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Abstract 

Unnecessary laboratory tests present health risks and increase healthcare costs. 

We propose a new deep learning model to identify unnecessary hemoglobin (Hgb) tests 

for patients admitted to the hospital. Machine learning models might generate less 

reliable results due to noisy inputs containing low-quality information. We estimate 

prediction confidence to measure reliability of predicted results. Using a “select and 

predict” design philosophy, we aim to maximize prediction performance by selectively 

considering samples with high prediction confidence for recommendations. We use a 

conservative definition of unnecessary laboratory tests, which we define as stable and 

below the lower normal bound (LBNR). Our model accommodates irregularly sampled 

observational data to make full use of variable correlations (i.e., with other laboratory 

test values) and temporal dependencies (i.e., previous observations) in order to select 

candidates for training and prediction. Using data collected from a teaching hospital in 

Houston, our model achieves Hgb prediction performance with a normality AUC at 

95.89% and a Hgb stability AUC at 95.94%, while recommending a reduction of 9.91% 

of Hgb tests that were deemed unnecessary. 

1. Introduction 

Laboratory over-utilization is common, especially in the United States[1,2]. 

Unnecessary blood draws waste resources and may harm patients by contributing to 

iatrogenic anemia[1]. Ideally, we want to minimize laboratory utilization while obtaining 

necessary information[1,3]. 
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Recently, researchers have used machine learning to identify unnecessary 

laboratory tests. Most approaches leverage time series prediction methods to take 

advantage of previous patient information, such as autoregressive models[4], mixed-

effect models[5], and traditional recurrent neural networks (RNN)[6,7]. Previous studies 

that identify unnecessary laboratory tests fall into two categories: information gain, and 

observability learning.  

Information gain methods measure whether certain laboratory tests yield 

informative values. These approaches require an exact definition of unnecessary 

laboratory tests. Roy et al.[4] identify laboratory tests in the normal range as low yield 

laboratory tests, but they ignore events where the laboratory value changes from the 

normal to abnormal range; however, transitions such as these are likely to be clinically 

relevant events. Cismondi et al.[8] dichotomize laboratory tests into “information gain” or 

“no information gain” categories based on both normality and dropping levels. Aikens et 

al.[9] consider laboratory stability using both absolute value and standard deviation 

changes. Their models recommend eliminating laboratory tests that have little 

information gain. However, these algorithms lack confidence estimates to measure the 

reliability of predictions. Metrics that summarize the confidence of a prediction are 

important adjuncts for clinicians using the algorithm.  

Observability learning approaches estimate the need for a lab to be checked in 

actual practice. A missing observation means that the laboratory test was not checked 

by the physician. Yu et al.[10,11] used a two-layer long-short term memory (LSTM) 

network with multiple fully-connected layers to estimate the observability of the next 

laboratory test. The min-max loss function increases prediction accuracy as the 
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likelihood of observability (i.e., the necessity of conducting the next laboratory test) 

increases. Their first approach[10] has a narrow definition of the ground truth, which 

aims to predict the change rate for laboratory values. The second approach[11] extends 

the previous model by using multitask learning mechanisms to include predictions for 

abnormality (i.e., laboratory values beyond the normal range) and transition (i.e., 

laboratory values change from the normal to the abnormal range or vice versa). 

However, such recommendation algorithms are highly dependent on actual physician 

practices, which might be not optimal for laboratory test reduction algorithms. Relying 

on past practices might not be applicable to different or complicated clinical situations. 

Observability learning models, which work to predict the need for a test, are likely to 

recommend eliminating laboratory tests with a low prediction confidence. We believe 

that a better strategy may be to focus on eliminating laboratory tests that can be 

confidently predicted.  

Our work is designed to reduce unnecessary hemoglobin (Hgb) tests based on 

the following assumptions. Sequential Hgb levels within the normal range imply that the 

patient is stable[12,13]. We further define that the Hgb test is “stable” when its 

immediate value does not change from normal to abnormal. 

We explore approaches that enable our algorithm to make safe and confident 

predictions with features embedded in the algorithm. First, we introduce an outcome-

level safety assurance, which uses a conservative (‘safe’) definition of unnecessary Hgb 

laboratory tests. We define ‘safe’ Hgb tests as ones that are predicted to be stable and 

remain normal. If the predicted normality is consistent with predicted stability, we will 

recommend eliminating the next Hgb test. Second, we will estimate the confidence of 
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predicting Hgb test values as a sample-level safety assurance. We estimated the 

confidence for predicting Hgb at a specific time based on all available time-series data 

by introducing a selection predictor in the neural network architecture[14]. In training, 

this means the model will ignore some samples, whose inclusion would decrease the 

performance of the model. In testing, this means the selection predictor will not make 

recommendations if the selection confidence is below a certain threshold. Our main 

contribution is to integrate the confidence-based selection process for candidate 

samples into the training and testing phase, rather than estimating prediction confidence 

in a post-hoc manner.  

2. Results 

2.1 Dataset Description 

Our data included 75,335 distinct inpatient encounters from a large urban 

hospital system in the southern United States. Because the model requires learning 

previous observations of laboratory data, we excluded 8,528 encounters with only one 

Hgb test. We also eliminated 4,328 encounters with systolic blood pressures less than 

90 mmHg to focus on patients who were hemodynamically stable, leaving 62,479 

unique encounters. This included 804 pediatric encounters (age < 18). The 

demographics are summarized in S4 Table. We divided the entire cohort into 80% 

training set and 20% test set. To estimate future Hgb values, we also included 11 other 

common laboratory tests: 
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● Electrolytes: Na (sodium), K (potassium), Cl (chloride), HCO3 (serum 

bicarbonate), Ca (total calcium), Mg (magnesium), PO4 (phosphate) 

● Renal function: BUN (Blood Urea Nitrogen), Cr (creatinine) 

● Complete Blood Count (CBC): Plt (platelet count), WBC (white blood 

count) 

We included five relevant vital signs (i.e., peripheral pulse rate, diastolic blood 

pressure, systolic blood pressure, respiratory rate, and SpO2 percent), individual patient 

demographics (i.e., gender, race, and age), hours from the last observation, Hgb value 

changes, and missing value indicators. 

