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Introductory paragraph (150 words max) 

 

Linkage and candidate gene studies have identified several breast cancer susceptibility genes, but the 

overall contribution of coding variation to breast cancer is unclear. To evaluate the role of rare coding 

variants more comprehensively, we performed a meta-analysis across three large whole-exome 

sequencing datasets, containing 16,498 cases and 182,142 controls. Burden tests were performed for 

protein-truncating and rare missense variants in 16,562 and 18,681 genes respectively. Associations 

between protein-truncating variants and breast cancer were identified for 7 genes at exome-wide 

significance (P<2.5x10-6): the five known susceptibility genes BRCA1, BRCA2, CHEK2, PALB2 and ATM, 

together with novel associations for ATRIP and MAP3K1. Predicted deleterious rare missense or 

protein-truncating variants were additionally associated at P<2.5x10-6 for SAMHD1. The overall 

contribution of coding variants in genes beyond the previously known genes is estimated to be small. 

  

Main Text (up to 2000 words) 

 

Breast cancer is the leading cause of cancer-related mortality for women worldwide. Genetic 

susceptibility to breast cancer is known to be conferred by common variants, identified through 

genome-wide association studies (GWAS), together with rarer coding variants conferring higher 

disease risks. The latter, identified through genetic linkage or targeted sequencing studies, include 

protein-truncating variants (PTVs) and/or some rare missense variants in ATM, BARD1, BRCA1, BRCA2, 

CHEK2, RAD51C, RAD51D, PALB2 and TP531. However, these variants together explain less than half 

the familial relative risk (FRR) of breast cancer2. The contribution of rare coding variants in other genes 

remains largely unknown. 

 

Here, we used data from three large whole-exome sequencing (WES) studies, primarily of European 

ancestry, to assess the role of rare variants in all coding genes: the BRIDGES (Breast Cancer Risk after 

Diagnostic Gene Sequencing) dataset that included samples from eight studies in the Breast Cancer 

Association Consortium  (BCAC), the PERSPECTIVE (Personalised Risk assessment for prevention and 

early detection of breast cancer: integration and implementation) dataset that included three BCAC 

studies (Supplementary Table 1), and UK Biobank. After quality control (see methods), these datasets 

comprised 16,498 cases and 182,142 controls (Supplementary Table 2).  

 

We considered two main categories of variants: protein-truncating variants (PTVs) and rare missense 

variants (minor allele frequency <0.001). Single variant association tests are generally underpowered 

for rare variants; however, burden tests, in which variants are collapsed together, can be more 

powerful if the associated variants have similar effect sizes3. To further improve power, we 

incorporated data on family history of breast cancer (see methods)4. Association tests were conducted 

for all genes in which there was at least one carrier of a variant (16,562 genes for PTVs and 18,681 

genes for rare missense variants).   

 

In the combined analysis of PTVs, 18 genes were associated at P<0.001 (Supplementary Table 3, 

Figures 1-2). Of these, 7 met exome-wide significance (P<2.5x10-6), of which 5 are known breast cancer 

risk genes - BRCA1, BRCA2, CHEK2, PALB2 and ATM. Novel associations were identified for PTVs in 

MAP3K1 (P=6.1x10-8) and ATRIP (P=1.8x10-6). Of the other previously identified breast cancer 

susceptibility genes, nominally significant associations were observed for BARD1, CDH1 and RAD51D 
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(Supplementary Table 4). There was no evidence for an excess of significant associations after allowing 

for the 7 exome-wide significant genes (Figure 2). However, 17 of the 18 associations at P<0.001 

correspond to an increased risk, compared with ~9.5 that would be expected by chance. This 

imbalance suggests some of the other associations may be genuine. 

 

Within the BCAC dataset, we evaluated the association with subtypes of breast cancer; ER+ or ER-, 

PR+ or PR-, and triple-negative disease. We compared different subtypes of cases to controls and 

performed analysis within cases only (Supplementary Table 5). The expected associations for known 

genes were observed, notably the higher OR for ER-negative and triple-negative disease for BRCA1 

and higher OR for ER-positive disease for CHEK2, but no additional genes were associated with 

subtype-specific disease at exome-wide significance.  
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Figure 1 | Manhattan Plot of Z-scores from the meta-analysis assessing the association between PTV carriers within genes and breast cancer risk. The orange line 
corresponds to Z=±3.29, p=0.001. Red line corresponds to Z=±4.71, p=2.5x10-6

