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Abstract    

Background  

Assessing the status of malaria transmission in endemic areas becomes increasingly challenging as countries 

approach elimination. Serology can provide robust estimates of malaria transmission intensities, and multiplex 

serological assays allow for simultaneous assessment of markers of recent and historical malaria exposure.  

Methods  

Here, we evaluated different statistical and machine learning methods for analyzing multiplex malaria-specific 

antibody response data to classify recent and historical exposure to Plasmodium falciparum and P. vivax. To assess 

these methods, we utilized samples from a health-facility based survey (n=9132) in the Philippines, where we 

quantified antibody responses against 8 P. falciparum and 6 P. vivax-specific antigens from 3 sites with varying 

transmission intensity. 

Findings  

Measurements of antibody responses and seroprevalence were consistent with the 3 sites’ known endemicity status. 

For predicting P. falciparum infection, a machine learning (ML) approach (Random Forest model) using 4 serological 

markers (PfGLURP R2, Etramp5.Ag1, GEXP18 and PfMSP119) gave better predictions for cases in Palawan (AUC: 

0·9591, CI 0·9497-0·9684) than individual antigen seropositivity. Although the ML approach did not improve P. vivax 

infection predictions, ML classifications confirmed the absence of recent exposure to P. falciparum and P. vivax in 

both Occidental Mindoro and Bataan. For predicting historical P. falciparum and P. vivax transmission, 

seroprevalence and seroconversion rates based on cumulative exposure markers AMA1 and MSP119 showed reliable 

trends in the 3 sites. 
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Interpretation  

Our study emphasizes the utility of serological markers in predicting recent and historical exposure in a sub-national 

elimination setting, and also highlights the potential use of machine learning models using multiplex antibody 

responses to improve assessment of the malaria transmission status of countries aiming for elimination. This work 

also provides baseline antibody data for monitoring risk in malaria-endemic areas in the Philippines.  
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Introduction 

In malaria elimination areas, where reporting of local cases continually decline, assessing and differentiating areas 

with residual transmission becomes increasingly challenging. In the case of the Philippines, which is aiming to 

eliminate malaria by 2030 following a sub-national elimination approach1, the country saw >70% decrease in malaria 

cases in the past decade, with only 2 of 81 provinces currently reporting local cases in 2021, and 19 in elimination 

phase. Plasmodium falciparum (Pf) contributes > 80% to the total malaria cases, P. vivax (Pv) is at >20%, while the 

other species P. malariae, P. ovale and P. knowlesi make up <1% of the cases2. Innovative tools that are capable of 

detecting both past and present infections can potentially be used to confirm the presence or absence of malaria 

transmission in this kind of setting that employs subnational specific control approaches3–6. 

Several studies have utilized serology and malaria-specific antibody responses to estimate malaria transmission 

intensities7,8, showing that these represent a viable additional metric of both historical and recent exposure9–14. 

Antibody prevalence alone and as age-adjusted seroconversion rates correlate with entomological and 

parasitological measures used in estimating malaria transmission15–17. Many of the original studies examined single 

antigen platforms and antigens associated with cumulative exposure to infection such as Pf apical membrane antigen-

1 (PfAMA1) and the 19KDa fragment of Pf merozoite protein 1 (PfMSP119). More recent advances in array and bead-

based assay platforms allow for simultaneous analysis of antibody responses to multiple antigens12,18–22. These 

approaches allow the inclusion of multiple targets that can represent diversity in the parasite and variation in individual 

immune response.  Recent multi-antigen studies have identified markers associated with antibody responses 

describing recent and historical P. falciparum and P. vivax exposure13,23–25. To fully realize the additional information 

provided by examining multiple antigenic targets, more advanced statistical approaches and algorithms such as 

machine learning can be employed to predict optimal combinations of antibody responses for the outcome of interest. 

The overall aim of this study was to evaluate known malaria-specific P. falciparum and P. vivax serological markers 

for their predictive capacity to distinguish current or recent infections from historically exposed individuals. 