2.2 Prediction Tasks 

Considering patient data at �0,1,2, . . . , ��, where � denotes the timestep number, 

our confidence-based selection model has four predictive tasks: selection probability 	�, 

Hgb normality 
�, Hgb stability ��, and Hgb value ��. Specifically, predicting Hgb 

normality 
� and Hgb stability �� are responsible for outcome-level safety assurance, 

and predicting selection probability 	� is responsible for sample-level safety assurance. 

Selection probability 	� measures the confidence of predicting the next Hgb. 

Prediction confidence represents predictability, that is, reliability of Hgb predictions 

estimated by the model. Based on Hgb tests that are confidently predicted, our model 

can make more accurate predictions of normality and stability. The model selected Hgb 

candidates with high prediction confidences, whose 	� is greater than a selection 

threshold �.  
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For the Hgb normality 
� task, if the predicted value was above the LBNR, the 

Hgb test was considered normal (i.e., 
�  1). Otherwise, the Hgb test was considered 

abnormal (i.e., 
�  0). We assume that Hgb results exceeding the upper bound of the 

normal range (UBNR) are relatively uncommon (e.g., polycythemia) or irrelevant (e.g., 

indicate dehydration or chronic hypoxia that are usually monitored using other 

modalities and were excluded from our analysis). Most clinical cases focus on dropping 

Hgb (e.g., bleeding), and only 0.37% of Hgb results in our samples were above the 

UBNR. In our population-driven model, instead of using a uniform LBNR over the entire 

population, we defined normal Hgb based on age and gender (see Table 3). 

For the Hgb stability �� task, a predicted value was considered stable (i.e., ��  1) 

if it does not change from normal to abnormal. For this task, we only considered a 

decreasing drop from normal to abnormal. Agreement between normality and stability 

predictions reinforces the confidence of the overall prediction.  

The Hgb value �� was an auxiliary task to improve primary prediction tasks – Hgb 

normality and Hgb stability. We expected that Hgb value predictions with confident 

normality and stability predictions would also closely approximate the actual values. 

Given an encounter’s input features �, we defined that the ground truth of 

unnecessary Hgb tests satisfy the following condition ��|
�  1� � ��|��  1� � ��|	� �
��. That is, among selected candidates, if the next Hgb value was predicted to be 

normal and stable, the model would recommend a ‘safe’ reduction.  
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2.3 Training and Evaluation Design 

In the training stage, we conducted random mask corruption to transform some 

observations into zeros in order to simulate the impact of recommended lab test 

reduction (see Methods). In the test stage, we either converted omitted laboratory 

values to zeros (in reduction evaluation) or kept original laboratory values (in no-

reduction evaluation). 

● Training protocol: In the training stage, input features � were fed into the network 

model at a fixed length �. The prediction at every timestep � depends on the 

observations from all previous timesteps. We trained separate models at the 

target coverage rate �  �0.75, 0.8, 0.85, 0.9, 0.95, 1.0�, which reflects the expected 

proportion of laboratory candidates that are selected for possible reduction.  

● Reduction evaluation (practical setting): In the test stage, we simulated dynamic 

laboratory reduction during the evaluation process. Starting at the initial timestep 

�  0, the model was fed initial inputs ��. For the following timesteps � � 0, we 

conducted stepwise reduction estimation. If the model estimated the next Hgb to 

be normal and stable, which yielded a recommendation to omit that test, the next 

Hgb input would be set at a zero value. The reduction evaluation process iterated 

until the last timestep.  

● No-reduction evaluation (idealized setting): Like the training stage, the second 

evaluation protocol performed a fixed evaluation process. At every timestep �, the 

model obtained all input features from the previous timesteps. In this process, we 

always used full observation to make future predictions, and no lab test was ever 
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reduced in the prediction process. Model robustness can be estimated from the 

gap between reduction and no-reduction evaluations. 

 2.4 Label Prediction Performance 

We report the results of several experiments that validate the effectiveness of our 

confidence-based model in predicting normality and stability labels. Fig 1 represents 

the comparison results under reduction evaluation and no-reduction evaluation metrics. 

Our numerical results are represented in Table 1 and Table 2. 

We set the default selection threshold �  0.5. The model selects a subset of Hgb 

samples with high prediction confidences and use 	� � 0.5 to make classifications, 

guided by the target coverage rate � (see Method). The selected samples are 

considered high-confidence candidates. A lower coverage rate means the model 

considers more high-confidence candidates for training and testing. But there is a 

tradeoff, as being too strict on prediction confidence would reduce selection size and 

hurt the model’s generalizability. “Model coverage rate” is the actual proportion of Hgb 

samples considered by the model. One can see that “model coverage rates” were close 

to “target coverage rates”, and they had less than 2% of differences in all settings, 

showing that the model is enforcing the target coverage rate.  

Because the data distribution was skewed (i.e., approximately 19.5% of labs 

were normal and only 9.2% transitioned from normal to abnormal), we used AUC and 

AUPRC to model performance measures. Fig 1 and Table 1 show that all the selective 

models achieved normality AUCs at over 90%, and stability AUCs at over 94%, even in 

the extreme coverage case at �  1. Note that even though we set �  1, our model did 
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not think all the Hgb predictions are necessarily good candidates for reduction (indeed, 

it considered 99% of Hgb samples were eligible for reduction recommendation).  