. 
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Figure 2 | Quantile-Quantile Plot of P-values from the meta-analysis assessing the association between PTV carriers and breast cancer risk. All highlighted genes with 
p<0.0005 correspond to an increased risk of breast cancer. 
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For the rare missense variant meta-analysis, 15 genes had a P-value <0.001, 12 of which corresponded 

to an increased risk of breast cancer (Supplementary Table 6, Supplementary Figures 1-2) compared 

to 7.5 expected by chance. Only CHEK2 met exome-wide significance (P=1.7x10-11). We next 

considered missense variants predicted deleterious by CADD (CADD score ≥20) combined with PTVs. 

In this analysis, 24 genes had a P-value < 0.001, 17 of which corresponded to an increased risk of breast 

cancer (Supplementary Table 7); Supplementary Figures 3-4). Six genes met exome-wide significance: 

CHEK2 (P=2.1x10-42), BRCA2 (P=6.3x10-18), PALB2 (P=1.1x10-9), BRCA1 (P=1.5x10-9), ATM (P=3.4x10-7), 

and SAMHD1 (P=5.8x10-7). 

 

Notably, all three novel genes achieving exome-wide significance, MAP3K1, ATRIP and SAMHD1 have 

prior evidence of involvement in tumorigenesis or DNA repair. MAP3K1 is a stress-induced 

serine/threonine kinase that activates the ERK and JNK kinase pathways by phosphorylation of 

MAP2K1 and MAP2K45,6. Inactivating variants in MAP3K1 are one of the commonest somatic driver 

events in breast tumors7,8. MAP3K1 is also a well-established GWAS locus9; at least 3 independent 

signals have been identified mapping to regulatory regions with MAP3K1 expression as the likely 

target10,11. To evaluate whether the MAP3K1 PTV association we observed was driven by the GWAS 

associations, or vice-versa, we fitted logistic regression models to UK Biobank data in which the PTV 

burden variable and the lead GWAS SNPs (SNP1: rs62355902, SNP2: rs984113 and SNP3:  rs112497245) 

were considered jointly (Supplementary Table 8). In the model with all variables, the OR associated 

with carrying a PTV (OR = 8.54 (2.96, 24.66)) was similar to the unadjusted OR. Similarly, the ORs for 

each of the SNPs were similar to the ORs without adjustment for PTVs. This suggests that the PTV 

burden and GWAS associations are independent and reflect the distinct effects of inactivating coding 

alterations and regulatory variants.  

 

ATRIP (ATR interacting protein) codes for a DNA damage response protein which forms a complex with 

ATR. ATR-ATRIP is involved in the process that activates checkpoint signalling when single-stranded 

DNA is detected following the processing of DNA double-stranded breaks or stalled replication 

forks12,13. SAMHD1 promotes the degradation of nascent DNA at stalled replication forks, limiting the 

release of single-stranded DNA14. SAMHD1 also encodes dNTPase that protects cells from viral 

infections15 and is frequently mutated in multiple tumor types, including      breast cancer.  

  

Pathology information was available in the BCAC dataset for 9 carriers of MAP3K1 PTVs, 14 carriers of 

ATRIP PTVs and 46 carriers of SAMHD1 PTVs or predicted deleterious rare missense variants. These 

data suggest a higher proportion of low-grade, low-stage ductal breast cancer for MAP3K1 carriers, 

but high-grade, low-stage ductal breast cancer for ATRIP carriers (Supplementary Table 9). However, 

none of the associations with tumor characteristics were statistically significant. 

 

To evaluate the overall contribution of PTVs to the Familial Relative Risk (FRR), we fitted models to 

the effect size using an empirical Bayes approach. Under the assumption of an exponentially 

distributed effect size, the estimated proportion of risk genes was 0.0066 with a median OR of 1.38. 

Under this model, an estimated 18.07% of the FRR would be explained, of which 16.01% would be due 

to the five genes BRCA1, BRCA2, ATM, CHEK2 and PALB2 and 2.06% due to all other genes combined 

(MAP3K1 – 0.44%, ATRIP – 0.13%) (Supplementary Table 10). Only the seven genes reaching exome-
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wide significance for PTVs had a posterior probability of association >0.90 (with all other posterior 

probabilities <0.4). 