Specifically, we sought to evaluate different approaches to determining seropositivity for estimating malaria 

transmission intensities and exposure in areas of varying endemicity, and apply this using serological data from the 

Philippines. To achieve this, we: 1) evaluated analysis methods to determine seropositivity using malaria-specific 

antibody responses to single and multiple antigens, utilizing multiplex serological data from health facility surveys in 

3 sites in the Philippines, and 2) analyzed antibody responses and estimated transmission intensities in relation to 
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the supposed immune status of these populations. Our findings detailing the antibody responses to multiple malaria-

specific antigens demonstrate the utility of serology in showing the heterogeneity of malaria transmission in malaria-

endemic populations in the Philippine setting. 

Methods  

Ethical approval 

This study was reviewed and approved by the Research 

Institute for Tropical Medicine – Institutional Review 

Board (RITM IRB 2016-04) and LSHTM Research Ethics 

Committee (11597). 

Data Source: Study Sites and Samples 

The study was conducted in 3 municipalities in 3 

provinces in the Philippines, representing areas of 

varying malaria endemicity: Rizal, Palawan, currently the 

most endemic municipality in the Philippines, and 

reported >60% of the total cases in the country (annual 

parasite index, API of 5·7 per 1,000 risk population) in 

2018;  Abra de Ilog, Occidental Mindoro, a municipality 

reporting sporadic local cases and with declining 

transmission (API of 0·38 in 2018); and Morong, Bataan 

with a last reported indigenous case in 2011 and 

declared malaria-free in 2019 (Figure 1). 

Participants were recruited from June 2016 to June 

2018 in a health facility-based rolling cross-sectional 

survey detailed in Reyes et al (2021). Briefly, all 

consulting patients, as well as their companions, were 

invited to participate and provide a finger-pricked blood 

sample for malaria diagnosis through microscopy (blood 

smear), rapid diagnostic test (RDT), and a dried blood 

spot sample (DBS) on Whatman 3MM CHR filter paper for malaria diagnosis by PCR and serological analysis.  

Multiplex bead-based assay of malaria-specific antibodies 

Serological analysis was conducted using a multiplex bead-based assay as previously described23,27,28, with an 

antigen panel that included 8 P. falciparum-specific and 6 P. vivax-specific recombinant antigens coupled to Magplex 

beads (Luminex Corp, Austin, TX, USA). The antigens were PfAMA1 (apical membrane antigen 1), PfMSP119 

(merozoite surface protein), and their P. vivax homologues PvAMA1 and PvMSP119; PfGLURP R2 (glutamate rich 

protein), Etramp5.Ag1 (early transcribed membrane protein 5), PfSEA1 (schizont egress antigen), GEXP18 

 

Figure 1.  Map showing the study sites, with red areas as 

the focused municipalities within the provinces marked 

yellow.  
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(Gametocyte exported protein 18), MSP2 CH150/9 (CH150/9 allele of MSP2), MSP 2 Dd2 (Dd2 allele of MSP2), 

PvEBP (erythrocyte binding protein), PvRBP1a (reticulocyte binding protein 1a), PvRII and PvDBPRII (region II, Duffy 

binding protein). Antigen characteristics are shown in Table 1.  

 

Table 1. List of antigens in the multiplex bead-based assay panel 

Antigen Description Gene ID Reference 

Pf-specific    

PfAMA1 apical membrane antigen 1 PF3D7_1133400 Collins et al., 2007 

PfMSP119 
19 kDa fragment of merozoite 

surface protein (MSP) 1 
PF3D7_0930300 

Burghaus and Holder, 1994 

PfGlurp R2 glutamate rich protein R2 PF3D7_1035300 Theisen et al., 1995 

Etramp5.Ag1 
early transcribed membrane 

protein 5 
PF3D7_0532100 

van den Hoogen et al., 2019; 