As a good tradeoff between performance and reduction, we observed that the 

model reduced 9.91% Hgb tests at a coverage rate of 0.85. Most AUCs and AUPRCs 

decreased when the coverage rate increased. Note that stability AUCs did not drop at a 

steady rate because the proportion of stable samples was much larger than unstable 

ones, resulting in the mean probability bias favoring stable lab tests[15]. Overall, 

reduction evaluations achieved comparable performances over no-reduction 

evaluations. The results show that our model is robust in the practical setting when 

some input laboratory values are missing due to previous reductions. 

 We defined prevalence as the proportion of positive samples (i.e., normal and 

stable Hgbs) in the selected Hgb candidates. As the coverage rate increased, the 

normality prevalence increased linearly, and the stability prevalence decreased linearly, 

suggesting that the higher-confidence model tends to select more samples from the 

dominating class of labels (i.e., abnormal Hgbs and stable Hgbs) to obtain higher 

accuracy while recognizing minor labels (i.e., normal Hgbs and unstable Hgbs).  
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a. Normality prevalence 

 

b. Normality AUC 

 

c. Normality AUPRC 

 

d. Stability prevalence 

 

e. Stability AUC 

 

f. Stability AUPRC 

 

 

Fig 1. Model performance at multiple selection coverages under reduction and 

no-reduction evaluation. The selection threshold � is 0.5. The coverage rate refers to 

the expected proportion of Hgb samples to constrict the model. 

 

2.5 Value Prediction Performance 

 We evaluated the consistency between predicted values and predicted normality. 

The test was conducted under a reduction evaluation. Ideally, when the model 

estimates a Hgb sample to be normal, we expect its predicted value should also lie 

above the LBNR.  
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Fig 2 (see numerical details in S6 Table) shows that the model predicted values 

that were consistent with normality predictions. Among Hgbs that were predicted to be 

normal, our model predicted >90% of corresponding values above the LBNR in a 

tolerable error of 3% at coverage rates <85%, and in a tolerable error of 5% at almost all 

the coverage rates. These results imply that our multitask learning framework is able to 

leverage the auxiliary task (value prediction) to support the primary prediction tasks 

(normality and stability prediction). Another observation is that the coverage rate has a 

large effect on recognizing normalities of predicted values. When the coverage rate is 

higher, the accuracy of normality prediction shows more variability at error rates 0-10%, 

suggesting that the low-confidence model has more value variability. 

 

Fig 2. Consistency between predicted values and predicted normality. The 

objective was to measure the consistency between predicted values and predicted 

normalities. The “normality accuracy of predicted values” was defined as the percentage 
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of predicted values with ������ � �, where � is the value of the LBNR, on Hgb samples 

with ������  1. We considered a tolerable boundary to be m% lower than the LBNR for 

predicted normal Hgbs.  

 

2.6 Selection Performance 

 The selection threshold � was set at 0.5 during training. In the test phase, we 

evaluated the model using the default threshold �  0.5. In this section, we measured 

the influence of different selection thresholds � � �0.05,0.95� (with intervals at 0.05) on 

classification accuracy. The experiment was evaluated under laboratory reductions. We 

set the target coverage rate to 0.85. Our model accounted for 83.80% of Hgb 

candidates (Fig 3), using the default selection probability �  0.5. 

As shown in Fig 3, although performance curves fluctuate at nearby selection 

thresholds, the trend remained increasing when the threshold value was increased. 

With a larger threshold, the model selected fewer normal Hgbs and more stable Hgbs, 

but obtained higher confidence in classifications. When the threshold � is above 0.5, we 

achieved normality predictions over 95.8% AUC and 80.0% AUPRC, while stability 

predictions achieved more than 95.9% AUC and 99.8% AUPRC. 
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a. Normality prevalence 

 

b. Normality AUC 

 

c. Normality AUPRC 

 

e. Stability prevalence 

 

d. Stability AUC 

 

e. Stability AUPRC 

 

Fig 3. Model performances using different selection thresholds for reduction 

evaluation. The range of our selection threshold is � � �0.05, 0.95� with intervals at 0.05. 

 

3. Discussion 

 We introduced a deep learning model with a selective framework to address the 

laboratory reduction problem. We conducted a case study on Hgb reduction. Based on 

the definition that unnecessary laboratory tests are the ones predicted to be normal and 

stable, we showed that our selective model achieved good predictive performance. Our 

major contribution is to offer safe recommendations for omitting unnecessary Hgb 

samples by jointly considering the confidence and prediction accuracy during training 
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and testing. The idea was to select a proportion of Hgb candidates with high prediction 

confidence in estimating normality and stability. Our model automatically identified an 

appropriate balance between stability, normality, and prediction confidences, which 

achieved a performance of 95.89% normality AUC and 95.94% stability AUC with a 

potential to eliminate 9.91% of Hgb tests. In addition, when future Hgb tests were 

predicted as normal, our model predicted >90% of the corresponding predicted Hgb 

values within a tolerable error range of 3% at a 90% selection coverage, demonstrating 

its robustness. We also made some technical contributions in order to handle irregular 

time sequences in laboratory reduction by introducing a feed-forward attention function 

to capture the importance of every timestep. The ablation study results (see S3 Table) 

confirmed that both selective mechanism and attention-based LSTM layers contributed 

to the improvement of model performances.  

