
A Bayesian hierarchical approach to account for

reporting uncertainty, variants of concern and

vaccination coverage when estimating the effects of

non-pharmaceutical interventions on the spread of

infectious diseases

Raphael Rehms1,
∗
, Nicole Ellenbach1, Eva Rehfuess1,2, Jacob Burns1,2,

Ulrich Mansmann1,3, Sabine Hoffmann1,3

1Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig-Maximilian-

University, Munich, Germany

2Pettenkofer School of Public Health, Ludwig-Maximilian-University, Munich, Germany

3Department of Statistics, Ludwig-Maximilian-University Munich, Germany

∗Corresponding author, Contact: rrehms@ibe.med.uni-muenchen.de

Abstract

Coronavirus disease (COVID-19) has highlighted both the shortcomings and
value of modelling infectious diseases. Infectious disease models can serve as
critical tools to predict the development of cases and associated healthcare
demand and to determine the set of non-pharmaceutical interventions (NPI)
that is most effective in slowing the spread of the infectious agent. Current
approaches to estimate NPI effects typically focus on relatively short time
periods and either on the number of reported cases, deaths, intensive care
occupancy or hospital occupancy as a single indicator of disease transmis-
sion. In this work, we propose a Bayesian hierarchical model that integrates
multiple outcomes and complementary sources of information in the esti-
mation of the true and unknown number of infections while accounting for
time-varying under-reporting and weekday-specific delays in reported cases
and deaths, allowing us to estimate the number of infections on a daily basis
rather than having to smooth the data. Using information from the entire
course of the pandemic, we account for the spread of variants of concern,
seasonality and vaccination coverage in the model. We implement a Markov
Chain Monte Carlo algorithm to conduct Bayesian inference and estimate
the effect of NPIs for 20 European countries. The approach shows good per-
formance on simulated data and produces posterior predictions that show a
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good fit to reported cases, deaths, hospital and intensive care occupancy.

1 Introduction

The experience with coronavirus disease 2019 (COVID-19) during the past
two years has underlined both the importance of and the challenges in the
modelling of infectious disease. Infectious disease models can serve as crit-
ical tools to predict health care demand and to determine when and which
non-pharmaceutical interventions (NPI) should be implemented to slow the
spread of the infectious agent. However, the modeling of infectious dis-
ease is complicated by the fact that the main quantity of interest, i.e., the
number of daily infections, is a latent variable that cannot be observed and
therefore has to be estimated by using information on observable quantities.
The number of reported cases, deaths and hospital occupancy all provide
complementary, yet sometimes contradictory, information on the number of
infections in a given geographical region. The number of reported cases is
prone to under-reporting, as it depends both on testing capacity and the
employed testing strategy (May, 2020). When changes in the testing strat-
egy concur with the introduction or the relaxation of NPIs, they can create
severe distortions in the estimation of NPI effects. Moreover, there is a de-
lay in the reporting of new cases, which typically shows strong variations
depending on the weekday. While modeling disease mortality, which is less
prone to under-reporting, can avoid biases due to changes in the testing
strategy, the time lag between infection and death may be highly variable,
leading to a reduction of statistical power (Sharma et al., 2021). Focusing
solely on disease mortality makes it difficult to predict health care demand in
the future. A solution for this situation, in which we have several imperfect
proxy variables for the number of infections, is to combine information on
disease incidence, hospital occupancy and mortality in a common framework
while explicitly accounting for time-varying under-reporting and reporting
delays.
Bayesian hierarchical approaches can address this challenge by providing a
coherent and flexible framework to integrate all available sources of infor-
mation while accounting for different sources of uncertainty. By combin-
ing different submodels through conditional independence assumptions, it is
possible to integrate mechanistic assumptions on disease dynamics and sub-
models describing the relationship between the true (and unknown) number
of infections and reported cases, deaths and hospital occupancy. Addition-
ally, we can borrow information from other geographical regions to stabilize
parameter estimates and to improve forecasts on future hospital demand.
Current approaches to assess the effect of NPIs typically either focus on the
number of deaths (Flaxman et al., 2020) or the number of cases (Dehning
et al., 2020; Banholzer et al., 2020; Li et al., 2021; Islam et al., 2020). Un-
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win et al. (2020), Brauner et al. (2021) and Sharma et al. (2021) extend the
semi-mechanistic Bayesian hierarchical model proposed by Flaxman et al.
(2020) by including information on reported cases and deaths when infer-
ring the number of new infections. However, these approaches typically only
estimate NPI effects for short time periods because they do not explicitly
account for differences in host susceptibility over time (due to vaccination or
previous infection), seasonality, the prevalence of different variants of con-
cern or time-varying under-reporting.
The aim of this work was to extend current Bayesian hierarchical approaches
by integrating the available information on the number of reported cases,
the number of deaths and hospital and intensive care unit (ICU) occupancy
while accounting for under-reporting and reporting delays in the number of
reported cases. We account for the influence of seasons, vaccination coverage
and the prevalence of variants of concern as these factors can have a critical
influence on the number of new infections and the relationship between infec-
tions and reported deaths and hospital occupancy. By doing so, it is possible
to use data on almost the entire course of the pandemic in several countries
rather than focusing on short time periods in a single country during which
the variant, vaccination coverage and the testing strategy remained roughly
constant. By allowing for weekday-specific delays in reported cases and
deaths (that mainly arise due to reduced reporting during the weekend),
we are not required to smooth the analyzed time series and can estimate
the number of infections on a daily basis. We apply our approach to data
on reported cases, deaths and hospital occupancy for COVID-19 from 20
European countries and investigate its performance both on simulated data
and by assessing posterior predictions.

2 The model

In this section, we describe the Bayesian hierarchical model to estimate
the effects of NPIs. The full model is depicted in Figure 1 as a Directed
Acyclic Graph (DAG). At its core, the model treats the number of true and
unknown infections at every time point and geographical region as a discrete
latent variable. These infections are modeled using a renewal model which
represents the contagion process of the disease. It describes the number
of new infections at every time t ∈ {t1, t2, . . . , T} as a function of past
infections while accounting for the generation time distribution, i.e., the time
lag between a primary and secondary infection, and for a time-dependent
instantaneous reproduction number. t represents an arbitrary unit of time,
for example days. The renewal model can be seen as a more flexible version
of the disease dynamics described in classical compartmental models for
infectious disease (Wallinga and Lipsitch, 2007). We explain our model in
two parts. First, we describe how we estimate the effects of NPIs given the
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true and unknown number of infections represented through the discrete
latent variable while accounting for seasonality, vaccination coverage and
variants of concern. Second, we describe how we infer the number of true
and unknown infections (i.e., the values of the latent variable) based on
the available information on reported cases, deaths and hospital and ICU
occupancy.

