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Abstract  

Objective: 

The objective of this study is to examine the current landscape of FDA-approved AI medical 

imaging devices and identify trends in clinical validation strategy. 

Materials and Methods: 

We conducted a retrospective study that analyzed data extracted from the American College of 

Radiology (ACR) Data Science Institute AI Central database as of November 2021 to identify 

trends in FDA clearance of AI products related to medical imaging. Product and clinical 

validation information of each device was gathered from their respective public 510(k) summary 

or de novo request submission, depending on their type of authorization. 

Results: 

Overall, the database included a total of 151 AI algorithms that were cleared by the FDA 

between 2008 and November 2021. Out of the 151 FDA summaries reviewed, 97 (64.2%) 

reported the use of clinical data to validate their device. Of these 151 summaries, 81 (53.6%) 

reported the total number of patient cases used during validation, with the average number of 

cases being 799 (SD: 1363) and the range of cases spanning from 15 to 9122. A total of 51 

(33.8%) AI devices characterized their clinical data as multicenter, 3 (2.0%) as single-center, and 

the remaining 97 (64.2%) did not specify. The ground truth used for clinical validation was 

specified in 78 (51.6%) FDA summaries. 

Discussion and Conclusion: 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.22276350doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.19.22276350
http://creativecommons.org/licenses/by-nc-nd/4.0/


A wide breadth of AI algorithms have been developed for medical imaging. Most of the devices’ 

FDA summaries mention their use of clinical data and patient cases for device validation, 

emphasizing their utility in real clinical practice.  

Introduction 

Artificial intelligence (AI) is a powerful medical tool that can offer significant value by 

improving quality of care, decreasing costs, and identifying potential adverse events before they 

occur.  

The large amounts of data being produced in healthcare need to be effectively 

synthesized and AI presents as an effective tool to help clinicians identify patterns and draw 

appropriate conclusions from all the information. Medical imaging has been an area of medicine 

that has seen a lot of innovation with regards to AI. The availability of quantitative data and 

innovation in deep learning may partially explain the growth of AI applications in this area. 

There are few main types of AI products being developed for medical imaging which 

include computer-aided detection (CADe), computer-aided diagnosis (CADx), computer-aided 

triage (CADt), computer-aided quantification (CADq), and imaging processing.1 The various 

subgroups not only help describe the main functions being carried out by these AI medical 

products, but also come with varied levels of risk. For example, the U.S. Food and Drug 

Administration (FDA) considers CADx devices to be higher risk than CADe.1 The level of risk is 

largely dependent on the amount of human supervision over the algorithm. The FDA has 

published recommendations for the clinical validation of CADe devices.2 The clinical study 

design and makeup of the clinical validation dataset can impact the safety and effectiveness of 

the device and introduce potential biases into clinical care. It is critical that these devices 

undergo thorough clinical validation to ensure it is generalizable to a diverse population and 
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image acquisition landscape. In addition, it is important that the information about the clinical 

validation process and the study results are publicly available so that clinicians can make 

informed decisions about which algorithms to introduce in their clinical practice. 

To date, more than 150 AI algorithms have been cleared by the FDA for clinical use and 

the number is only expected to grow with some estimates indicating that the market for AI in 

medical imaging will grow 10-fold in the next decade.3 Questions remain on how these devices 

were validated and the transparency on the part of manufacturers to share this information. In 

addition, much is unknown about how the current volume of use in clinical practice. In this 

study, we examine the current landscape of FDA-approved AI products specifically designed for 

medical imaging and identify trends in clinical validation strategy as reported in the product 

FDA summaries. In addition, we identify AI algorithms that have already undergone 

considerable adoption and dive more deeply into the clinical validation results for this cohort. 

 

Methods:  

We conducted a broad, retrospective, and longitudinal study that analyzed data extracted 

from the American College of Radiology Data Science Institute (ACRDSI) AI Central database. 