 

These results demonstrate that large exome sequencing studies, combined with efficient burden 

analyses, can identify additional breast cancer susceptibility genes. The excess of positive associations 

at P<0.001 indicates that further genes should be identifiable through large datasets: the heritability 

analyses suggest the number of associated genes might be of the order of 130. Further replication in 

larger datasets will also be necessary to provide more precise estimates for variants in the novel genes 

ATRIP, MAP3K1 and SAMHD1, to define the set of variants in these genes associated with breast 

cancer and the clinic-pathological characteristics of tumors in variant carriers. The heritability analyses 

suggest that most of the contribution of PTVs is mediated through the five genes BRCA1, BRCA2, ATM, 

CHEK2 and PALB2, commonly tested for in clinical cancer genetics16. While subsets of missense 

variants may also make important contributions (exemplified by SAMHD1), these results suggest that 

the majority of the “missing” heritability is likely to be found in the non-coding genome. 
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Online Methods  

 

UK biobank 

The UK Biobank is a population-based prospective cohort study of more than 500,000 samples. More 

detailed information on the UK Biobank is given elsewhere17,18. WES data for 200,000 samples were 

released in October 202019. QC metrics were applied to Variant Call Format files19. At the genotype 

level, SNPs were excluded with sequencing depth <7 or heterozygous allele balance <0.15 or >0.85. 

Indels were excluded with sequencing depth <10 or allele balance <0.2 or >0.8. On males' X 

chromosomes, depth filters were reduced to 5 for SNPs and 7 for indels. Samples with missing calls 

for >15% and variants with missing calls for >15% of samples were excluded. Variants with Hardy 

Weinberg Equilibrium p-value 10-15 were also removed. 

 

Samples with disagreement between genetically determined and self-reported sex, sex aneuploidy, or 

excess relatives in the dataset were excluded. Excess relatives were identified by considering pairs of 

individuals with kinship>0.17. If one individual in a pair was a case and one was a control then the case 

was preferentially selected; otherwise, one individual was selected at random. Genetic ancestry was 

estimated using genetic principal components and the Gilbert-Johnson-Keerthi distance algorithm20. 

If genetic principal components were not available, self-reported ethnicity was used. Samples of 

ancestry other than European were excluded. The final dataset for analysis included 181,992 samples 

with 100,068 Females. Cases were defined by having invasive breast cancer (ICD-10 C50) or carcinoma-

in-situ (D05), as determined by linkage to national cancer registration (NCRAS), or self-reported breast 

cancer. Both prevalent and incident cases were included. Only breast cancers which were an 

individual’s first or second diagnosed cancer were included as cases. By this definition, 8,043 female 

and 45 male cases were included. 

 

The Breast Cancer Association Consortium datasets 

The BRIDGES and PERSPECTIVE samples were from studies in the BCAC (BRIDGES: 8 studies, 

PERSPECTIVE: 3 studies; Supplementary Table 1). Most samples were previously included in a targeted 

panel sequencing project1. Phenotype data were based on the BCAC database v14. Samples were 
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oversampled for early-onset (age of diagnosis below 50 years) or family history of breast cancer. Cases 

were preferentially selected to have information on tumor pathology. Samples with previously 

identified pathogenic mutations in BRCA1, BRCA2 or PALB2 were excluded.   

 

For BRIDGES, library preparation was conducted in the 3 laboratories using the Nextera DNA Exome 

kit (Illumina) for tagmentation, barcoding and amplification steps. Subsequently, 500ng of DNA per 

sample were pooled in 12-plex and concentrated using a vacuum system. Afterwards, hybridization 

capture reagents for DNA libraries were used for overnight hybridization with the xGen Exome 

Research panel (Integrated DNA technologies, IDT), capture and amplification. Barcoded pooled 

libraries of 96 samples were sequenced on each lane of a NovaSeq 6000 S4 flowcell (Illumina) using 

NovaSeq Xp 4-Lane Kit (2x100bp). 

 

For PERSPECTIVE, library preparation was conducted using Agilent SureSelect Human all exon V7 

(48.2Mb). Barcoded libraries of 88 samples were sequenced on a NovaSeq 6000 S4 flowcell (Illumina) 

using NovaSeq Xp4-lane Kit (2x100bp). 