Spielmann et al., 2003 

PfSEA1 schizont egress antigen PF3D7_1021800 Raj et al., 2014 

GEXP18 Gametocyte exported protein 18 PF3D7_0402400 Helb et al., 2015 

MSP2 CH150 CH150/9 allele of MSP2 PF3D7_0206800 Polley et al., 2006 

MSP2 Dd2 Dd2 allele of MSP2 PF3D7_0206800 Taylor et al., 1995 

Pv-specific    

PvAMA1 apical membrane antigen 1 PVX_092275 Chuquiyauri et al., 2015 

PvMSP119 merozoite surface protein PVX_099980 França et al., 2016b 

PvRII region II, Duffy binding protein PVX_110810 França et al., 2016a 

PvDBP RII region II, Duffy binding protein PVX_110810 Ntumngia et al., 2012 

PvEBP erythrocyte binding protein PVX_110835 
Hester et al., 2013; Menard et al., 

2013 

PvRBP 1a reticulocyte binding protein 1a PVX_098585 França et al., 2016a 

  

The assay was conducted as described in Wu et al (2019). Briefly, serum was eluted from DBS samples (~1uL from 

3mm punch; 1:400 final dilution). Approximately 1000 beads per antigen were added per well in 96-well flat bottom 

plates, which are incubated for 1·5 hours on a shaker with 50uL sample and controls (2 positive controls for P. 

falciparum and P. vivax – pooled plasma from adults in hyperendemic malaria setting; 1 negative control – European 

malaria-naïve blood donors). After washing, samples are incubated for 1·5 hours with 50uL 1:200 goat anti-human 

Fcy-fragment-specific IgG (Jackson Immuno 109-116-098: conjugated to R-PE). Samples were washed, suspended 

in PBS, and read using a Luminex 200 or Magpix machine, with net median fluorescence intensity (MFI) levels to all 

antigens recorded for all samples. Plate specific adjustments were performed based on the outcome of standard 

control curves generated from positive control pools included on each plate.  

Data analysis 

Statistical analyses were performed using R version 3·6·3 and Graphpad Prism 8. IgG antibody responses recorded 

as net MFI values were analyzed using different methods. Quantitative continuous antibody response data (reported 

as log10 MFI values) were compared for different groups (i.e., by age group, study site or current malaria infection) 

using Student’s t-test or one-way ANOVA Kruskal-Wallis test with Wilcoxon test for pairwise comparisons. 

Correlations between the levels of antibody responses as well as age and malaria positivity were analyzed using 

Spearman’s rank correlation.  
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Table 2. Training and validation data used in the classification models   

Training data used N 
Validation 
dataset * 

Negative 
population 

model 

SuperLearner / 
Random Forest: 

SuperLearner / 
Random Forest: 

SuperLearner / 
Random Forest: 

Random Forest Random Forest 

Recent Pf 
exposure 

Recent Pv 
exposure 

Historical Pf 
exposure 

Historical Pf 
exposure 

Historical Pv 
exposure 

European naive controls 179 neg − − − − − − 
Positive controls          

African P. falciparum-positive 4 Pf+  +     

African P. vivax-positive 10 Pv+   +    

This study         

P. falciparum-positive subset 568 Pf+  +     

P. vivax microscopy-positive subset 46 Pv+   +    

Below 10 y.o. from Bataan 202 neg  − − − − − 
Historical positives aged ≥50y.o. from 
Occidental Mindoro and Palawan 

711   −  +   

PfAMA1 and PfMSP119 seropositive 
subset 

512      +  

PvAMA1 and PvMSP119 seropositive 
subset 

324       + 
Randomly selected malaria-negatives from 
Palawan aged <50y.o.** 

550   − −    

Bataan study30         

Below 10 y.o. from Bataan 73 neg  − − − − − 
Malaysia study 29         

P. falciparum-positive subset 17 Pf+  +     

P. vivax-positive subset 37 Pv+   +    

Historical positives aged ≥50y.o. from 
Malaysia 2 

1581     +   

PfAMA1 and PfMSP119 seropositive 
subset 

1479   −   +  

PvAMA1 and PvMSP119 seropositive 
subset 

873     −       + 

* Finite mixture models (FMM) were derived from the entire ENSURE dataset (n=9132), and indicated validation dataset was used to determine receiver operating characteristics (ROC) curves for both FMM and 

