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Abstract 

Human Leucocyte Antigen (HLA) class I alleles are the main host genetic factors involved in controlling HIV-1 

viral load (VL). Nevertheless, HLA diversity has proven a significant challenge in association studies. We 

assessed how accounting for binding affinities of HLA class I alleles to HIV-1 peptides facilitate association 

testing of HLA with HIV-1 VL in a heterogeneous cohort from the Strategic Timing of AntiRetroviral Treatment 

(START) study. We imputed HLA class I alleles from host genetic data (2,546 HIV+ participants) and sampled 

immunopeptidomes from 2,079 host-paired viral genomes (targeted amplicon sequencing). We predicted 

HLA class I binding affinities to HIV-1 and unspecific peptides, grouping alleles into functional clusters through 

consensus clustering. These functional HLA class I clusters were used to test associations with HIV VL. We 

identified four clades totalling 30 HLA alleles accounting for 11.4% variability in VL. We highlight HLA-B*57:01 

and B*57:03 as functionally similar but yet overrepresented in distinct ethnic groups, showing when 

combined a protective association with HIV+ VL (log, β -0.25; adj. p-value < 0.05). We further demonstrate 

only a slight power reduction when using unspecific immunopeptidomes, facilitating the use of the inferred 

functional HLA groups in other studies. The outlined computational approach provides a robust and efficient 

way to incorporate HLA function and peptide diversity, aiding clinical association studies in heterogeneous 

cohorts. To facilitate access to the proposed methods and results we provide an interactive application for 

exploring data. 
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Introduction 

The Human Leucocyte Antigen (HLA) is a critical component of the host immune response. HLA Class I alleles 

mediate the anti-viral response through the presentation of intracellular viral peptides for recognition by 

Cytotoxic T cells. This mechanism is critical to the host’s defence against diverse pathogens, which is why it 

is among the most genetically diverse regions in the human genome as evidenced by its association with our 

variable response to infectious disease [1].  In the context of HIV, HLA alleles are the canonical host genetic 

factors associated with viral load (VL)[2], altogether contributing up to 12% of its variability [3]. Viral diversity, 

on the other hand, is thought to explain two to four times as much (20%-46%) [4]. The combined relevance 

of both host and viral genomics suggests the necessity for the simultaneous analysis of both in the context 

of infectious disease[5]. Different approaches have been used to study this interaction such as genome-to-

genome [6] or peptidome-wide associations [7]. In addition, when considering the interplay between host 

HLA alleles and viral peptides, their association could be explained functionally in terms of epitope binding 

and presentation. 

Analysis of genetic variance within the HLA region and its associations with clinical outcomes is challenged 

by population-dependent distributions and the diversity of HLA haplotypes. Reaching statistical power within 

this region is difficult and while accounting for the effects of this important immunological region is 

necessary, it is often ignored altogether. Yet, the function of HLA is conserved as a core component of the 

immune response [8], [9]. This suggests there may be shared functional features within and between 

populations, even in the presence of genotypic plasticity. Understanding the structure of this mutual 

information could prove relevant for the study of host-pathogen interactions where high mutation rates are 

observed such as in HIV [10]. 

Immunopeptidomes have been used to estimate functional similarities between HLA alleles in what was 

initially denominated HLA supertypes [11]. These functional groups are based on the propensity of various 

alleles to bind similar sets of peptides. The algorithms used to estimate these binding profiles have gradually 

improved over time [12], [13]. However, the consideration of HLA functional groups in the context of 

Genome-Wide Association Studies (GWAS) has largely been overlooked [14]. 