2.1 Estimation of NPIs

Renewal Equation

To model the dynamics of the infectious disease, we use a renewal equation
which reflects the spreading of the infectious agent among susceptibles:

It,m ∼ NegBinom
(
µt,m, ϕ̃t,m

)
where

µt,m = Rt,m

∑
u<t

Iu,m (Fγ(t− u+ 1)− Fγ(t− u))

ϕ̃t,m = µt,m +
µ2
t,m

ϕI

(1)

Equation (1) describes the number of infected individuals It,m at each
time point t in geographical region m ∈ {m1, . . . ,M} as a function of past
infections, the instantaneous reproduction number Rt,m (see next subsection
for more details) and the generation time distribution. In equation (1),
the number of infections It,m is the sum of the previous infections on the
t − 1 days before t weighted by the corresponding probability mass of the
discretized generation time distribution Fγ(t−u+1)−Fγ(t−u) multiplied by
the local instantaneous reproduction number Rt,m at time t. Applying the
renewal equation to past infections yields the current number of infections
It,m (see for instance Fraser et al. (2009)). To reflect uncertainty in the
renewal model, we consider infections at time t in geographical region m
to follow a Negative Binomial distribution with expectation µt,m and an
overdispersion parameter ϕI . For ϕI → ∞, It,m would follow a Poisson
distribution with no overdispersion.
We seed the model for the first day I1,m in each geographical region m
through a Negative Binomial distribution with mean parameter τm:

I1,m ∼ NegBinom
(
τm, ϕ̃1,m

)
where we assume a hierarchical model for τm, i.e., each τm follows a trun-
cated normal distribution around a common parameter τ which follows a
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Figure 1: Directed Acyclic Graph (DAG) of the Bayesian hierarchical model.
Quantities that are observed or assumed to be known are shown in squares
and unknown quantities are shown in circles, single arrows indicate proba-
bilistic dependencies and double arrows indicate deterministic dependencies.
Parameters are highlighted in orange and variables are shown in blue. The
model estimates the number of new infections It,m ∈ N at every time t in geo-
graphical region m by using information on the number of deaths Dt∗,m ∈ N,
hospital occupancy Ht∗,m ∈ N and reported cases CR

t∗,m ∈ N observed on
the collection of future time points t∗ in this geographical region. The true
and unknown number of cases Ct,m ∈ N on day t in geographical region m
is linked to the number of infections It,m through a deterministic function
(indicated through a double arrow) that shifts the number of infections by
the incubation period distribution ξC . The two distributions ξR and ξD de-
scribe the time between the onset of symptoms and reporting as a case and
death, respectively. ξH is the conditional probability of being in hospital x
days after symptom onset. The parameters πD

t,m, πH
m and ρt,m denote the

probability of dying (i.e., the infection fatality rate), the probability of being
hospitalized and the probability of being reported (i.e., the case detection
ratio), respectively. For ICU occupancies, all parameters are defined in the
same manner as for hospital occupancy, so we omit information on ICU in
the DAG for sake of clarity.
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Gamma distribution with shape aτ and scale bτ .

τm ∼ N+(τ, στ )

τ ∼ Ga(aτ , bτ )

στ ∼ N+(µστ , σστ )

Effects on the reproduction number

Besides past infections and the generation time distribution, the renewal
equation also includes the instantaneous reproduction number Rt,m. We
define Rt,m as the product of three factors: the basic reproduction number
R0

t,m (which may also be time dependent due to the influence of different
variants of concern), the effect of NPIs and two correction factors c1t,m and
c2t,m:

Rt,m = R0
t,m exp

(
−

K+3∑
k=1

αk,m · Ink,m(t)

)
· (1− c1t,m − c2t,m · (1− c1t,m))

with

c1t,m =

∑
u<t Iu,m

Nm
· (1− βreinf )

c2t,m =

∑
u<t(V acc1u,m · βvacc1 + V acc2u,m · βvacc2)

Nm

The correction factors c1t,m and c2t,m reduce the number of susceptibles
in the population: c1t,m corrects for already infected and possibly recov-
ered individuals. Since an infection may not guarantee protection against
the infectious agent, we include a parameter βreinf giving the probability
of reinfection. The term c2t,m corrects for vaccination coverage at time t
in geographical region m. Here, βvacc1 and βvacc2 represent the probabil-
ity of infection after a first and second vaccination.

∑
u<t V acc1u,m and∑

u<t V acc2u,m are the number of vaccinated individuals in the population
at time t and geographical region m.
To estimate the effect of NPIs, we include a further factor in the instanta-
neous reproduction number. Here, the effect of K NPIs αk,m is modeled in-
side an exponential function with an corresponding covariate Ink,m(t) which
is an indicator taking a value of 1 if the k-th NPI is active at time t in ge-
ographical region m and 0 otherwise. Besides NPIs, we also include three
further factors to account for the effect of seasons (choosing summer as refer-
ence category, resulting inK+3 indicator variables). Since it is reasonable to
assume variations in the effectiveness of NPIs and seasons between different
geographical regions, we allow for an individual effect using a hierarchical
structure. This hierarchical structure makes it possible to share information
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between regions to infer an overall effect of the NPIs while allowing to es-
timate individual effects that are specific to geographic regions to uncover
variation in these effects.

αk,m ∼ N (αk, σαk
)

The basic reproduction number may vary over time due to the occur-
rence of new variants that modify R0

m. We propose a convex combination
to construct a time-dependent basic reproduction number R0

m. For the ap-
plication to COVID-19, we account for two variants of concern yielding the
following formula:

R0
t,m =R0

m · (1− palphat,m − pdeltat,m )+

(1 + βalpha) ·R0
m · palphat,m +

(1 + βdelta) ·R0
m · pdeltat,m

Here palphat,m and pdeltat,m are the prevalence of the alpha (B.1.1.7) and
delta (B.1.617.2) variants, respectively, at each time t in geographical re-
gion m. The two unknown parameters βalpha and βdelta represent the over-
contagiousness of these variants compared to the wild type. We obtain a
time variant reproduction number by taking the reproduction number of the
original wild type as basis and multiplying it with (1+βalpha) and (1+βdelta)
which accounts for the effect of these subsequent variants.
Since each geographical region may have its own characteristics, we allow
for variation in the basic reproduction number. We therefore assume re-
production numbers R0

m that are specific to geographical region m that are
again modeled in a hierarchical manner with common mean R0:

R0
m ∼ N

(
R0, σ2

R

)
.