Negative population models (seropositivity classifications from single antigens). For the supervised classification models, + means it was classified as positive for the model, and – means it is considered for 

negative classification. Abbreviations: Pf- P. falciparum, Pv- P. vivax, neg – malaria-negative; y.o.-years old 
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Determining seropositivity rates using single antigen responses 

Binary outcomes for seropositivity to each antigen were determined through the computation of cut-off values in 

2 ways: 1) a 2-component finite mixture model (FMM); and 2) a reference negative population (NegPop) model. 

FMM was computed using the mixEM function in R mixtools package. For the NegPop model, European naïve 

samples were used as reference population. For both models, samples were considered seropositive for specific 

antigens if MFI values are higher than the antigen cutoff values (mean MFI plus 3 standard deviations). To evaluate 

the accuracy of these classifications, we used samples from known exposed and unexposed populations as 

validation data (Table 2), comprising P. falciparum (Pf+) and P. vivax-positive (Pv+) datasets, and a malaria-

negative (neg) dataset collated from previous studies and this study. Sensitivity and specificity for identifying 

current P. falciparum and P. vivax infection from this study and the validation dataset, and receiver operating 

characteristics (ROC) curves, were determined for each serological marker (Supplementary Tables 1 and 2).  

Applying machine learning techniques for multiplex analysis of antigen responses 

We next utilized machine learning (ML) techniques on multiplex serological data for determining recent and 

historical malaria exposure. The 8 Pf-specific antigens along with age were the covariates evaluated for P. 

falciparum exposure, while for P. vivax exposure, only the 6 Pv-specific antigens were analyzed (age data was not 

available). The training data used for these models are in Table 2. To account for the age-dependent cumulative 

increase in antibodies, the negative dataset for classifying recent infection included historical positives – survey 

participants aged >50 years from Malaysia29 and Philippines30 assumed to have had historical exposure, as well 

as a random selection of Pf or Pv-negatives from all age groups from this current study. For classifying historical 

exposure, the training dataset included the historical positives as positives, and the same negatives from the 

validation dataset (Table 2).   

Super Learner (SL) optimized with AUC (Area under the ROC Curve) was used as an ensemble modelling 

algorithm to allow for evaluating multiple models simultaneously23,31,32, namely Random Forest (RF), k-Nearest 

Neighbor (kNN), generalized boosted models (GBM), Support Vector Machine (SVM), and GLM with Lasso 

(glmnet). Feature selection with corP, that screens for univariate correlation, was also included for some 

component models (GBM, RF). The SL model gives a prediction value that ranges from 0 to 1, and this can be 

used to obtain binary classification (i.e., those with prediction values higher than 0·5 were considered positive). A 

20-fold cross-validation was performed for internal validation to evaluate the performance of the fitted SL models 

using a withheld training dataset, and the whole training dataset. ROC curves were used to evaluate the outcome 

of predicted values for the samples and were then compared to single antigen performances. The performance 

of each ML model, or base learner, in the SL ensemble was also assessed. For additional assessment, external 

validation was performed for the classification models through an independently collated dataset, which used the 

same panel of P. falciparum antigens (not available for P. vivax panel). 

Evaluating model performance in identifying current Pf and Pv infections in this study 

Using this study’s malaria-positive samples, we assessed the capability of the serological markers in identifying 

falciparum and vivax infections (Supplementary Table 1). The single antigen performances were compared with 

SL predictions, where models included 3 to 9 covariates combined based on the variable importance outcomes. 