In this study, we considered the ability of HLA proteins to functionally bind peptides leveraging the cost-

effectiveness of high-throughput genotyping as opposed to directly assaying HLA function. We provide a 

framework based on state-of-the-art computational methods for the study of predicted immunopeptidomes 

and functional HLA groups in the context of HIV-1 infection. In doing so, we demonstrate the increased 

statistical power that is gained by moving away from a purely genetic approach to a functional one with 

implications for studying the immune response either directly or as a confounder. We processed HIV 

immunopeptidomes that incorporate intra-host viral diversity and imputed HLA alleles from the same 

geographically diverse cohort of people living with HIV (PLWH) and antiretroviral therapy (ART) naïve 

participants from the Strategic Timing of Anti-Retroviral Treatment (START) trial [16]. Interactive results of 

this work and complementary data are available via a web application ( https://persimune-health-

informatics.shinyapps.io/PAW2022Zucco__HLA_HIV_INSIGHT/). 

Methods 

Ethics 

Host and viral samples in this study were extracted and analyzed from participants in the START clinical trial 

(NCT00867048) [16], conducted by the International Network for Strategic Initiatives in Global HIV Trials 

(INSIGHT) and the Community Programs for Clinical Research on AIDS (CPCRA). Written consent for the study 
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and genetic analyses were obtained from the participants and approved by participants’ site ethics review 

committees.  

HLA class I alleles 

Imputation of HLA class I alleles (HLA-A, HLA-B and HLA-C) for 2546 genotyped ART-naïve, HIV+ participants 

was performed with HIBAG at 4-digit resolution [17]. Full details of the imputation process and quality control 

are described in previous publications [2], [18]. A multi-ethnic pre-trained model was used for imputation 

with a minimum out-of-bag accuracy of over 90% for all loci. HLA diversity was measured by the inverse 

Simpson index based on the HLA allele frequencies per locus and country. This index represents the 

complement of the probability that two participants would have the same HLA allele for a selected locus in 

a country. 

Immunopeptidomes and binding affinity prediction 

Plasma samples were obtained for a subset of 2079 ART-naïve, HIV+ participants from 21 countries enrolled 

in the START study. Viral RNA was sequenced, paired-end, using Illumina MiSeq and covered two amplicons 

in the HXB2 genome positioned 1485-5058 and 5967-9517. The sample preparation, library preparation, 

sequencing procedure, and detailed quality controls have been described previously [19]. Raw reads were 

fragmented into 27-mers using KAT [20] and those with a count higher than 1 were translated into peptide 

sequences of 9 amino acids length to fit the mean length of HLA Class I epitopes. Peptides were mapped to 

10 major HIV proteins (Asp, Gag-Pol, Nef, Vpr, Vpu, gp160, Vif, Pr55, Rev, Tat) from NCBI RefSeq NC001802.1 

(Supplementary file 1) using BLAST 2.8.1 (blastp-short). Hits with an E-value > 1E-05 were excluded to remove 

low-quality k-mers by considering exact matches. To compare HIV peptidomes with random sequences, a set 

of half-million 9-mers were generated by processing the same number of random protein sequences from 

Uniprot. Binding affinities for 268 class I HLA alleles to both HIV and random peptidomes using NetMHCpan 

4.0 [15]. Three different immunopeptidome subsets were generated by (i) selecting peptides from the top 

10% binding affinities, (ii) 10% most variable peptides, and (iii) peptides that potentially bind to at least 10% 

of the alleles using <500nM as general threshold [12]. 

Consensus clustering 

Hierarchical clustering was implemented using two different linkage functions. Average linkage was used for 

measuring relationships between HLA alleles represented by dissimilarity defined as cosine, correlation and 

Euclidean distances. For clustering based on Ward linkage, cosine and correlation distances were corrected 

by the square root to satisfy the triangular inequality necessary to operate in Euclidean space [21]. To 

generate an ensemble of clustering solutions, we employed consensus clustering to mitigate bias from the 

subset, distance metric, or chosen linkage function [22]. A consensus matrix (Cij) of size (n x n) was built where 

each element is the number of times an ith allele clustered together with a jth allele [23] at a varying total 

number of clusters selected (3 to 160). The consensus matrix was then processed by hierarchical clustering 

with average linkage after transforming the values into dissimilarity scores (1 – Cij). Clustering was performed 

in Python 3.7.1 using the Scipy library [24]. 