2.2 Inferring the number of infections

To estimate the number of infections on day t in geographical region m, we
use information on four observed time series where each of them is linked
through a submodel to this latent variable: the reporting model, the death
model and two hospitalization models (normal beds and ICU).

Disease model

Before linking the number of infections to the observable time series, we
define a second latent variable, the number of cases Ct,m in geographical
region m with symptom onset on day t, which is simply a deterministic
function of the number of infections It,m occurring until time t:
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Ct,m =
∑
u≤t

It,m
(
FξC (t− u+ 1)− FξC (t− u)

)
(2)

where FξC is the cumulative distribution function of the incubation period.
Through this relation, the number of cases becomes a deterministic function
of the number of infections which is shifted by the incubation time distri-
bution. As the disease model described in equation (2) produces values for
Ct,m that are possibly not integers, we apply a rounding scheme which both
ensures integer values for the cases and that the total number of cases equals
the total number of infections. If Ct,m is not an integer, we round it to a
full number while keeping the remaining decimals to add or subtract them
to Ct+1,m, i.e., the number of cases on the next day in geographical region
m 1.

2.3 Reporting model

In the reporting model, we describe the association between the number of
cases Ct,m with symptom onset on day t and reported cases. By account-
ing for time-varying under-reporting and weekday specific reporting delay,
the reporting model can give insight into the discrepancies between the true
dynamics of the disease and the official information recorded by health au-
thorities.

Time-varying under-reporting

Following work by Fraser et al. (2009) and Azmon et al. (2014), we account
for discrepancies in the number of reported and actual cases. Since the
testing behavior varies over time, we propose a time-dependent case detec-
tion ratio ρt,m in each geographical region m. We assume the reporting
rate to be a piece-wise constant function with predefined cut-points. These
cut-points can be predefined as time-points at which structural changes in
testing strategies or procedures occurred.

Reporting delay

Many local authorities follow a protocol or rules in their daily data gath-
ering process, which lead to strong weekly variations in the reported data
(Günther et al., 2021). We extend the time-varying under-reporting by in-
cluding a weekday specific reporting delay. We do so by using a discrete

1Note that the decimal can be positive or negative depending on whether the calculated
number in equation (2) is> 0.5 or not. We also want to mention that the quantity Ct,m can
also contain infections which do not result in actual symptoms. Therefore Ct,m contains
both, cases with actual symptoms and hypothetical cases without symptoms.

8

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.20.22276652doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.20.22276652
http://creativecommons.org/licenses/by-nc-nd/4.0/


convolution in the same manner as for the generation time distribution in
the renewal model while accounting for time-varying under-reporting:

CR
t,m ∼ NegBinom

(
µR
t,m, ϕ̃R

t,m

)
where

µR
t,m = ρt,m

∑
u<t

Cu,m

(
F
ξR,w
m

(t− u+ 1)− F
ξR,w
m

(t− u)
)

ϕ̃R
t,m = µR

t,m +
µR
t,m

2

ϕR

Here, ξR,w
m is the reporting delay distribution for a specific weekday w in

geographical region m. The expected number of reported cases on day t is
a sum of all true cases occurring on some day u before day t weighted by
their probability of being reported after t − u days and multiplied by the
time-specific under-reporting rate ρt,m. Here ρt,m is described through a
piece-wise constant function.
The reporting model requires detailed knowledge about the distribution of
the delay between symptom onset and day of reporting by the health au-
thorities in a geographical region m. Since it is very difficult to obtain this
information for each region, we suggest using a general reporting delay distri-
bution and introducing parameters βw

m to adapt this distribution for specific
weekdays w for each geographical region m. These parameters inflate or
deflate the probability mass on a specific day of the week to reflect the sys-
tematic discrepancies in the observed data CR

t,m and the expected number
of reported cases. βw

m affects the distribution as follows: Given the variable
δwt ∈ {0, 1} indicating that day t is weekday w in a (weekday specific) base-
line distribution FξR,w , we obtain a modified version of F

ξR,w
m

by calculating

(FξRm
(t∗ + 1)− FξRm

(t∗)) · δwt · βw
m, ∀t∗ = 1, . . . , T and re-normalizing it af-

terwards. As a consequence, we can account for weekly seasonality effects
that are specific to each geographical region.

2.4 Death model

Following Flaxman et al. (2020), we describe the number of deaths Dt,m oc-
curring on day t in geographical region m as a function of the number of true
cases with disease onset prior to t. In this death model, Dt,m is described
by a Negative Binomial distribution with expected value equal to the sum
of the number of true cases with disease onset at time t − u, weighted by
the probability of dying on the u-th day after the onset of symptoms. This
latter probability can be obtained by discretizing the probability distribu-
tion describing the time until death for patients who died, i.e., F

ξD,w
m

, and

multiplying by the infection fatality rate (IFR) πD
t,m, i.e., the probability of

dying for an infected individual where this rate can depend on day t and
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geographical region m. Similarly to F
ξR,w
m

in the reporting model, F
ξD,w
m

accounts for weekday effects which can be specific to geographical region m
to account for differences in reporting.

Dt,m ∼ NegBinom
(
µD
t,m, ϕ̃D

t,m

)
where

µD
t,m = πD

t,m

∑
u≤t

Cu,m

(
F
ξD,w
m

(t− u+ 1)− F
ξD,w
m

(t− u)
)

ϕ̃D
t,m = µD

t,m +
µD
t,m

2

ϕD

We use a region-specific IFR πD
t,m, since the age structure of the geo-

graphical regions may be very different leading to variations in the severity
of the disease. Since the model aims to use a long observation window, we
have to reflect additional effects on the IFR, in particular concerning the
effect of vaccinations and the effect of new variants of the disease which
can become more or less prevalent over time. The IFR is therefore a time-
and location-dependent quantity. Details on how we adapt the IFR in the
context of our application to COVID-19 (section 5) can be found in section
C.3 in the supplementary material.