ACRDSI is a professional medical institution that collaborates with radiology professionals, 

industry leaders, government agencies, patients, and other stakeholders to facilitate the 

development and implementation of AI applications related to radiology and other imaging 

domains which maintains a list of U.S. FDA approved AI/ML algorithms. According to the 

database, there were a total of 151 products that were FDA-cleared as of November 2021. Each 

product’s information on intended imaging modality, clinical subspecialty, and body region of 

interest were gathered from the openly accessible database. Data relating to the clinical 
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validation process, such as the use of retrospective patient data, the number of patient cases used 

in the study, whether the study was performed in a multicenter or single-center institution, and 

whether ground truth was used, required a more in-depth analysis of their corresponding public 

510(k) summary or de novo request submission. In situations where multiple values were 

provided, values were averaged to provide a holistic measurement of classification or 

segmentation ability. Statistics on the overall number of product users were collected from the 

algorithm website, press releases, or third-party articles. Data gathered for each product was 

verified independently by M.K., A.C., R.W., and R.J. The study does not use private or patient 

information and therefore did not require oversight by an institutional review board. 

Results: 

Overall, the database included a total of 151 AI algorithms that were cleared by the FDA 

between 2008 and November 2021. Of these algorithms, 148 (98.0%) were approved with a 

510(k) clearance, with the remaining 3 (2.0%) receiving de novo clearance. Among the 148 

devices approved with 510(k) clearance, 52 (35.1%) were based on a primary and/or secondary 

predicate device from the same company (Figure 1). 

CT was the most popular imaging modality (49.0%), followed by MR (25.2%) and X-ray 

(13.2%). CTA and MAM each constituted less than 3% of the total products. The three most 

common subspecialty fields that the algorithms were developed for were neuroradiology 

(33.8%), chest imaging (22.5%), and cardiac imaging (14.6%). Each of the remaining 

subspecialties constituted less than 7% of the total. Consequently, the most common body 

regions of interest were brain (32.0%), chest (20.3%), and heart (13.1%). Each of the remaining 

anatomical regions constituted less than 5% of the total products (Figure 2). These FDA-
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approved algorithms were developed by companies from 23 different countries, with a majority 

developed in the USA (49.0%), Israel (10.6%), and France (7.3%). 

Out of the 151 FDA summaries reviewed, 97 (64.2%) reported the use of clinical data to 

validate their device. Of these 151 summaries, 81 (53.6%) reported the total number of patient 

cases used during validation, with the average number of cases being 799 (SD: 1363) and the 

range of cases spanning from 15 to 9122. The median value for each of the categories — MAM, 

XRAY, CT, MR, and US — was 1016, 588, 284, 180, and 378 respectively (Fig. 3). A total of 

51 (33.8%) AI devices characterized their clinical data as multicenter, 3 (2.0%) characterized 

their clinical data as single-center, and the remaining 97 (64.2%) did not specify. The ground 

truth used for clinical validation was specified in 78 (51.6%) of the FDA summaries, of which 71 

were human readers.  

Of the 151 algorithm websites and press releases reviewed, 34 reported some statistics on 

their number of users (hospitals or other point-of-care centers) at the company or algorithm level. 

Of 34 algorithms that reported the number of users, 22 had more than 500 users (Table 1). Most 

of the algorithms (14/22) used CT as their imaging modality with 5 using MR. The algorithms 

complete a variety of tasks including breast imaging (2), intracranial hemorrhage detection (4), 

and large vessel occlusion detection (3). Of these FDA summaries analyzed for these algorithms, 

only 12/22 contained information about the number of patient cases used to validate the 

algorithm. The median number of cases was 284 with a minimum of 50 cases and a maximum of 

2987 cases. Sensitivity and Specificity information was available in the FDA summary for 9/22 

algorithms and was greater than 0.85 for both values in all cases. For algorithms with no 

information about the accuracy listed in the FDA summary, values were identified based on the 

manufacturer’s website and/or published literature and organized in Table 1. 
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Discussion: 

The role of AI in healthcare has grown substantially over the past few years. In particular, 

AI algorithms for use in medical imaging have the potential to greatly improve the efficiency and 

efficacy of medical professionals worldwide. Despite this, there have been very few studies that 

provide a broad overview of these FDA-approved AI algorithms. This lack of coverage may 

contribute to a lack of understanding and/or awareness of these devices in the scientific and 

medical communities, which may, in turn, lead to their underutilization. Our study aimed to 

bridge this gap in knowledge by providing an analysis of all current FDA-approved AI 

algorithms in medical imaging. 