Statistical analyses 

Associations of log10-transformed VL with each node of the consensus tree were tested by linear regression 

and adjusted by sex, self-reported race, and country. Tested HLA alleles had to be present in more than 10% 

of the participants. Multiple testing was controlled by a Benjamini-Hochberg procedure using a q-value < 

0.05 to identify associations. Analyses were performed in R v3.6.0 [25]. 
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Data visualization and availability 

Consensus clustering dendrograms and association coefficients were depicted using Interactive Tree of Life 

(iTOL) [26] and tanglegrams, which were generated by the dendextend R package [27]. We provide a flexible 

visualization of peptide-to-HLA binding profiles across viral proteins. Data downloads and access to 

supplementary materials are made available through the app (https://persimune-health-

informatics.shinyapps.io/PAW2022Zucco__HLA_HIV_INSIGHT/ ). 

Results 

Baseline characteristics for the START cohort 

We used baseline data and the genotypes of 2,546 participants from the START trial. Next-generation 

sequencing of HIV samples was retrieved for a subset of 2,079 participants. All participants included in the 

trial were asymptomatic HIV+ and ART-naïve with two CD4+ cell counts >500/μL at least 14 days apart within 

60 days of enrollment in the trial. Baseline characteristics for study participants can be found in Table 1. 

Prediction of patient-derived HIV immunopeptidomes 

Our approach for immunopeptidome generation initially yielded 9.88 × 107 peptide 9-mers. After filtering 

and mapping with BLAST to ten major HIV proteins, a total of 173,792 9-mers were considered. This 

accounted for a 99.22% coverage across the reference proteome. Among the final list, we observed 136 best-

defined CTL/CD8+ epitopes from Los Alamos (version 2019-11-20; Supplementary file 2). 

Data exploration 

To facilitate the exploration of the results, a web application was developed (Figure 1) providing tools to 

navigate interactively the global and local diversity of imputed HLA alleles, HIV subtype-derived peptides, 

and their corresponding binding profiles. Shannon and Simpson diversity indices can be directly visualized on 

the world map highlighting the geographical diversity of the cohort. This interactive tool facilitates the further 

examination of specific HLA allele, HIV subtype, or peptide frequencies for the entire cohort and options to 

explore details at a country level.  

Higher HLA-A diversity is associated with a lower mean viral load per country 

The diversity of HLA class I alleles measured in terms of the inverse Simpson index was calculated using the 

HLA allele frequencies per locus and country for comparison. A negative univariate correlation (R = -0.65 p = 

0.0018) between HLA-A diversity and mean HIV log10(viral load) per country was found. This indicates that 

countries in our cohort with a high diversity of HLA-A alleles would show lower levels of HIV viral load in the 

population represented in terms of mean log10(VL). No significant correlation was observed for HLA-B and 

HLA-C respectively (Figure 2). 

Consensus clustering of HIV-derived immunopeptidomes improves statistical power compared to 

random immunopeptidomes 

Consensus trees were generated based on a half-million random peptides from Uniprot and the predicted 

HIV immunopeptidome under the same methodology. The correlation between both trees was 0.985 

indicating high similarity. Minor differences were found in allele distances (Figure S1) with only a few major 

structural changes such as the displacement of B*35:20 from a predominantly B*15 node (unspecific 

immunopeptidome) to one dominated by B*35 alleles (HIV immunopeptidome). Another two examples are 

HLA-B*15:13 and B*15:58 which moved from a node of predominantly HLA-C alleles (unspecific 
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immunopeptidome) to a node of HLA-B alleles (HIV immunopeptidome). These small differences, when 

combined, were translated into an increase in statistical power (Figure S2). Overall, when assessed in a 

multivariate model including all HLA class I alleles as covariates the combined percentage of explained 

variance accounted for 11.44% of the VL after adjustment for sex, self-reported race, and country. Hence, 

our clusters of HLA function accounted for HIV-VL variance to a similar degree as reported by Bartha et al., 

2017 [3] for genotypic evidence in a comparatively pure European cohort. This highlights that accounting for 

HLA function is both sufficient and better to explain variability in VL in heterogeneous populations.  