2.5 Hospitalization models

Since many countries provide information on hospital (normal beds) and
ICU occupancy, we integrate these two additional sources of information
through two hospitalization models whose structure is similar to that of the
death model:

Ht,m ∼ NegBinom
(
µH
t,m, ϕ̃H

t,m

)
where

µH
t,m = πH

t,m

∑
u≤t

Cu,m

(
FξH (t− u+ 1)− FξH (t− u)

)
ϕ̃H
t,m = µH

t,m +
µH
t,m

2

ϕH

πH
m,t varies over time in the same way as πD

m,t to account for vaccination

coverage and different variants. In contrast to πD
m,t, however, we can esti-

mate πH
m,t for each geographical region and do not have to consider it to

be known. Doing so is important because medical care and definitions of
hospital admissions and ICU admissions may vary between geographical re-
gions. Therefore, we define a ratio πH

m which is specific to each geographical

10

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.20.22276652doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.20.22276652
http://creativecommons.org/licenses/by-nc-nd/4.0/


region, but that does not change over time, and calculate πH
t,m as a product

of πH
m × gt,m where gt,m is a fixed quantity representing the effect of vac-

cinations and new variants that can potentially modify the severity of the
disease.
We use exactly the same model for hospital (normal beds) and ICU occu-
pancy. For the sake of brevity, we therefore do not present the model for
ICU occupancy in detail, but it can be obtained by merely changing the
superscripts from H to Hicu. The two distributions, FξH and FξHicu , indi-
cate the probability that a person with symptom onset on day x occupies a
hospital or an ICU unit on day x+y with y = 1, 2, 3, ... . For the application
to COVID-19, we obtain these two distributions by combining information
on the time between symptom onset and hospitalization with information
on the time a person occupies a bed or ICU after being hospitalized through
Monte Carlo methods. See sections C.3 and D.2 in the supplementary ma-
terial for a more detailed description of the definition of πH

m,t, π
Hicu
m,t , FξH

and FξHicu .
We provide a summary of the model and the expression of the joint posterior
in section A of the supplementary material.

3 Inference, identifiability and implementation

Due to the complexity of the hierarchical model, there is no analytical solu-
tion and we use a Metropolis-Hastings algorithm (Hastings, 1970) to sample
from the joint posterior distribution. For the simulation study and the ap-
plication, we fine-tune acceptance rates by using an adaptive phase (Brooks
et al., 2011; Roberts and Rosenthal, 2009) and discard a defined number of
iterations as burn-in. We apply thinning to reduce the autocorrelation in
the generated Markov chains.
The flexibility of the proposed model can come at the cost of non-identifiability
issues. The first obvious problem of identifiability occurs if we try to esti-
mate the infection fatality rate πD

t,m, the probability of being hospitalized

πH
m or being treated in ICU πHicu

m and the case detection ratios ρt,m simulta-
neously. This problem is easily circumvented by considering one of the four
parameters as known. As the infection fatality rate can be reliably estimated
in seroprevalence studies and modified by accounting for factors like the age
structure of the population, vaccination coverage and the prevalence of dif-
ferent variants, we consider this factor known to be able to estimate the three
remaining factors. The second identifiability issue arises in the estimation
of the number of true and unknown infections. Since we assume that this
variable follows a Negative Binomial distribution where the expected value
is a function of the effects of non-pharmaceutical interventions (that are to
be estimated), the model can in theory describe the data through any set of
values for these parameters if the overdispersion parameter takes very high
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values. Moreover, the dimension of the latent variable can be rather high
depending on the length of the observation window and number of geograph-
ical regions (the dimension in the latent variable grows with t and m) and it
is not possible to use, for instance, Hamiltonian dynamics in the updating
of this variable because it is not continuous. Current Bayesian hierarchical
approaches commonly circumvent these problems by making the somewhat
questionable assumption that the number of infections is a continuous vari-
able that deterministically depends on the currently active NPIs (Flaxman
et al., 2020; Brauner et al., 2021; Sharma et al., 2021). We address this issue
by assuming an informative prior for the different overdispersion parameters
in the renewal model, the hospitalization models and the death model and
by splitting It,m in blocks of 10 for each geographical region m to be able
to update each block one at a time. Finally, assuming a hierarchical model
structure on αk,m, R0

m and τm has the advantage of stabilizing parameter
estimates by using information across countries. This effect is particularly
important for the estimation of non-pharmaceutical interventions. Since
such interventions are often implemented or relaxed as multi-component in-
terventions on the same or subsequent days in a country, it is difficult to
disentangle their effects if we assume country-specific effects that do not
follow a hierarchical structure because the estimated effects would be highly
correlated. Using a hierarchical model allows us to account for variation in
the effect of these interventions while using the information across countries
to reduce the correlation between effect estimates. However, it is difficult to
determine the exact amount of shrinkage that should be applied, expressed
through the prior distributions on the variance parameters and this choice
therefore needs to be transparently reported and tested in sensitivity analy-
ses. We implement the algorithm in an object-oriented approach in Python
3 using the two scientific standard libraries NumPy (Harris et al., 2020) and
Scipy (Virtanen et al., 2020) and accelerated computational critical parts
with Numba (Lam et al., 2015) as a JIT compiler. The code is available on
GitHub.

4 Simulation Study

4.1 Data generation

We carry out a simulation study with the aims 1) to assess the correctness of
the implemented algorithm and 2) to investigate potential problems concern-
ing the identifiability of model parameters. We generate 100 data sets with
ten geographical regions and an observation period of 600 days for each of
them. Thus each data set contains of 6,000 rows of data. We specify five ar-
tificial interventions with mean effects α1 = 0.22, α2 = 0.25, α3 = 0.3, α4 =
0.4, α5 = 0.45. This allows the basic reproduction number to be reduced
to roughly 80% when all NPIs are active. To obtain region-specific effects
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of non-pharmaceutical interventions, we sample from a Gaussian distribu-
tion with the corresponding mean αk and a standard deviation σαk

= 0.01.
The basic reproduction number is sampled in the same way using a mean
R0 = 3.25 and a standard deviation of σ2

R = 0.1. We seed the first day of the
pandemic in each region by sampling from a Negative Binomial distribution
with a mean τm which is generated from a Gaussian distribution with mean
τ = 10 and στ = 2. All overdispersion parameters of the Negative Binomial
distributions are set to 1000 to obtain stable disease dynamics.
To obtain realistic time points at which the NPIs are set to active, we gen-
erate data in which the decision on whether a NPI is set to active depends
on ICU occupancy: To do so, we generate Bernoulli variables for currently
inactive NPIs at each t with probability pk,t depending on ICU occupancy
on t− 1. In the case a NPI is activated, it remains active for a random time
period between 60 and 120 days.
The data generation is carried out in R version 4.0.4 (R Core Team, 2021).
For further details, see the available R script that we used for the data gen-
eration.

4.2 Results on simulation data

We fit the model to each of the 100 data sets where we run 2 chains with
100,000 iterations and a burn-in of 10,000. We apply thinning by keeping
only every 50th iteration. We check convergence by analyzing traceplots
and potential scale reduction factors which are always < 1.01 Gelman and
Rubin (1992).
As can be seen in Table 1, the algorithm produces estimates that are very
close to the true NPI effects (with relative bias of at most 1.02%) and high
coverage rates near to one.