As of the end of November 2021, there are a total of 151 unique AI algorithms that have 

been cleared by the FDA for use in medical imaging. These algorithms were developed by 

companies based in over twenty different countries, showcasing the global interest in developing 

and utilizing these technologies. Perhaps intuitively, all twenty-three of these countries were 

within the top 60 countries ranked worldwide by total GDP.4 

Importantly, all 151 of the AI devices approved for medical imaging used clinical data to 

validate their device, with the majority (64.2%) clearly stating so in their FDA summary. Most of 

these devices characterized their clinical data as multicenter, and, of the algorithms that reported 

the number, the average number of patient cases used for validation was 799. The average 

number of patient cases used for validation was highest for AI devices designed for 

mammography (1016) and ultrasound (588), and lowest for AI devices designed for MR (180). 

This may be due to the ease and volume at which ultrasound and mammography images can be 
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collected for clinical research compared to MR. This use of large, multicenter clinical data 

further emphasizes the utility of these AI algorithms in real, clinical practice. 

In terms of the imaging modalities that these AI algorithms were designed to augment, 

CT was the most popular (49%), followed by MR (25.2%). These findings likely reflect the 

relatively high usage of these two modalities in the healthcare and research communities. For 

instance, a recent study showed that CT and MR are the two modalities with the most rapidly 

increasing usage rates in the United States over the past two decades5; a separate study showed 

that CT and MR accounted for more than 50% of new AI research publications in radiology in 

the past few years.6 Similarly, the imaging modality least represented in the list of AI algorithms 

was PET, likely reflecting how nuclear imaging has been the least involved imaging modality in 

terms of both healthcare usage rates and research interest.5, 6 The most common subspecialty 

field that the AI algorithms were designed for was the nervous system (33.8%). This is again 

paralleled by the observation that neuroradiology is the most involved subspecialty in AI 

research, accounting for roughly one-third of AI-related radiology publications in the past few 

years. There is ultimately a clear association between the modalities and subspecialties that these 

AI devices have been designed for and the relative interest/usage of these modalities and 

subspecialties in the medical community. However, it remains unclear whether the former drove 

the latter or vice-versa. 

A subset of these AI devices provided data on the number of hospitals and other point-of-

care centers that used them. Roughly two-thirds of this subset could be considered high-use, with 

at least 500 users worldwide. Like the observed trends of all 151 devices as previously described, 

the majority of these high-use AI devices were designed for use with CT (63.6%), followed by 

MR (22.7%). The respective purposes of these high-use AI devices varied, but the largest 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.22276350doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.19.22276350
http://creativecommons.org/licenses/by-nc-nd/4.0/


proportion was tasked with detecting and qualifying stroke, including intracranial hemorrhage 

and large vessel occlusion (31.8%). The relatively high global interest in AI devices designed for 

stroke detection may be due to the rising prevalence of stroke worldwide4 and the subsequent 

demand to better identify it in patients.7 As the global patient population continues to age, it is 

possible that we may see increased interest in AI devices that augment detection of other age-

associated diseases, such as ischemic heart disease and cancer.   

Notably, one of the high-use AI devices for large vessel occlusion detection, Viz LVO, 

was recently granted a New Technology Add-on Payment (NTAP) by the Centers for Medicare 

and Medicaid Services (CMS) in 2021.8 This is the first incidence of CMS reimbursement for AI 

devices used for medical imaging, and it is an important hallmark in clinical medicine. The effect 

of reimbursement for AI devices is two-fold. Firstly, it incentivizes health care systems in the 