HLA class I functional nodes associations with HIV-VL 

Associations between the HLA functional nodes and the measurements of HIV-VL taken at study entry were 

tested using linear regression. Four nodes with a consistent effect size were associated with HIV-VL (Figure 

3). These nodes were composed of 30 HLA class I alleles of which 11 were observed in participants with 

measurable VL at study entry. Two functional nodes were associated with a lower VL, one group composed 

of HLA-B*57:01, B*58:01, B*57:02, and B*57:03 (β -0.25, q-value 7.02E-06) and the second group composed 

of a pair of HLA-C*08 alleles, HLA-C*08:04 and C*08:01 (β -0.29, q-value 0.042). In contrast, two nodes 

showed an association with higher VL, one cluster composed of six HLA-B*44 alleles, B*44:05, B*44:08, 

B*44:04, B*44:03, B*44:02, B*44:27 (β 0.15, q-value 0.003) and a mixed group composed of 16 alleles: 

B*35:20, B*35:16, B*35:10, B*35:43, B*35:08, B*35:19, B*35:41, B*35:01, B*35:17, B*35:05, B*44:06, 

B*56:03, B*53:01, B*15:08 and B*15:11 (β 0.13, q-value 0.048). From these alleles, only two (HLA-B*57:01 

and B*57:03) were associated with HIV-VL when tested at the individual allele level (Figure 3). 

Discussion 

In this study, we implemented a computational approach based on consensus clustering of HLA alleles using 

predicted immunopeptidomes to explore associations of functional HLA groups in a geographically diverse 

cohort of PLWH. We defined functional similarity as differences in epitope binding profiles between HLA 

alleles and performed HLA imputation on patients enrolled in the START study. We combined the host genetic 

information with viral genomics through the prediction of immunopeptidomes. Viral sequences derived from 

a subset of participants were processed into peptides to predict binding affinities to 268 HLA class I alleles 

which allowed us to generate distance matrices of HLA alleles. Consensus clustering allowed us to 

agglomerate HLA alleles into nodes by their functionality. Four nodes were found to be associated with HIV-

VL, implicating alleles that could not be detected when performing independent allele-specific tests alone. 

These four nodes accounted for a total of 30 HLA alleles of which 11 were observed in our cohort.  

The effects differed among the four nodes associated with HIV-VL. One node containing four well-

characterized alleles HLA-B*57:01, B*58:01, B*57:02, and B*57:03 showed an association with lower HIV-VL 

indicating a protective effect. This effect has been previously reported on an individual allele level [28]; we 

confirmed and observed shared binding affinity profiles that now indicate their common mode of function. 

While having a similar effect in HIV-VL, these four alleles are represented at different frequencies between 

populations. For example, HLA-B*57:01 carriers are of European descent compared to B*57:03 which is 

predominant among those of African descent [2]. The similarity in function was captured by our analysis 

despite the differences in allele frequencies. A second protective node contained two alleles, HLA-C*08:04 

and C*08:01, which have been reported in an admixed population and detected after adjusting for multiple 

factors such as CD4+ and CD8+ counts [29]. We showed that such association could not only be detected in 

our study but that functional clustering provided a clear and simple method to do it with greater mechanistic 

insight. We report a node of six HLA-B*44 alleles, in this case, associated with a higher VL. This finding 

contradicts a previous study in a Chinese cohort [30] in which a few alleles of the cluster were found to have 
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a protective effect. Given the large effect of viral diversity on VL, this could be a result of regional adaptation 

that could not be accounted for in our study due to the lack of participants from the same region. While this 

suggests a weakness in our study due to the underrepresentation of some ethnicities, divergence in our 

results from studies on homogeneous populations could be a useful tool to detect localized effects. However, 

data from a cohort with sufficient Chinese representation is needed to confirm the findings.  