Not all predictable laboratory tests are unnecessary in complicated clinical 

situations. To ensure usability, our model discovered unnecessary Hgb tests among 

predicted high-confidence candidates. The predicted low-confidence Hgb samples are 

not recommended for elimination, for which our model would acknowledge ‘I don’t know’ 

and let clinicians decide. Our model also offers a tunable parameter to control the 

confidence level for sample inclusion (i.e., expected selection coverage). Clinicians can 

choose a confidence level based on the context to receive recommendations for clinical 

decision making.  

Nevertheless, our work still has limitations. First, the selection mechanism is 

computationally expensive because it needs to accommodate multiple objectives. 

Second, the optimal expected coverage rate that controls the model’s confidence might 
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vary by different situations, and it is not directly interpretable as confidence intervals that 

are familiar to clinicians. Third, our study was internally validated for patients admitted to 

a single health institution. External validation studies are needed. Fourth, our model 

recommends reduction for an individual laboratory test. In clinical practice, Hgb tests 

are commonly ordered as a part of a complete blood count panel, which includes 

platelet count and white blood count. Our model currently does not account for bundled 

test reduction strategies because the laboratory panel information is missing in the 

dataset. Finally, the ground truth of unnecessary laboratory tests might not be perfect. 

Our model relies on standard of laboratory normal ranges, whereas some abnormal 

results may be predictable and stable (e.g., a clinically stable patient with stable anemia) 

and thus could be omitted. We will address these limitations in future research. 
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4. Methods 

 The workflow of the confidence-based candidate selection is demonstrated in Fig 

4. 

 
 

 

Fig 4. Block diagram of candidate selection. (1) Before processing the network 

model, we imputed zeros for missing features. (2) In the training stage, we inserted a 

random zero mask for existing laboratory values. The network model predicted selection 

probabilities for individual laboratory tests. Thus, the model ignored some samples, 

whose inclusions were considered to decrease performance. Each model was trained 

under one target coverage rate that constrained the actual proportion of selected 

laboratory tests. Intuitively, the lower coverage rate means that selections are more 

strict. (3) In the test stage, we chose a model at an acceptable coverage rate. A 

threshold � was used to determine whether individual laboratory tests were selected. 
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The selected tests were considered high-confidence candidates. The model 

recommended canceling pending laboratory tests if predicted values satisfied two joint 

conditions: a. High-confidence; b. Unnecessary (i.e., predicted to be stable and remain 

normal). 

 

4.1 Data Preprocessing 

For each encounter, we organized laboratory test results into a consecutive 

sequence in temporal order. The laboratory tests conducted in the same hour were 

aggregated into a laboratory draw. If the same laboratory test appears more than one 

time at the encounter’s visit hour, we averaged the result values. All laboratory draws 

for each encounter start with the draw where the first Hgb result was recorded, and end 

with the draw where the last Hgb result was recorded. Finally, we capped the total 

length of laboratory draws to 30 timestamps (to make the parameter space tractable) 

based on the histogram of encounter visit times (i.e., the number of timestamped 

laboratory records for patients, see S2 Fig). To incorporate patient conditions, vital 

signs were also integrated with the laboratory draw by the event time. We calculated 

average values when more than one vital sign was reported during the same hour. 

To better understand each patient, our model includes patient demographics, 

involving gender, race, and age information. The normal range varies depending on 

gender and age (Table 3). We encoded gender and race information as categorical 

variables. We also categorized patient ages into four groups based on their different 

normal ranges and genders. 
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4.2 Notation 

Table 4 explains the symbols used in our model. For each encounter, we had a 

multivariate time series data of length �. We gave symbols to represent important 

concepts: feature measurements �, Hgb normality labels  , Hgb stability labels !, Hgb 

values ", and selection probability #. � represented a group of input features, including 

laboratory values, vital signs, Hgb value changes, demographics, time differences, and 

observation indicators. The observation indicator was denoted as $. It was used for 

handling missing values of the dataset. Hgb normality labels  , Hgb stability labels !, 

and Hgb values " served as gold standards to measure our model’s prediction 

performance. To measure the confidence of predicting the next Hgb test, our model also 

predicted the selection probability #. As observations were not necessarily made at 

regular intervals, hence, the timestep � simply indexed the sequence of observations. 

When an encounter had observed data (i.e., a Hgb test drawn and resulted) at a 

timestep �, we denoted the observation indicator %�  1; Otherwise, we denoted %�  0. 

The normality 
�, stability ��, values ��, and selection probabilities 	� represented the 

outcome realized at timestep �. We used a sigmoid function to output predictions for 

normality  , stability !, and selection probability # in a range of �0,1�, and restricted 

predictions for " to be positive. To make a cutoff for classifications, we used a threshold 

for normality, stability, and selection probability. The default thresholds were 0.5. In the 

test stage, the selection threshold is adjustable, and we set values in the range of 

� � �0.05.0.95�. 
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4.3 Feature Processing 

 This section introduces our methods to handle missing data and random mask 

corruption. We incorporated relational positional time embeddings [16] to replace 

absolute one-dimensional time differences. Since time embeddings have little impact on 

improving model performance in our experiment, we discuss details of this approach in 

S1 Text.  

4.3.1 Missing Data Handling 

Our model considered 12 common laboratory tests as features, but some tests 

were not conducted in the same time window. The reason is that no patient has all labs 

drawn at the same time. We treated these unmeasured laboratory tests as missing 

values, which are denoted as ��  0. Previous work [17] shows that deep learning 

models, such as long-short term memory (LSTM) networks, can handle missing data by 

integrating an additional indicator %�  0 for these missing values ��  0. Thus, our 

model used two vectors (%�,��) instead of only one vector of observed lab test values so 

that the model knew which observations were missing. This so-called zero imputation 

strategy can handle missing data implicitly by considering feature correlations.  