Intervention Estimate rel. Bias % Std.Error Coverage

NPI1 0.22 0.95 0.004 0.99
NPI2 0.25 0.76 0.004 0.99
NPI3 0.30 0.67 0.004 0.99
NPI4 0.40 1.02 0.004 1.00
NPI5 0.45 0.87 0.004 0.99

Table 1: Average estimated effects of non-pharmaceutical interventions
(NPIs) on simulated data. All values (except the coverage) are taken as
the mean over all simulated datasets and generated Markov chains for all
αk’s.

For illustration purposes, we present in Figure 2 the samples from the
posterior as violin plot for the first three NPIs and 20 data sets. Figure 3
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shows the posterior predictions of the number of (unknown) daily infections
(3a) and reported cases (3b) for one of the ten regions for one data set.

NPI1 NPI2 NPI3
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Figure 2: Results for the first three NPIs and 20 data sets. The horizontal
line is the true mean value.
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Figure 3: Posterior Predictions for two time series on simulated data. Black
is the true underlying simulated time series. In blue the mean predictions
with 95% credible interval.

5 Application

5.1 Data Sources

We apply our model to COVID-19 data of 20 European countries (Austria,
Belgium, Czechia, Denmark, Finland, France, Germany, Greece, Hungary,
Ireland, Italy, Netherlands, Norway, Poland, Portugal, Slovenia, Spain, Swe-
den, Switzerland, United Kingdom). Following Flaxman et al. (2020), we
define the start of the observation period in each country as 30 days before
ten cumulated deaths were reported. We include data on the whole course of
the pandemic until the 31st of October 2021 resulting in a median length of
620 days. We define the following interventions using information from the
COVID-19 Government Response Tracker (Hale et al., 2021) resulting in five
NPIs: School closure, gatherings, lockdown, subsequent lockdown and gen-
eral behavioral changes. This last NPI is active from the first time an NPI
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was implemented in a country and remains active until the end of the ob-
servation period. It subsumes many behavioral adaptations that were taken
since the beginning of the pandemic and that remained more or less in place
during the entire course of the pandemic. These might include less physical
contact, working from home wherever possible and higher alertness in case
of any respiratory disease symptoms, and wearing masks in some countries.
More details on the definition of NPIs in our application can be found in
section C.1 of the supplementary material. We use data on reported cases
and deaths from the Johns Hopkins CSSE COVID-19 Dataset (Dong et al.,
2020). Data on the prevalence of variants of concern and hospital and ICU
occupancy are obtained from the European Centre for Disease Prevention
and Control (ECDC) 2. Note that not all countries provide data on hospital
occupancy (or only for part of the observed period). We address this issue
by using only the terms of the renewal and the death model in the updating
of the number of infections for countries for which there is no information
on hospital and ICU occupancy. However, we can still produce posterior
predictions for these countries by sampling among the current values of πH

m

and πHicu
m for an arbitrary country m at each iteration. Since the data on

the prevalence of different variants is only available on a weekly basis, we fit
a sigmoid function with a squared loss to obtain smooth daily data. More
details on this procedure are presented in section C.2 of the supplementary
material. The prevalence affects the model in the renewal equation and also
in the IFR. Data on vaccinations are obtained from Our World in Data
(Mathieu et al., 2021). Since we use a weighted IFR by age strata, we need
information on the number of vaccinations in different age groups. However,
very few countries provide information on the age structure of currently vac-
cinated individuals. We therefore use publicly available data from France
and map the relative age-specific vaccination progress to other countries,
making the assumption that the prioritization of vaccinations for different
age groups evolved roughly in the same manner across different European
countries. More details about the construction of the IFR can be found in
section C.3 of the supplementary material.

5.2 Results

We run eight chains with a burn-in of 20,000 followed by 50,000 iterations
per chain. We apply a thin of 100 resulting in 4,000 samples from the pos-
terior distribution for each parameter. We run a longer adaptive phase with
200 adaptive steps (each with 100 iterations) to get good proposal standard
deviations. For the final sampling procedure we again fine-tune these pro-
posals by running ten adaptive phases (with 50 iterations each). Information

2The data for the United Kingdom is not provided by the ECDC, however, the govern-
ment provides data via an API: https://coronavirus.data.gov.uk/details/developers-guide
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Figure 4: Estimated reduction and increase in the reproduction number for
NPIs (left panel) and seasons (right panel), respectively. Posterior distribu-
tions for the mean effects αk are given in orange. Posterior predictive distri-
bution for αk,m reflecting effect heterogeneity across countries are shown in
blue. They are obtained by sampling from a normal distribution with mean
αk and standard deviation σαk

for each iteration. 50%- and 95%-credible
intervals are given as bold and normal lines, respectively.

about the convergence diagnostic for the parameters of major interest (NPIs
and seasonal effects) are presented in the supplementary material E.5.

5.2.1 Estimated effects of NPIs

Figure 4 and Table 2 provide information on the estimated reduction (ob-
tained through 1−exp(−αk)) and increase (obtained through exp(−αk)−1)
in the reproduction number for NPIs and seasons, respectively. For NPIs,
the smallest effect is ’school closure’ with a credibility interval that includes
zero. The most effective NPI is ’general behavioral changes’. When com-
paring the effects for ’lockdown’ with ’subsequent lockdown’, we can see
that the first lockdown is estimated to have a larger effect than subsequent
lockdowns, reflecting the fact that the first lockdown was characterized by
stronger restrictions and probably better adherence to these than subse-
quent lockdowns. As expected, one can observe a strong seasonal influence
with an estimated increase in the reproduction number of about 30% and
37% for autumn and winter, respectively.
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NPI Mean Pred

School closure 0.056 [-0.003, 0.111] 0.057 [-0.132, 0.221]
General behavioral changes 0.71 [0.694, 0.725] 0.71 [0.662, 0.75]
Gatherings 0.222 [0.176, 0.266] 0.222 [0.076, 0.343]
Lockdown 0.361 [0.283, 0.436] 0.363 [0.17, 0.514]
Subsequent lockdown 0.205 [0.141, 0.269] 0.205 [0.041, 0.341]

Spring 0.138 [-0.193, -0.084] 0.137 [-0.276, -0.01]
Autumn 0.303 [-0.354, -0.254] 0.304 [-0.443, -0.177]
Winter 0.373 [-0.445, -0.306] 0.373 [-0.491, -0.269]

Table 2: Mean and 95% intervals of posterior distribution for the mean
effects and of predictive distributions for country-specific effects for NPIs
and seasons. Note that the parameters are transformed by 1 − exp(−αk)
and exp(−αm

k )−1 to interpret them as relative reduction in percent for NPIs
and as relative increase in percent for seasons.
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Figure 5: Estimated case detection ratios over the whole estimation window
for Italy and France. The shades of blue represent the standard deviation
of the posterior. In orange, we provide the inverse test positivity rate.