Defining discrete nodes of HLA alleles is challenging as distances between alleles are based on predicted 

binding affinities and measured continuously. Therefore, metrics to define a fixed number of clusters failed 

to suggest a robust threshold for cutting the trees obtained by consensus clustering. For this reason, the final 

HIV-associated groups of alleles were determined by assessing the trees hierarchically from leaves (individual 

HLA alleles) to roots (broad HLA nodes), thus optimizing groups based on their association with VL when the 

combination of alleles in all child nodes supported it. In this way, the methodology implemented provides an 

advantage to traditional HLA association studies by adaptively increasing the signal of functional groups 

allowing to uncover associations that could not be found at the individual allele level due to the number of 

statistical comparisons or sample size [14]. Grouping or clustering of variables to increase statistical power 

and limit multiple testing is common practice in epidemiological studies. The functional clustering presented 

here, however, is based on the assumption that the majority of HLA functionality is mediated by peptide 

binding affinities. This serves to facilitate study design by simplifying decisions on the size and diversity of the 

cohort while allowing a biological interpretation of the results. For example, it enables the inference of the 

effect of unobserved HLA alleles on HIV-VL given their common function to those observed. These are notable 

challenges across clinical studies attempting to measure the effect on the immune response. Altogether, the 

functional clustering approach presented is neither specific to HIV nor viral load and may be transferred to 

study HLAs and outcomes in other host-pathogen interactions. 

Similar computational approaches were proposed to explore HLA class I molecules and their role in HIV-1 

infection: These studies mainly focused on genome-to-genome approaches [6], techniques to find new 

epitopes in European participants using a peptidome approach [7] or to explore the interactions of HLA class 

I molecules to other ligands [31]. In contrast, we focused on the host factors, the HLA class I alleles, 

accounting for the high diversity of the cohort and inclusion of a larger number of viral sequences to predict 

immunopeptidomes and expand on genome-to-genome analyses previously performed in our same cohort 

[19]. While implementations of HLA clustering in the context of HIV-1 have been developed based on a 

Bayesian framework [13] these were limited by the diversity of their data and assumptions of the clustering 

parameters. Extra considerations must be taken when clustering predicted immunopeptidomes to avoid bias 

introduced by predominantly low binding affinity predictions, which can affect the reliability of the computed 

distances between HLA alleles. To solve this, we used consensus clustering by computing different subsets of 

immunopeptidomes and avoiding bias from non-binders when calculating distances between HLA class I 

alleles under multiple linkage functions. The ensemble of implemented techniques avoids bias due to high 

dimensionality and has shown success when applied to clustering of biological data [22]. 

We propose diverse methodological improvements in the analysis of host-viral genetics. From the host 

genetics perspective, we showed that imputed HLA class I alleles can be used to calculate HLA diversity 

without requiring full HLA sequences. From the viral genetics perspective, we incorporated viral sequences 

using a fast k-mer approach to avoid generating a consensus sequence, especially for pathogens of high 

genetic variability and to take into account the intra-host viral diversity [32]. When combining host and viral 

information through predicted binding affinities, we showed that the differences between clustering based 

on specific HIV and random immunopeptidomes facilitate a slightly higher resolution of the trees. We suggest 

that the unspecific HLA clusters from the latter approach could be used for other infectious phenotypes. This 
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is likely due to the diversity of viral genomes present in our dataset, and this may not be the case for smaller, 

more homogeneous cohorts. However, it suggests that our immunopeptidomes could work as a proxy for 

other similarly diverse studies that do not have access to paired viral genomes. Alternatively, new 

immunopeptidomes may be proposed based entirely on synthetic data at the risk of increased type-II error.  