4.3.2 Random Mask Corruption 

In the training stage, the random mask corruption was designed to simulate the 

impact of lab test reduction on future predictions. Assuming a lab test is reduced at time 

�, and therefore, its observed value cannot be used for predicting labs at time � & 1. 

Following an earlier work[11], we randomly corrupted 10% of observed inputs (%�  1), 
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that is, making their value ��  0 at future predictions to simulate the impact of lab test 

reductions. We still considered the prediction errors of these corrupted Hgb values from 

time � ' 1 to �, but did not use them to make future predictions. At the testing stage, we 

did not introduce any corruption and simply changed ��  0 for lab tests that were 

recommended for reduction with respect to future predictions. 

4.4 Development of Confidence-based Deep Learning 

Approach 

4.4.1 Feed-forward Attention LSTM 

 A time-aware attention mechanism [18] was used to extract essential features 

from the input sequence over time. First, the LSTM layer generated a sequence of 

hidden vectors (. Second, for each timestep �, the learnable function ) computed the 

hidden vector (�, then produced an encoded embedding *�. We computed a probability 

weight )� using a softmax function over the entire time sequence. Finally, the context 

vector � was computed as a weighted sum of the hidden vectors (�. 

*�  )�(�� (1) 

)�  *�	�*��/ , *�	�*��
�

���

 (2) 

�  , )�(�

�

���

 (3) 
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As a result, the attention mechanism enabled the model to distribute weights over the 

entire time period, which smoothly adjusted the impacts of long-time memories for 

irregular time sequences. 

4.4.2 Model Architecture 

We presented the confidence-based deep learning work in combination with 

long-short term memory (LSTM) and the selective neural network under multitask 

learning strategies. The idea is to select a proportion of Hgb candidates with high 

prediction confidence so that the selected Hgb candidates are more likely to make 

correct classifications of normality and stability. 

The architecture of our model is shown in Fig 5. The input features were first fed 

into the LSTM network module. Inspired by a multitask learning architecture[19], we 

used a common feed-forward LSTM layer to capture the shared information for 

downstream networks, and assigned two separate attention-based LSTMs. The shared 

LSTM layer accepted all features (i.e., laboratory values, vital signs, patient 

demographics, Hgb value changes, time differences, and observation indicators) as 

inputs, and optimized hidden states at every timestep. Demographic features were 

copied and placed in every timestamp. The model used two attention-based LSTM 

layers with shared parameters to capture task information. In the attention-based LSTM 

layer, input embeddings were augmented by concatenating the hidden features of the 

shared LSTM layer and original data �. One attention-based LSTM layer was followed 

by the stability predictor. We used Hgb values to measure the stability of future Hgb 

tests, and this first layer learned a subset of features, including Hgb value changes, 

patient demographics, time differences, and observation indicators. The other attention-
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based LSTM layer was followed by the normality, value, and selection predictor. These 

three prediction tasks require complex features and may influence each other[10]. This 

second layer learned entire feature vectors, including laboratory values, vital signs, 

patient demographics, Hgb value changes, time differences, and observation indicators.  

The downstream selective network module used multilayer perceptrons (MLPs) 

with ReLU activation, each followed by a final task-specific prediction. Each MLP 

predictor consisted of two fully-connected layers. The selection MLP predictor estimated 

the likelihood of choosing the Hgb test as a high-confidence sample[20]. More details of 

confidence-based selection will be introduced in the next section. The normality and 

stability MLP predictors were responsible for primary predictions for selected Hgb 

candidates. The value MLP predictor made the auxiliary prediction that covered all Hgb 

samples, including Hgb tests that were not selected by the model. The reason for 

introducing the auxiliary prediction was to avoid overfitting (i.e., the model chooses non-

representative samples to only benefit normality and stability prediction). In addition, 

Hgb value optimization used the entire dataset to evaluate the loss in order to ensure 

the generalizability of normality and stability predictors. 
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Fig 5. Model Architecture Framework. In the LSTM network module, the shared 

LSTM layer received all input features, and outputs hidden features that contained 

general information derived from original data. The attention-based LSTM layer 

augmented input embeddings by concatenating hidden features and duplicated original 

features. One attention-based layer learned a subset of features for the following 

stability predictor. The other attention-based layer learned entire feature vectors to 

obtain complicated information for the following normality, value, and selection predictor. 

In the selective network module, we had four 2-layer MLP predictors to make task-

specific predictions for Hgb stability, Hgb normality, Hgb value, and selection probability 

in parallel. Stability and normality predictors were treated as primary predictions that 

focus on selected Hgb samples. The value predictor served as the auxiliary prediction 

that covers all Hgb samples, including the non-selected ones. 
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4.4.3 Loss Function with Reject Optimization 

We considered the problem of selective prediction in the laboratory reduction 

network and leveraged the integrated reject mechanism developed in SelectiveNet[14]. 

It is a deep learning architecture that is optimized for selecting samples that maximally 

benefit model predictions. Based on our assumption that the dataset contains a 

proportion of Hgb outliers, such a specialized rejection model only considers a 

proportion of samples and filters out low-confidence ones. The approach proposes a 

loss function that enforces the coverage constraint using a variant of the Interior Point 

Method (IPM)[21]. The selection head outputs a single probabilistic value 	� using a 

sigmoid activation. At a certain timestep �, the selective network module achieves LSTM 

hidden features, then predicts Hgb normality ������ and stability �	���� if and only if the 

selection probability 	� exceeds a user-defined threshold � (defined in Table 4); 

otherwise, the model rejects the prediction tasks of normality and stability for ��. Given 

the selection loss -
 in Equation (4), the performance of the selective algorithm is 

measured by the likelihood of normality .����, the likelihood of stability .��	�, and a 

quadratic penalty function ��)�.  