 

The same pipeline for variant calling was applied to both the BRIDGES and PERSPECTIVE data and 

followed the GATK (Genome Analysis Toolkit) best practices. Briefly, raw sequence data (FASTQ 

format) were pre-processed to produce BAM files. This involved alignment to the reference genome, 

identification and removal of duplicate read pairs from the same DNA fragments, and base 

recalibration. The base recalibration included the generation of a base quality score recalibration 

table, later applied to the read bases to adjust their quality scores and increase the accuracy of the 

variant calling algorithms. An intermediate and informal Quality Control was performed for a sanity 

check, including coverage and alignment mapping metrics. Variants were then called using Haplotype 

Caller for the whole exome. This was later split into chromosomes for the analysis due to file size 

constraints. Variants were further filtered using Variant Quality Score Recalibration (VQSR), a 

proprietary algorithm from GATK that applied new calibration scores independently at SNP and indel 

variant levels. 

 

From the final dataset, samples and variants were excluded based on coverage, allelic balance, and 

Hardy-Weinberg equilibrium, using the same filtering as for UK Biobank. We also excluded samples 

where the genotypes were inconsistent with previous array genotyping or targeted sequencing 

data1,2.  

 

The BRIDGES study sequenced 6,912 samples, of which 3,461 cases and 3,200 controls remained in 

the final dataset after QC. The PERSPECTIVE study sequenced 10,523 samples, of which 4,777 cases 

and 5,210 remained in the final dataset.  

 

Data preparation  

For both the UK Biobank and BCAC datasets, Ensembl Variant Effect Predictor (VEP) was used to 

annotate variants21. Annotations included the 1000 genomes phase 3 allele frequency, sequence 

ontology variant consequences and exon/intron number. For each gene, the MANE Select22 transcript 

was used if it was available for that gene, or the RefSeq Select transcript23. Annotation files were used 

to identify PTVs and rare (allele frequency <0.001 in both the 1000 genomes dataset and the current 

dataset) missense variants. PTVs in the last exon of each gene were excluded as these are generally 
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predicted to escape Nonsense-Mediated mRNA Decay (NMD). VEP was also used to annotate 

missense variants by Combined Annotation Dependent Depletion score (CADD)24.  Here CADD ≥20 was 

used to define variants predicted to be deleterious. 

 

Burden Test analysis 

Association analyses were carried out for each gene separately for PTVs, rare missense variants, and 

predicted deleterious rare missense variants (defined by CADD score ≥20) and PTVs combined. The 

main association analyses were burden tests in which genotypes were collapsed to a 0/1 variable 

based on whether samples carried a variant of the given class. That is, 𝐺𝑖 = 1 𝑖𝑓 ∑ 𝑔𝑖𝑗
𝑝
𝑗=1 >

0 𝑎𝑛𝑑 0 𝑖𝑓 ∑ 𝑔𝑖𝑗
𝑝
𝑗=1 = 0  where 𝑔𝑖𝑗  = 0, 1, 2 is the number of minor alleles observed for sample i at 

variant j, and p is the number of variants in the gene (thus, heterozygous and homozygous carriers 

were combined). 

 

Different statistical tests were considered by simulation, and the best method was chosen for each 

dataset. For the BCAC datasets, we used an exact conditional test25,26, stratified by country and library 

preparation method (BRIDGES vs Perspective). Ethnicity was not adjusted for as within each country 

ethnicity was constant. This method had greater power than the Mantel-Haenszel test27 and Wald test 

from logistic regression28, and the type-1 error rate was closest to the specified significance level. The 

exact conditional test was also used for case-control analyses for subtypes and case-only analysis 

when comparing subtypes e.g., oestrogen receptor status.  

 

Two genes with very common PTVs, NUDT11 and ZNF598, were excluded because missing genotypes 

(which were treated as non-carriers) led to spurious associations even though the variants passed QC 

filtering. AFF1 was also removed as the PTV frequency was high in PERSPECTIVE but rare in BRIDGES 

and UKB. This was likely due to a single PTV artefact within the PERSPECTIVE dataset.  

 

For UK Biobank, we used logistic regression analysis but also incorporated family history as a surrogate 

for disease status. This markedly improves power since susceptibility variants will also be associated 

with family history; in particular, it allows information on males in the cohort with a family history of 

female breast cancer to be utilised. To do this, we treated genotype (0/1) as the dependent variable 

and family history weighted disease status as the covariate; the latter is defined as d+1/2f, where 

d=0,1 was the disease status of the genotyped individual and f=0 or 1 according to whether the 

individual reported a positive first-degree family history. The rationale for this weighting is that, for 

small effect sizes, the log(odds ratio) associated with a positive first-degree relative is approximately 

½ that associated with the disease. All analyses adjusted for the first 10 principal components. For 

genes on chromosome X, only females were used in the analysis.  