United States to adopt cost-effective algorithms for clinical use, which will ideally lead to better-

optimized systems and patient outcomes. Secondly, it will drive further innovation in AI medical 

imaging, especially in the area of reimbursed devices. We have already seen a number of AI 

healthcare companies develop their own stroke detection AI algorithms.9 

There are several limitations to our study that should be considered. Firstly, we only used 

data that was made publicly available, such as the ACRDSI AI central database. While the 

database offers great insight into the current state of AI in healthcare, it is not fully 

comprehensive, nor does it contain all the information that the companies submitted to the FDA 

for device approval. For instance, while all 151 companies used clinical data to validate their 

device, only a subset of companies clearly stated so in their FDA summary. Secondly, there we 

relatively little data available on the clinical usage of these devices. We ultimately relied on self-

reported data from the companies or their users themselves, such as through websites or news 
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articles. This, in turn, may have led to biased results (i.e., companies with more users are more 

likely to make this information available to the public). These limitations may have hindered us 

from seeing the full scope of the current AI healthcare landscape.   

Ultimately, our results illustrate the wide breadth of AI algorithms that have been 

developed for medical imaging purposes, with most utilizing clinical data to support their 

validity for use in real clinical care. Trends in the modalities and subspecialties that these 

algorithms have been designed for parallel the involvement of these modalities and 

subspecialties in clinical practice and AI research. Specifically, CT and MR make up the greatest 

proportion of imaging modalities represented, with neuroimaging like stroke being the most 

involved subspecialty field. As the intersection between AI and medical imaging continues to 

grow in importance, it is imperative that physicians recognize and familiarize themselves with 

these new technologies being developed. 
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Table 1: Summary information about AI Algorithms with more than 500 public disclosed users.  
 
Company  Number 

of Users 
Product  Algorithm Function  Modality Performance 

Statistics 
Number 
of patients 
for 
Clinical 
Validation  

Volpara Health 
Technologies  

2000 Volpara 
Imaging 
Software 

Provides volumetric assessment 
of digital x-ray images of the 
breast. BI-RADS 4th and 5th 
edition breast density category 
can be obtained from 
volumetric breast density. 

MAM No Data Available No Data 
Available  

MeVis Medical 
Solutions AG 

500+ Veolity Provides visualization of chest 
CT images, measurements of 
segmented nodules, and CAD 
software to assist in 
identification of findings with 
solid pulmonary nodules 
features.  

CT Sensitivity = 0.714 
Specificity = 0.95510 

109010  

ICAD 2000 ProFound 
AI Software 
V2.1 

Detects malignant soft-tissue 
densities and calcifications in 
tomosynthesis images. Marks 
suspicious soft tissue densities 
and calcifications. Provides 
score for regions of interest and 
cases based on algorithm's 
confidence they are malignant.  

MAM Sensitivity = 0.91511 
 
Radiologist 
Specificity with 
Profound AI = 0.696 
vs 0.627 without 
Profound AI12 

1016 

Vital Images 500+ Vitrea CT 
Brain 
Perfusion 

Calculates cerebral blood flow, 
cerebral blood volume, local 
bolus timing, and mean 
transmit time from CT image 
data. Aids in visualization of 
apparent blood perfusion in 
brain tissues affected by acute 
stroke and differentiates areas 
of decreased perfusion.  

CT No Data Available  No Data 
Available  

iSchemaView  1800+ Rapid 
ASPECTS 

Assesses and characterizes 
brain tissue abnormalities using 
CT image data. Segments and 
analyzes regions of interest to 
provide ASPECT score which 
reflects number of regions with 
early ischemic change per 
ASPECTS guidelines.  

CT No Data Available  50 

RAPID ICH Analyzes non-enhanced head 
CT images and flags cases with 
suspicion of ICH. 

CT Sensitivity = 0.899 
Specificity = 0.943 

336 

RAPID 
LVO 1.0 

Analyzes CTA head images 
and highlights cases with 
suspected LVO  

CTA Sensitivity = 97% 
Specificity = 96%13 

No Data 
Available  

Aidoc 600 Aidoc 
Briefcase 
for iPE 
Triage 

Marks suspected positive cases 
of Incidental Pulmonary 
Embolism (iPE) pathologies.  