-
  .���� & .��	� & /0�� ' 1�#�� (4) 

��)�  2)��0, )�2 (5) 

where � is the customized target coverage (i.e., expected proportion of samples to be 

considered eligible for reductions, for which the model will predict), � is a penalty 

parameter to control the weight of the regularization. The likelihood of normality .���� 
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and the likelihood of stability .��	� are determined by the normality loss -������ �, 
�� 

and stability loss -��	��� �, ���, respectively. 

.����  �1/� , -������ �, 
� �	��/1�#�
�

���

 (6) 

.��	�  �1/� , -��	����, ���	��/1�#�
�

���

 (7) 

where 

��#�  1/��	


�

�0

 (8) 

In Equation (9) and (10), the normality loss -������ �, 
�� and stability loss 

-��	��� �, ��� are both calculated using the binary cross-entropy, where � denotes the 

sigmoid function that converts predictions into probabilistic values. 

-������ �, 
��  
�3%4�5������ ��� & �1 ' 
��3%4�1 ' 5������ ��� (9) 

-��	��� �, ���  ��3%4�5��	��� ��� & �1 ' ���3%4�1 ' 5��	������ (10) 

Additionally, we handled Hgb value predictions ������ as the auxiliary task using 

a standard mean squared error (MSE) loss function. Auxiliary predictions were used to 

connect the selection loss -
 by accounting for all samples. Otherwise, normality loss 

and stability loss only consider optimizing predictions of selected samples, which might 

cause the overfitting issue. Thus, the overall loss function - is a combination of the 

selection loss -
 and the auxiliary loss -��� as follows: 
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-  6-
 & �1 ' 6�-��� (11) 

where � is the selection weight which lies in �0,1�, and 

 -���  1/� ∑ ������ ' �����
��� � (12) 
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Tables 

Table 1. Model performance by selection coverages and reduction rate. The model 

coverage rate refers to the actual proportion of Hgb samples considered by the model; 

the reduction rate refers to the proportion of Hgb samples recommended for reduction 

among the entire Hgb test dataset; Prev indicates prevalence, which denotes the 

proportion of normal/stable Hgbs in selective candidates; AUC indicates area under the 

ROC curve; Acc indicates accuracy; Prec indicates precision; AUPRC indicates the 

precision-recall curve. 

Target 

Coverage 

Model 

Coverage 

Reduction 

Rate 
 

 

Normality 
 

 

Stability 

Prev AUC Acc Prec AUPRC  Prev AUC Acc Prec AUPRC 

0.75 77.92% 3.08%  10.09% 95.92% 95.16% 78.28% 81.52%  99.70% 96.91% 99.70% 99.70% 99.99% 

0.80 81.64% 4.94%  12.24% 95.34% 94.49% 82.33% 80.78%  98.99% 95.99% 99.01% 99.02% 99.96% 

0.85 83.80% 9.91%  15.25% 95.89% 93.17% 74.38% 80.05%  97.40% 95.94% 97.41% 97.46% 99.89% 

0.90 89.84% 11.71%  17.28% 93.89% 89.47% 64.89% 71.12%  93.94% 96.06% 94.84% 97.21% 99.74% 

0.95 96.91% 16.89%  19.07% 92.24% 86.76% 60.99% 67.56%  92.25% 95.19% 94.22% 95.77% 99.58% 

1.0 99.99% 17.48%  19.51% 91.10% 85.64% 59.18% 63.43%  90.82% 94.94% 93.43% 95.36% 99.47% 
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Table 2. Model performance under selection coverages under no-reduction 

evaluation.  

Target 

Coverage 

Model 

Coverage 
 

 

Normality 
 

 

Stability 

Prev AUC Acc Prec AUPRC  Prev AUC Acc Prec AUPRC 

0.75 79.75%  11.59% 96.46% 95.48% 85.19% 85.86%  99.68% 95.88% 99.68% 99.68% 99.99% 

0.80 83.05%  13.33% 95.85% 94.96% 87.38% 84.72%  99.06% 95.69% 99.08% 99.09% 99.96% 

0.85 86.99%  17.18% 96.39% 93.85% 80.36% 84.80%  97.29% 96.37% 97.31% 97.35% 99.90% 

0.90 90.96%  18.21% 95.14% 91.65% 72.81% 78.10%  94.20% 96.87% 95.09% 97.55% 99.80% 

0.95 96.58%  19.00% 94.39% 89.88% 69.31% 77.37%  92.52% 96.70% 94.54% 96.23% 99.73% 

1.0 99.99%  19.51% 93.44% 88.53% 66.23% 74.14%  90.82% 96.30% 93.46% 95.64% 99.62% 

 

Table 3. Hgb normal range stratification table. LBNR means the lower bound of the 

normal range. UBNR means the upper bound of the normal range. Our experiments 

only considered Hgb LBNR to identify normality and stability. 

Age Hgb LBNR (g/dL) Hgb UBNR (g/dL) 

6 months to 6 years 10.5 14.5 

7 - 12 years 11.0 16.0 

Adult Women 12.0 16.0 

Adult Men 14.0 18.0 
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Table 4. Nomenclature table. 