 

To combine the results from the BCAC and UK Biobank datasets in a meta-analysis, the association 

tests for each gene were converted to Z-scores. The combined Z-score was defined as: 𝑍𝑀 =
∑ 𝑤𝑗𝑍𝑗𝑗

√𝑤𝑗
2

. 

Here, 𝑍𝑀 is the combined z-score, 𝑍𝑗  is the z-score for study j and 𝑤𝑗 is the weight associated with 

study j.  
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A standard meta-analysis would define the weights 𝑤𝑗 using inverse variance or effective sample sizes. 

However, the effect sizes from the BCAC and UK Biobank may not be comparable, since the BCAC 

studies oversampled for family history and early age at onset, which may have increased the estimated 

effect. Furthermore, the UK biobank analysis incorporated family history, which changes the effective 

sample size as well as the effect estimate. Therefore, we defined weights by using the associations in 

the known risk gene CHEK2 as a standard: we rationalised that the CHEK2 PTVs provided the best 

standard as the association is well established and the odds ratio is highly reproducible1,29,30. 

Moreover, the odds ratio (~2-2.5) was representative of the size of effects we hoped to detect for 

other genes. Thus, we defined (𝑤1, 𝑤2) = (
𝑧1

𝑧2
, 1), where 

𝑧1

𝑧2
 is the ratio of z-scores for CHEK2 for the 

BCAC dataset and UK Biobank. A similar approach was applied for the meta-analysis of the other 

variant categories. 𝑍𝑀-scores were plotted in Manhattan plots and associated P-values plotted in 

quantile-quantile plots. The lambda statistic for inflation in the test statistics (based on the median 

chi-squared statistic) was 0.638 for UK Biobank, 0.549 for BCAC and 0.571 for the meta-analysis, 

indicating that the tests were somewhat conservative on average. 

 

To investigate the joint effect of PTVs in MAP3K1 and common susceptibility variants in the region 

identified through GWAS, we accessed imputed genotype data from UK Biobank for the lead SNPs as 

identified through previous fine-mapping analyses10,11 We fitted logistic regression models including 

covariates for PTVs and the lead SNPs and compared the fit of the model, and effect sizes, with the 

model in which the PTVs or the lead SNPs were excluded.  

 

Data on clinicopathological characteristics of cases in the BCAC dataset was also accessed and the 

proportion of individuals with specific pathologic features e.g., stage and grade were compared 

between carriers of variants in a specific gene, e.g., MAP3K1 PTV carriers, and the overall dataset.  

 

Contribution of PTVs to the FRR 

 

We estimated the overall contribution of PTVs to the familial relative risk (FRR) of breast cancer using 

an empirical Bayesian approach. Given the aggregate frequency 𝑝𝑗  of PTVs in a gene is rare, and all 

PTVs confer the same relative risk 𝑒𝛽𝑗, the FRR due to one gene, given 𝑝𝑗  and 𝑒𝛽𝑗, is: 

𝜆𝑗 = 1 +
𝑝𝑗(𝑒

𝛽𝑗−1)2

(2𝑝𝑗(𝑒
𝛽𝑗−1)+1)2

 1 

Under the additional assumption that the risks conferred by variants in different genes are additive, 

the total contribution over J genes is given by:  

𝜆 = 1 + ∑(𝜆𝑗 − 1)

𝐽

𝑗=1

 

 

We assumed a prior distribution for effect sizes (log-odds ratios) in which a proportion 𝛼 of genes are 

risk associated, and the estimated log-odds ratios 𝛽 for associated genes have an exponential 

distribution with parameter 𝜂; this distribution was chosen since the distribution of effect sizes is likely 

to be skewed, with only a small number of genes have a large effect size and most undiscovered genes 

having smaller effect sizes. An approximate likelihood of the observed carrier count data, by gene, 

was derived, summed over all genes and maximised numerically to estimate 𝛼 and 𝜂, and hence 
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posterior effect size distributions given the data. The total contribution to the FRR was estimated by 

integrating the FRR estimates given 𝛽
𝑗
over the posterior distribution. Further details are given in 

Supplementary Methods. 
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