CT Sensitivity = 0.905 
Specificity = 0.887 

268 

Aidoc 
Briefcase- 
CSF Triage 

Analyzes cervical spine CT 
images and flags suspected 
findings of linear latencies in 
patterns compatible with 
fractures   

CT Sensitivity = 0.917 
Specificity = 0.886 

186 

Briefcase-
IFG 

Analyzes Abdominal CT 
images and flags cases with 
suspected findings of IFG.  

CT Sensitivity = 0.910 
Specificity = 0.899 

184 

Aidoc 
Briefcase- 
LVO 

Analyzes head CTA images 
and flags suspected cases of 
LVO 

CTA Sensitivity = 0.888  
Specificity = 0.872 

383 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.22276350doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.19.22276350
http://creativecommons.org/licenses/by-nc-nd/4.0/


Aidoc 
Briefcase- 
ICH and PE 
Triage 

Analyzes non-enhanced head 
CT images and highlights cases 
with suspected findings of ICH 
and PE. 

CT Sensitivity = 0.906 
Specificity = 0.899 

2987 

Briefcase- 
ICH  

Analyzes non-enhanced head 
CT images and highlights cases 
with suspected findings of ICH. 

CT Sensitivity = 0.936 
Specificity = 0.923 

198 

TeraRecon  1300 Neuro.AI 
Algorithm  

Analyzes brain perfusion from 
MRI or CT imaging data sets.  
Displays properties of change 
in contrast over time and 
calculates parameters related to 
brain tissue perfusion and 
tissue blood volume.  

CT, MR No Data Available  No Data 
Available  

iNtuition-
Structural 
Heart 
Module 

Enables visualization and 
measures of heart structures to 
assist in pre-operative planning 
and calcium quantification. 

PET, CT, 
MR 

No Data Available  No Data 
Available  

Viz. ai 850 Viz ICH Analyzes non-contrast CT 
images of the head and 
examines features for 
indication of intracranial 
hemorrhage. 

CT Sensitivity = 0.95  
Specificity = 0.96 
AUC = 0.97 

387 

Viz CTP Analyzes CT perfusion scans of 
the brain and provides 
calculations of parameters 
related to tissue flow and tissue 
blood volume. 

CT No Data Available  No Data 
Available  

Viz LVO Analyzes CT angiogram 
images of the brain and 
identifies suspected LVO for 
further review by a physician.  

CT Sensitivity = 0.878 
Specificity = 0.896 
AUC = 0.91 

300 

Cortechs.ai 1000+ NeuroQuant Analyzes MR images to 
automatically label and 
volumetrically quantify 
segmented brain structures and 
lesions. 

MR Sensitivity = 0.688 
Specificity = 0.90414 

No Data 
Available  

NeuroQuant 
MS 

Quantitively analyzes FLAIR 
lesions and brain structures. 

MR Sensitivity = 0.53 
Specificity = 0.7515 

No Data 
Available  

OnQ 
Prostate 

Analyzes MR imaging data to 
provide automatic prostate 
quantitation and segmentation. 

MR No Data Available  No Data 
Available  

RSI-MRI+ Analyzes MR imaging data to 
provide automatic prostate 
quantitation and segmentation.   

MR Sensitivity = 0.810 
Specificity = 0.81816 

No Data 
Available 

CT CoPilot Uses CT images of the brain to 
provide quantification, visuals, 
and segmentation of structures.   

CT No Data Available No Data 
Available 

DiA Imaging Analysis  1000 Lvivo 
Software 
Application  

Analyzes ultrasounds images 
and provides segmental 
evaluation of the left ventricle 
of the heart. 

US Sensitivity = 0.87 
Specificity = 0.6017 

100 
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Figure Legends 
 
Figure 1: Distribution of FDA-cleared premarket submissions. 

Figure 2: Distribution of imaging modalities, clinical subspecialties, and body regions of interest 

(a. imaging modalities b. clinical subspecialties c. body regions of interest.). 

Figure 3: Total number of patient cases used during validation by imaging modality. 

(MAM: outlier of 9122 is not shown in the graph., XRAY: outlier of 6597 is not shown in the 

graph., CT: outlier of 4500 is not shown in the graph.) Triangle denotes the mean.  
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