Symbol Explanation 

� 
Input features (including laboratory values, vital signs, demographics, time 

differences in terms of hours, and observation indicators) 

� 
Observation indicator. It is included in input features �. (If the laboratory sample 

is observed, �� � 1; otherwise, �� � 0 ) 

� 
The total number of timesteps. In a time sequence, a record of a laboratory 

group occurs at one timestep. The maximum number of timesteps is 30 

� The selection probability (If the Hgb is selected, 	� � 1; otherwise, 	� � 0) 


 Normality label (If the Hgb value is above the LBNR, �� � 1; otherwise, �� � 0) 

� 
Stability label (If the Hgb value does not transit from normal to abnormal, � �

1; otherwise, � � 0) 

� Hemoglobin value 

� 
The selection threshold. Its default value is 0.5. (If predicted selection 

probability 	� � �, the corresponding Hgb sample is selected as a candidate for 

reduction; otherwise, the Hgb sample is not a candidate for reduction) 
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Data Availability 

These clinical data contain potentially identifying and sensitive patient information, 

which cannot be made available due to the privacy protection policy of the hospital. 

Ethnic Statement 

 Our research study was approved by the Committee for the Protection of Human 

Subjects (the UTHSC-H IRB) using the protocol HSC-MS-21-0452 [22]. There was a 

waiver of informed consent. 
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Supplementary Information 

S1 Text. Supplementary Notes 

Data analysis  

Statistical analyses were conducted in Python (version 3.7). The network model 

is processed via PyTorch libraries using CUDA. The network was trained using the 

Adam optimizer, with a 64 minibatch size, an L2 regularization weight of 0.000001, and 

a learning rate of 0.0001 over 100 epochs. The network hyperparameters producing the 

lowest total loss in the test set were chosen as the final network architecture. 

Relative Positional Time Embedding 

 The laboratory test data are represented as irregular time series, which have 

wide and heterogeneous time gaps between consecutive observations. The number of 

hour differences from the last laboratory draw contains positional information that 

indicates the relative relationships between lab test values in consequent blood draws. 

The time differences were concatenated with other input features (i.e., laboratory values, 

vital signs, patient demographics, Hgb value changes, and observation indicators) in the 

timestamp. Previous work [11] handled irregular time-series predictions by assigning the 

absolute time difference to each timestep. We assigned a unique temporal encoding to 

cover all possible hour gaps (relative differences by hours), which can be generalized to 

both short and long time gaps. Following the transformer model[16], we used sinusoidal 

functions to incorporate relative positions.  
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8�9 ���� :;< �9 �/10000��/��  (1) 

8�9 ������ �%: �9 �/10000������/�� (2) 

 

where 9 � is the relative time differences of laboratory tests, > represents the 

embedding dimension, and 8: @'� A� is the sinusoidal function that produces the 

output vector for each dimension ;. This kind of embedding allows us to represent 

relative positions, in which 8�� & B� is a linear transformation of 8��� for any fixed offset 

B. 

Ablation Study Evaluation 

To better understand the network behavior, we performed ablation experiments 

in which some components of the network are removed. All ablation experiments were 

conducted on the reduction evaluation protocol. We compared our full model with 

several variants with reduced structure from the full model. The model without time 

embeddings refers to a model considering time differences as a one-dimensional vector. 

The model without attention refers to a model without attention in LSTM layers. The 

model without confidence selection makes predictions of normality, stability, and values 

for all Hgb samples. The vanilla two-layer LSTM together with four two-layer MLPs 

whose network structure refers to Yu et al.[11]. The baseline models considering the 

selection mechanism (our model, without time embedding, and without attention) are set 

as the coverage rate at 0.85, and their corresponding model coverage rates are very 

close. 
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As shown in S3 Table, our full model achieves the best normality prediction 

performances and comparable stability prediction outcomes. Although the relative 

positional time embedding method works well on transformer models[16], removing time 

embeddings does not make a significant influence on predicting labels in our case. In 

our model, attention weights have improved normality AUC by 3.21% and AUPRC by 

7.06%, and confidence selections have improved normality AUC by 4.98% and AUPRC 

by 16.13%. Compared to the vanilla two-layer LSTM network, our model includes a 

combination of attention weights and confidence selection, which archives performance 

improvements. 

Supplementary Figure 

 

38 

e 

C 

e 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.20.22276546doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.20.22276546
http://creativecommons.org/licenses/by/4.0/


 

39 

S2 Fig. Histogram of encounter visit times. Encounter visit times refer to the number 

of laboratory draws for each encounter. The histogram results show that it follows a long 

tail distribution. Most encounters have no more than 30 laboratory test records. 

 

Supplementary Tables 

S3 Table. Comparison with baseline models at an optimal coverage (C  D. EF). 

Bold numbers denote the best performances over the evaluation metric, and underlined 

numbers denote the second-best performance over the evaluation metric. 

Benchmark 
Target 

Coverage 

Model 

Coverage 
 

Normality  Stability 

Prev AUC Acc Prec AUPRC  Prev AUC Acc Prec AUPRC 

Our Model 0.85 83.80%  15.25% 95.89% 93.17% 74.38% 80.05%  97.40% 95.94% 97.41% 97.46% 99.89% 

Without Time 

Embedding 
0.85 85.28%  15.64% 95.61% 92.85% 74.63% 79.53%  97.99% 94.92% 98.01% 98.01% 99.89% 

Without 

Attention 
0.85 84.75%  15.99% 92.68% 90.11% 85.53% 72.99%  97.95% 95.44% 97.96% 97.99% 99.90% 

Without 

Confidence 

Selection 

- -  20.20% 90.91% 85.19% 59.28% 63.92%  90.90% 94.80% 93.48% 95.68% 99.46% 

Vanilla LSTM - -  20.20% 88.40% 82.64% 58.10% 61.04%  90.90% 94.80% 92.91% 94.65% 99.47% 
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S4 Table. Patient cohorts summarized. This table concludes input features of 3 

patient demographic information (age, gender, and race), 5 vital signs, and 12 common 

laboratory tests. 