5.2.2 Case detection ratios and posterior predictions

Figure 5 shows the estimated case detection ratios for two selected coun-
tries, Italy and France, for the entire observation period. The color encodes
the estimated standard deviation, reflecting uncertainty in the estimation of
these parameters. Furthermore, we provide information on the inverse test
positivity rate in orange, i.e., the number of tests that must be performed
to detect a positive case. In general, we observe high under-reporting (i.e.,
very small detection ratios) for the first wave of the pandemic indicating
that the true number of infections by far exceeded the reported number of
cases. Subsequently, the case detection ratios increase during the summer
months and even reach values of up to 300%, i.e., there are three cases be-
ing reported for each true infection. This can be explained by the fact that
the prevalence of the virus was very low during this period and the number
of performed tests was very high. In this situation, there may be a non-
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negligible proportion of false positive results and we can therefore expect
the number of reported cases to exceed the number of true infections due
to the imperfect specificity of the tests (Brownstein and Chen, 2021; Cohen
and Kessel, 2020; Kumleben et al., 2020; Bisoffi et al., 2020). Note, that
these effects occur in situations where there are few prevalent cases, but a
large number of tests are being performed. However, these results must be
interpreted with caution as the estimated case detection ratios critically de-
pend on the assumed value of the infection fatality rate and on assumptions
about how this case fatality rate changes as a function of new variants and
vaccination coverage.
Figure 6 shows posterior predictions for reported cases, deaths and hospital
occupancy for Italy and France. Black encodes the observed time series, the
posterior mean and 50%- and 95% -credible intervals are given in blue. The
approach captures the weekly variation in reported cases and deaths which
are specific to the two countries. Moreover, it is capable of reproducing the
three complementary time series, even though they provide quite contrasting
information, in particular for the first wave. As we did not include data on
hospital occupancy for Italy, the model uses the information on the propor-
tion of hospitalized cases and estimated daily infections to predict this data.
The posterior predictions and the case detection ratios for all countries are
presented in sections E.3 and E.4 of the supplementary material.

6 Discussion

In this work, we presented a Bayesian hierarchical approach to estimate
the effects of NPIs. In this approach, we account for time-varying under-
reporting, seasonality, the spread of the alpha and the delta variant and
for vaccination coverage, allowing us to use the information on the entire
course of the pandemic rather than focussing on short time periods during
which the testing strategy remained constant. Owing to its modular nature,
it is possible to use all available information while accounting for different
sources of uncertainty in this information. Additionally, model and param-
eter assumptions can be transparently reported and the approach is very
flexible, making it straightforward to adapt it to account for additional fac-
tors that might have an influence on disease dynamics.
Despite evidence on the importance of asymptomatic infections in the trans-
mission of COVID-19, we do not explicitly distinguish symptomatic and
asymptomatic cases. However, it is not clear whether this distinction would
necessarily improve the model. Neither health registries nor seroprevalence
studies systematically distinguish symptomatic and asymptomatic cases. As
a consequence, it would be very difficult to ascertain which of the reported
cases were symptomatic and to determine infection fatality rates that apply
only to symptomatic cases.
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Figure 6: Posterior predictions of the reported cases for two countries. Black
encodes the observed time series and blue the estimated mean with 50%-
and 95% credible intervals

In contrast to many other modelling approaches, we explicitly account for
weekly patterns in the reporting delay distribution and it is therefore not
necessary to smooth the time-series data on reported cases and deaths. As a
consequence, we can model disease dynamics as a function of other influenc-
ing variables that may show variations on a daily scale. In future studies,
it would be straightforward to integrate additional data, for instance on
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the number of performed tests, on weather conditions, from seroprevalence
studies, or on measurements from wastewater.
In many countries, the question of whether public health measures should
be implemented as a function of reported cases or hospital occupancy was
widely debated as both quantities are to some extent unreliable. The pro-
posed Bayesian hierarchical approach provides a framework in which infor-
mation on both quantities (and on reported deaths and ICU occupancy)
can be integrated to predict health care demand in the near future to be
able to weigh costs, benefits and uncertainties in evidence-informed decision
making.
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A Summary and joint posterior distribution

Since the full model is a combination of many sub-models, we provide a
summary in written form. We also provide the joint posterior for complete-
ness.
The full model contains a latent variable Im,t with dimension T ×M (with
T as the maximum number of used time points and M the number of geo-
graphical regions) where each It,m depends on the past {t−1, . . . , 1} in each
geographical region m and is seeded with a Negative Binomial distributed
I1,m where the mean is hierarchically given by τm with τm ∼ N+(τ, στ ). This
latent variable represents the true underlying number of infections which
is unknown and assumed to follow a Negative Binomial distribution with
overdispersion parameter ϕI . We combine the information on the number of
reported cases in the reporting model (with parameters ρt,m, ϕR, βw, ξR,w

m ),
on the number of deaths in the death model (with parameters: πD

t,m, ξD)
and possibly hospital occupancy and ICU occupancy in the hospitalization
models (with parameters: πH

t,m, ξH , πHicu
t,m , ξHicu) to estimate the number of

true and unknown cases Ct,m with symptom onset at time t, which is a de-
terministic version of the number of infections It,m, simply shifted with the
incubation time distribution ξC . Since there could be a strong weekly varia-
tion in the number of reported cases and reported deaths, we allow variations
for certain weekdays for reporting delay ξR and the symptom-to-death dis-
tribution ξD, respectively, through the parameters βR,w and βD,w where w
indicates the weekdays (as part of ξR,w

m and ξD,w
m ). Given the latent variable,

we estimate the effect of NPIs α in a hierarchical manner (controlled by the
parameter σαk

), the basic reproduction number, also hierarchically (R0, σR)
and the additional contagiousness of the new variants βalpha and βdelta. The
vector of all parameters to be estimated is given by:
θ = (αk, σαk

, αk,m, R0, σR, β
alpha, βdelta, R0

m, ϕI , τ, στ , τm, It,m,βw
m,ρm, ϕR,βD

m,
ϕD, πH

m , ϕHπHicu
m , ϕHicu) where a bold symbol denotes the collection of the

parameters for brevity. The joint posterior distribution is given by:
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[θ|D] ∝
K+3∏
k=1

[αk] [σαk
]

M∏
m=1

K+3∏
k=1

[αk,m|αk, σαk
]

× [R0][σR][β
alpha][βdelta]

M∏
m=1

[R0
m|R0, σR]

× [ϕI ][τ ][στ ]
M∏

m=1

[τm|τ, στ ][I1,m|τm, ϕI ]

