

B) A comparison of the free energy for the most likely model plotted separately for even 

trials and odd trials for each subject, indicating the high reliability of the free energy 

estimate of the bound on (log)-model evidence. 

C) The relative free energy for each connection group when considered in isolation. 

D) The relative free energy for each connection group, with arrows distinguishing 

synapse type (triangle = AMPA; circle = GABA; diamond = NMDA). The scale for 

the colormap refers to the range of relative free energies across the groups. 

Figure 3. The reliability of free energy, accuracy and complexity 

estimation.  

A) The free energy estimates for each subject shown separately by odd and even trials are 

shown with the ‘hot’ colormap on the left and the ICC reported with the ‘cool’ 

colormap on the right. For the ICC results, the size of the square relates to its 

frequentist significance level with the key provided at the bottom of the figure. 

B) As above for the three accuracy and complexity measures, for the full model. 
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C) As above for the connection set found most likely to be correlated with synaptic 

density. 

D) A schematic illustrating the reliable neuronal parameter estimates as thick arrows 

coloured according to ICC level using the ‘cool’ colormap. *denote the reliable 

connections. 

Figure 4. The relationship between connectivity, synaptic loss, 

clinical impairment and evoked responses.  

A) The connections found to be significantly correlated with [11C]UCB-J, FAB scores 

and the maximal mismatch-window deflection in the ERF (Ymax) are shown as thick 

arrows, coloured according to correlation magnitude. 

B) Upper: Correlation matrix created from parameter values for the three covariates. 

Larger black box denotes P<0.001, smaller black box denotes P<0.05. Lower: 

Correlation matrix for the three covariates. 

C) Connections that are likely to be related to clinical, synaptic and evoked response 

metrics following Bayesian model reduction, coloured according to correlation 

magnitude and transparent according to posterior probability. 

Supplementary Table 1. Demographics and test scores. 

Averaged demographic and cognitive data for participants. The mean is shown followed by 

the standard deviation in brackets. 

Supplementary Table 2. Initial model parameters. 

The initial mean values of notable model parameters and their variance. 
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