 
MHH Cohort 

N = 62,479 

Demographics  

Age, year, mean 54.02 (0-119) 

Male, n (%) 25,707 (41.15%) 

White/Caucasian 24,032 (38.46%) 

Vital Signs  

Peripheral pulse rate, mean (sd) 84.06 (18.57) 

Respiratory rate, mean (sd) 20.01 (5.84) 

SpO2 percent, mean (sd) 96.77 (3.16) 

Diastolic blood pressure, mean (sd) 73.47 (13.89) 

Systolic blood pressure, mean (sd) 130.89 (22.61) 

Laboratory Values  

Normal Hgb value (%) 24.74% 

Stable Hgb* (%) 90.80% 

BUN, mean (sd) 24.42 (20.19) 

Calcium, mean (sd) 8.60 (0.72) 

Chloride, mean (sd) 105.22 (6.23) 
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Creatinine, mean (sd) 1.56 (1.91) 

HCO, mean (sd) 26.56 (7.01) 

Hgb, mean (sd) 11.26 (2.20) 

Magnesium, mean (sd) 2.15 (0.46) 

Phosphorus, mean (sd) 3.39 (1.25) 

Platelet, mean (sd) 246.71 (118.36) 

Potassium, mean (sd) 3.98 (0.60) 

Sodum, mean (sd) 138.46 (4.94) 

WBC, mean (sd) 9.88 (5.68) 

Sd – standard deviation. BUN – blood urea nitrogen. HCO� – sodium bicarbonate. 

Hgb – hemoglobin. SpO� – percent saturation of oxygenation. WBC – white blood 

cell count. 

* Labs that did not change from normal to abnormal. 
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S5 Table. The number of Hgb coverages and reduction rates under reduction 

evaluation. This table provides numerical details of hemoglobin test reduction 

regarding the test dataset. 

The total number of encounters is 12,525. The total number of Hgb samples in the 

entire dataset is 57,039 starting from �  0, and 44,586 starting from �  1. 

The dominator of the coverage rate and the reduction rate is the total number of Hgbs 

starting from �  1, which ignores initial tests at �  0.  

Target Coverage Model Coverage Covered Hgb Counts Reduction Rate Reduced Hgb Counts 

0.75 77.92% 34,741 3.08% 1,373 

0.80 81.64% 36,400 4.94% 2,201 

0.85 83.80% 37,363 9.91% 4,420 

0.90 89.84% 40,056 11.71% 5,221 

0.95 96.91% 43,210 16.89% 7,530 

1.0 99.99% 44,583 17.48% 7,793 
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S6 Table. Value prediction consistency with normality under reduction 

evaluations. This table provides numerical details on value prediction to explain Fig 2 

in the article. 

Target Coverage Accuracy 
Accuracy within 3% 

Error 

Accuracy within 4% 

Error 

Accuracy within 5% 

Error 

Accuracy within 10% 

Error 

0.75 88.32% 95.57% 96.78% 97.52% 99.63% 

0.80 89.86% 97.97% 99.05% 99.47% 99.89% 

0.85 76.15% 93.52% 95.91% 97.50% 99.86% 

0.90 65.74% 83.24% 87.62% 90.94% 99.03% 

0.95 58.49% 79.90% 85.30% 89.28% 98.40% 

1.0 50.88% 81.09% 87.16% 91.22% 99.07% 

 

 

S7 Table. Model performances using different selection thresholds under 

reduction evaluation. This evaluation table provides numerical details of selection 

prediction to explain Fig 3 in the article. 

Selection 

Threshold 

Model 

Coverage Rate 

 

Normality 

 

Stability 

Prevalence AUC AUPRC Prevalence AUC AUPRC 

0.05 85.41% 16.64% 95.56% 78.36% 96.67% 95.31% 99.83% 

0.1 85.04% 16.48% 95.67% 78.86% 96.84% 95.31% 99.84% 

0.15 84.77% 16.38% 95.68% 78.85% 96.91% 95.44% 99.85% 

0.2 84.55% 16.33% 95.80% 79.33% 97.05% 95.45% 99.86% 

0.25 84.42% 16.23% 95.81% 79.32% 97.05% 95.51% 99.86% 

0.3 84.26% 16.13% 95.82% 79.30% 97.07% 95.45% 99.86% 

0.35 84.11% 16.09% 95.86% 79.49% 97.17% 95.52% 99.87% 
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0.4 83.99% 15.99% 95.88% 79.48% 97.19% 95.57% 99.87% 

0.45 83.90% 15.96% 95.91% 79.61% 97.23% 95.62% 99.87% 

0.5 83.81% 15.90% 95.94% 79.79% 97.30% 95.56% 99.87% 

0.55 83.67% 15.82% 95.93% 79.78% 97.30% 95.66% 99.88% 

0.6 83.53% 15.81% 96.00% 80.15% 97.37% 95.62% 99.88% 

0.65 83.45% 15.73% 96.01% 80.11% 97.40% 95.71% 99.88% 

0.7 83.28% 15.65% 96.05% 80.30% 97.47% 95.71% 99.89% 

0.75 83.13% 15.59% 96.11% 80.60% 97.52% 95.70% 99.89% 

0.8 82.97% 15.51% 96.12% 80.66% 97.60% 95.69% 99.89% 

0.85 82.78% 15.40% 96.18% 80.97% 97.71% 95.75% 99.90% 

0.9 82.52% 15.30% 96.24% 81.33% 97.82% 95.70% 99.90% 

0.95 82.08% 15.06% 96.33% 81.75% 97.97% 95.87% 99.91% 
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