×
M∏

m=1

T∏
t=2

[It,m|R0,m,αm, Ihistm (t), βalpha, βdelta, ϕI ]

×
M∏

m=1

[βw
m][ρm]

M∏
m=1

T∏
t=1

[CR
t,m|Ct,m, Chist

t,m ,βw
m,ρm, ϕR]

×
M∏

m=1

[βD
m]

M∏
m=1

T∏
t=1

[Dt,m|Ct,m, Chist
t,m , πD

t,m,βD
m, ϕD]

×
M∏

m=1

πH
m

M∏
m=1

T∏
t=1

[Ht,m|Ct,m, Chist
t,m , πH , ϕH ]

×
M∏

m=1

πHicu
m

M∏
m=1

T∏
t=1

[Hicut,m|Ct,m, Chist
t,m , πHicu, ϕHicu]

where Chist
t,m = {C1,m, . . . , Ct−1,m} and Ihistt,m = {I1,m, . . . , It−1,m}. Ct,m is

the shifted version of the infections It,m by ξC . We write the conditional
dependency in the death, reporting and hospitalization models in terms of
the cases (Ct,m) instead of the infections (It,m) to highlight the time shift
through the incubation time distribution.

B Parameter and prior assumptions

B.1 Time-shifting distributions

The model utilizes five different distributions (ξI , ξC , ξR, ξD, ξH , ξHicu) to
model the dynamics of the pandemic over time. Each of them is discretized
to model daily frequencies. These discretized versions are used to shift a
series in time while reflecting the uncertainty in the shifting time. The shift
is done by a discrete convolution of the data with these distributions (see
model description). Note that for ξR and ξD these are basic distributions
which are getting modified by βR

m and βD
m individually for each geographical

region to model seasonality in the reporting. The bold symbol implies that
the parameters are actually vectors, i.e., an atomic parameter to inflate or
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deflate the corresponding day of the week.
We specify the time-shifting distributions using information from Khalili
et al. (2020), i.e., we take the reported means and the 95%-confidence inter-
vals and choose the shape and scale parameters of gamma distributions in
accordance with these quantities.

• ξI : The generation time is assumed to be Gamma distributed with
mean 5 and variation coefficient 0.45.

• ξC : For the incubation time we assume a Gamma distribution with
mean 5.68 and variation coefficient 0.08.

• ξR: We estimate a basic reporting delay distribution empirically from
data provided by the state office of health of Bavaria in Germany.
The database offers detailed information about the individual history
of patients. It is therefore possible to infer the time until reporting for
a given weekday. More details can be found in D.1.

• ξD: We model the time from symptoms to deaths as a Gamma distri-
bution with mean 15.93 and variation coefficient 0.1.

• ξH / ξHicu: We model the hospital occupancy as a combination of the
time from onset of symptoms to hospital admission and the time a
person occupies a bed. The time from onset of symptoms to hospital
admission is modeled as a Gamma distribution with mean 4.92 and
variation coefficient 0.11. The time of occupancy is estimated from
the bed allocations of Klinikum Großhadern, Munich. Details can be
found in section D.2.

B.2 Other parameters

For βvacc1 and βvacc2 we chose 0.6 and 0.3 respectively to reflect the het-
erogeneity in the used vaccinations and uncertainty over the actual effect
(Pritchard et al., 2021; Voysey et al., 2021; Keehner et al., 2021; Polack
et al., 2020; Baden et al., 2021). This results in an overall effectiveness of
90% after two vaccinations.
The probability of reinfection βreinf is set to 0.16 (Hall et al., 2021).

B.3 Prior distributions

We specify for the set of parameters ϕ, τ, αk, σαk
, R0, σR, ρt,m, βV OC , βw andπH ,

prior distributions as follows where Normal distributions (possibly trun-
cated at zero) are always parameterized with mean and standard deviation,
Gamma distributions with shape and scale and Uniform distributions with
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its minimal and maximal value respectively:

αk ∼ N(0,
√
0.1)

σαk
∼ N+(0, 0.025)

R0 ∼ N(3.25, 0.05)

σR ∼ N+(0, 0.03)

τ ∼ Ga(10, 1)

στ ∼ N+(0, 0.03)

πH ∼ U(0, 10)

πHicu ∼ U(0, 10)

ρtm ∼ U(0, 3)

βw ∼ U(0, 10)

βalpha ∼ N(0.6, 0.01)

βdelta ∼ N(1.5, 0.01)

ϕI , ϕC , ϕD, ϕH ∼ N+(0, 0.015)

C Data and Preprocessing

C.1 Definition of NPIs

The definition of the NPIs is based on the COVID 19 Government Response
Tracker (Hale et al., 2021). We take a subset of the provided time series and
define the NPIs as follows:

• School closure: NPI is active when closing is required for at least some
levels and a general targeting

• Gatherings: NPI is active when gatherings are restiricted to 10 or less
people and a general targeting

• Lockdown: NPI is active when leaving house is prohibited (with possi-
ble exceptions such as daily exercise, grocery shopping, and ’essential’
trips)

• Subsequent Lockdown: Since subsequent lockdowns often followed a
much more detailed protocol we decided to encode them as separate
NPI

• General behavioral changes: With the outbreak of the pandemic, peo-
ple changed their general behavior (even in phases of low incidence).
Therefore we define this NPI as active all the time starting when the
first NPI gets active.
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Figure 7 shows the NPIs as timeline for all countries. Note that some coun-
tries never implemented some of the NPIs. This is mainly the case for
lockdown. Therefore there was no subsequent lockdown as well.
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Figure 7: Timeline of the defined NPIs in all countries.

C.2 Variants of Concern

To obtain the daily prevalence of the variants of concern, we fit a sigmoid
function to the weekly data by minimizing the mean squared error. In this
sense, the optimization problem is given as

min
b,c

J∑
j=0

(
yj −

1

1 + exp(−b(xj − c))

)2

We use a BGFS algorithm as optimizer and run the optimization with 10
randomly sampled start configurations to get a good fit to the data.
The start of the used data window is seven days before the prevalence was
first measured with a value > 0. End is the maximum of all provided
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prevalence data points in the country.
This procedure is independently done for the two variants. To find a good
balance between the wild type and the two considered variants, we further
use the following approximation to calculate the three proportions to get a
value of one for all the variants. If p̃alpha < 1− p̃delta we set palpha = p̃alpha.
Else we use 1−p̃delta. Where p̃alpha is the estimated prevalence from the fitted
sigmoid function. porig is calculated as 1− palpha − pdelta and pdelta = p̃delta

where again p̃delta is the estimate from the sigmoid function.
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Figure 8: Estimated transition for variants of concern in Germany. The
points depict the weekly data and the line, the fitted smooth curve.