While we demonstrate the utility of the implemented methodology on HIV, there is also a clear road to 

extend it to the analysis of other pathogens eliciting class-I immune responses. Using this common functional 

framework, there is scope to analyze the variation of HLA structure in populations and within the context of 

multiple pathogens. Another possible application could be as a screening tool for the most effective peptides 

either for targeting populations carrying specific allelic distributions or maximizing coverage of vaccines 

across geographies. Finally, we propose that the focused consideration of HLA function in terms of peptide 

binding affinities provides a promising approach to inform modern vaccine design. This would also be 

relevant in the advent of mRNA vaccines coming to fruition after decades of research [33] as they take 

advantage of proper peptide selection. As an example, the need for a new class of tools that account for both 

variable immunogenic coverage and clinically relevant mutations has been highlighted during the recent 

SARS-CoV-2 pandemic [34]. To facilitate open research, the results of this work are made available for 

common use via a web application (https://persimune-health-

informatics.shinyapps.io/PAW2022Zucco__HLA_HIV_INSIGHT/ ) 
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Table 1. Demographic characteristics of the START cohort at study entry.  

Characteristics Genotyped participants 
(n=2,546) 

Median age (IQR) (years) 36 (29–45) 

Sex [n (%)] 

 Female 511 (20.1) 

 Male 2035 (79.9) 

Race/ethnic group [n (%)] 

 Black 577 (22.7) 

 Hispanic 498 (19.6) 

 Asian 26 (1.0) 

 White 1404 (55.2) 

 Other 41 (1.6) 

Geographical region [n (%)] 

 Africa 343 (13.5) 

 Asia 0 (0) 

 Australia and New Zealand 96 (3.8) 

 Europe and Israel 1148 (45.1) 

 Latin America 499 (19.6) 

 United States and Canada 460 (18.1) 

Mode of HIV-infection [n (%)] 

 Sexual contact 

  MSM 1633 (64.1) 

  With a person of the opposite sex 751 (29.5) 

 Injection-drug use 45 (1.8) 

 Other 117 (4.6) 

Median time since HIV diagnosis (IQR) (years) 1 (0–3) 

ART-naïve [n (%)] 2546 (100) 

Median CD4+ T-cell count (IQR) (cells/μl) 651 (585–759) 

Median HIV viral load (IQR) (copies/ml) 14 833 (3503–46 000) 

IQR, interquartile range; MSM, men who have sex with men; ART, Antiretroviral treatment. 
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Figure 1. Web application demonstrating a subset of available data visualizations. 

Panel (a) and (b) illustrates the global diversity of imputed HLA alleles in Shannon and Simpson indices, 

respectively. Darker (navy) colors indicate higher diversity. Panel (c) showcases the interactive component 

to further examine specific HLA allele, an HIV subtype and/or peptide frequencies for the selected cohort 

with options to explore individual countries in detail. 
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Figure 2. Correlations between HIV viral load and HLA diversity per country for three HLA loci. 

Mean log10(HIV-VL) was depicted (y-axis) as dot plots against HLA diversity measured in terms of Simpson 

index (x-axis) for three HLA class I loci (HLA-A, -B, -C) in 21 countries. The noted R corresponds to a Pearson 

correlation with its corresponding p-value.  
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Figure 3. Dendrogram of 268 HLA class I alleles based on consensus clustering of predicted binding 

affinities to HIV peptides.  

Predicted binding affinities to 173,792 HIV peptides were used to calculate the HLA allele distances used for 

consensus clustering and represented as a dendrogram through hierarchical clustering. Associations with 

log10(HIV-VL) of each node (HLA functional node) and leaves (HLA alleles) in the dendrogram were tested and 

adjusted by sex, self-reported race, and country. Associations were defined by an adjusted p-value 

(Benjamini-Hochberg) < 0.05 and are represented as thick branches for nodes and black triangles for leaves. 

White triangles indicate HLA alleles detected in our cohort. The effect of the respective associations is color-

coded from protective effect (blue) to detrimental (red). On the outer ring, HLA allele counts are depicted as 

green bars. An interactive version of the tree can be found in the provided web application. 
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