C.3 Infection Fatality Ratio

The infection fatality rate (IFR) gets affected by two quantities:

• Vaccinations: The probability to die after getting vaccinated is reduced
drastically.

• Variants of concern: The new variants may have a much higher severity
resulting in a much higher IFR.

Since the chance of a severe progression of the virus depends heavily on the
age of an individual, we calculate a basic IFR as a weighted average between
different age strata. Afterwards, we modify this basic IFR resulting in a time
dependent IFR.
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Figure 9: Combination of the three included variants. Yellow: original wild
type, Darkblue: Alpha, Lightblue: Delta

Weighted IFR by Age

We use information about the age strata of each country from O’Driscoll
et al. (2021) and the aggregated IFR for four different age groups g from
Staerk et al. (2021):

Age group [in years] 0-34 35-59 60-79 80+

ifrg [in %] 0.008 0.122 0.992 7.274

Therefore the IFR in each country is defined as

ifrm =

4∑
gm=1

wgm · ifrg

where wgm is the proportion of the age category of the population of country
m.

Effect of vaccination

We include the effect of vaccinations by reducing the IFR in each age strata
relative to their share of the population. Since most countries do not pro-
vide enough information about their vaccination progress in the different age
groups, we choose to use publicly available data from Santé Publique France
(2021) and adapt them to all other countries. We extract the relative pro-
portions of people vaccinated in each age strata and map this proportion to
the age strata of the other countries. This is a rather crude approximation,
but unfortunately few countries provide data about their vaccinations on
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such a granular level. Moreover, the majority of European countries started
by vaccinating vulnerable groups first, making it plausible to assume that
the evolution of vaccination coverage over time in the different age groups
was roughly comparable across different countries. We assume that after
the first vaccination, the probability of dying is reduced by 80% after a lag
of two weeks. For example, Haas et al. (2021) found a higher effectiveness
against COVID-19-related deaths of the BNT162b2 vaccine. However, since
not all countries use the same vaccinations and one can assume a reduction
of the vaccine effectiveness as time goes on, we decide to use this crude
approximation with a lower effectiveness.

Effect of Variants of Concern

Fisman and Tuite (2021) provide information about the severity of the vari-
ants of concern. We use our approximated time series for the prevalence
(see section C.2 for details) and combine them with the information about
the severity. This inflates the IFR and therefore leads to a higher number of
deaths with an increasing proportion of the variants of concern when fixing
the number of infections. For B.1.1.7 we inflate the IFR with 151% and for
B.1.617 with 208%.

For more details of all steps described here, we refer to the file ’calcu-
late weighted ifr.R’ which is part of the provided code.

Adaption for πH
t,m

Since πH
t,m depends on t and m, we also have to include the same effects for

the hospitalization which we formulate in the model as πH
t,m = πH

m × gt,m
where gt,m is the effect of vaccinations and the variants of concern. We
approximate gt,m by calculating πD

t,m/πD
1,m ∀ t ∈ {1, . . . , T}. Therefore the

model actually estimates an overall πH
m for each country separately and uses

the transformed version πH
t,m in the hospitalization models.

D Estimation of ξR, ξH and ξHicu

ξR, ξH , and ξHicu are estimated from data and are not modeled as gamma
distributions. Here we describe the procedure.

D.1 Estimated reporting delay distributions for specific week-
days

For the estimation of the reporting delay distribution, we use the COVID-
19 reporting data of the Bavarian State Office for Health and Food Safety
(LGL) which provides partial information about disease onset and time of
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reporting. We use this information to estimate the reporting delay in the
data. We estimate seven discrete empirical reporting delay distributions,
one for each weekday separately. We use a cut-off of 60 days and assume
that a longer reporting delay does not exist. Figure 10 shows the estimated
weekday-specific reporting delay distributions. For each day, there is a clear
’dip’, i.e., one can observe a clear decline in the reporting on the 7th day for
the estimation for Mondays, on the 6th day for Tuesdays, etc. The majority
of the cases are reported on Wednesdays and Thursdays with around 15%
to 20% each.

D.2 Estimation of ξH and ξHicu

To model the occupation of hospital and ICU beds we utilize ξH and ξHicu.
Here we show how we calculate these quantities.
We combine the time from onset of symptoms to hospital admission and
the time a person occupies a bed. The time from onset of symptoms to
hospital admission is modeled as a Gamma distribution with mean 4.92 and
variation coefficient 0.11. The time of occupancy is estimated on the bed
allocations of Klinikum Großhadern Munich, Germany. For each person
which got admitted to the hospital, first we sample a random time from the
gamma distribution and then track the time the person lies in a normal bed
or ICU unit. After doing this for all admitted patients, we sum the time of
occupied beds for each day and re-normalize it by dividing with the overall
sum resulting in an overall time distribution.
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Figure 10: Estimated weekday-specific reporting delay.
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E Results application

E.1 Posteriors NPIs individual countries

Figure 11 presents the estimated posteriors for all countries individually.
Note that not all NPIs were implemented in all countries. Therefore some,
not all, αk,m were estimated.
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Figure 11: Mean, 50%- and 95%-credible intervals for all individual αk,m.
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E.2 Posteriors variants of concern

Figure 12 shows the prior and posterior distributions for the over-contagiousness
of the variants of concern, i.e., βalpha and βdelta.
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Figure 12: Prior (lightblue) and posterior (darkblue) for over-contagiousness
of the variants of concern.
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E.3 Posteriors Predictions

Figures 13, 14, 15, 16 and 17 show the posterior predictions for all countries.
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Figure 13: Posteriors predictions for reported cases
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Figure 14: Posteriors predictions for reported deaths
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Figure 15: Posteriors predictions for hospital occupancy
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Figure 16: Posteriors predictions for ICU occupancy
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Figure 17: Estimated number of daily infections (in blue) and observed
number of reported cases (in black)
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E.4 Case detection ratios

Figure 18 shows estimated case detection ratios for all countries. For some of
the Nordic countries, the case detection ratio stays high indicating extensive
testing over the whole observation period. The first period is sometimes
estimated rather high where it would be expected to be low. However, here
we observe a rather high uncertainty.
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Figure 18: Estimated case detection ratios for ρ for all countries
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E.5 Trace Plots and convergence diagnostics

Figure 19 shows the trace plots of the mean effects of the NPIs and seasons.
We observe sufficient values for the potential scale reduction factor between
1 and 1.05 (Gelman and Rubin, 1992). To obtain 4000 high quality sam-
ples, eight chains were used where each of them contains 500 samples after
thinning.
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Figure 19: Traceplots of the mean effects of the NPIs. We use eight chains
for each NPI and seasonal effect.
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