The AUC values from the ROC analysis based on training data and ENSURE malaria-positives (test data) were 
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then computed. With Super Learner giving weights to multiple ML models simultaneously, we also evaluated the 

individual ML models that were given the most weight or importance, namely RF and GBM. 

Estimating seroconversion rates and historical exposure 

Seropositivity of the cumulative exposure markers (AMA1, MSP119 for both P. falciparum and P. vivax) were used 

to estimate seroconversion rates (SCR) and seroreversion rates (SRR), by fitting the age-specific prevalence for 

each study site into reverse catalytic models using likelihood ratio methods, as previously described3,33. The 

predicted time of change in transmission is analyzed. In addition to the AMA1 and MSP119 seroprevalence based 

on FMM models, RF classifications using the combined AMA1 and MSP119 data for both P. falciparum (Pf-RF:2-

covar) and P. vivax (Pv-RF:2-covar) were also used to generate seroprevalence curves. The positive training data 

used for these RF models are subsets of the historical positives that were seropositive to both markers for each 

species based on FMM cutoff values (Table 2). The Super Learner approach was also used to predict Pf and Pv 

historical exposure using multiplex antibody data.         

Results 

Heterogeneity of antibody responses from the 3 collection sites 

A total of 9132 DBS samples (6572 for Palawan, 1683 for Occidental Mindoro, and 877 for Bataan) were available 

for serological evaluation. Females comprised >60% of survey participants, while all age groups were well-

represented (Table 3). Malaria infections were detected only in Palawan, with 51·8% and 48·2% of infected males 

and females, respectively, aged under 10 years old. Of the 889 Plasmodium-positive samples confirmed through 

either microscopy, RDT and/or PCR, 58·0% had P. falciparum, 12·4% had P. vivax, 6·7% had mixed Pf+Pv 

infections, 6·1% had P. malariae, P. ovale or P. knowlesi, while species identification could not be confirmed for 

16·8% of the PCR-positive samples. From the Pf and Pv malaria-positive individuals (n=707, including mixed 

infections), 388 (54·8%) had fever before or during the health facility visit, 62·1% of which were ≤10 years old. 

Conversely, 63·1% of the asymptomatic malaria infections were >10 years old. 

Firstly, we compared the magnitude of antibody responses to P. falciparum and P. vivax antigens from the 3 

collection sites. Palawan consistently had the highest antibody levels to all antigens and in all age groups, followed 

by individuals from Occidental Mindoro then Bataan (Fig 2A, Supplementary Figure 1). Expectedly, cumulative 

exposure markers PfAMA1, PfMSP119, PfGLURP R2, PvAMA1 and PvMSP119 were strongly correlated with age 

(Spearman’s coefficient >0·5, p<0·0001). Recent exposure markers Etramp5.Ag1 and GEXP18 were less strongly 

associated (Spearman’s coefficient of 0·39 and 0·42, respectively, p<0·0001). PvMSP119 and PvDBPRII showed 

weak correlation (Spearman’s coefficient of 0·13 and 0·12, respectively, p<0·0001) with current P. vivax infection 

(Figure 2B). Similarly, mean antibody levels were higher in a species-specific manner (Figure 3). Taken together, 

our results confirm the applicability of these serological markers in differentiating areas of varying malaria 

endemicity, and there were species-specific associations with current infection. 

Identifying markers of recent falciparum and vivax malaria exposure and current infection 

Next, we applied different analytical approaches to ascertain whether the serological markers can be used to 

predict recent or historical exposure. The resulting seropositivity cutoff values were comparable for FMM 

(unsupervised)  
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Table 3. Characteristics of study population by site 

  
Morong, Bataan 

Abra de Ilog, Occidental 
Mindoro 

Rizal, Palawan 

Number of analyzed samples 877 1683 6572 

Female, % 628 (71·6%) 1101 (65·4%) 3734 (56·8%) 

Age, median (IQR) 26 (11-39) 28 (15-43) 13 (5-31) 

number (% in site)       

0 to 5 150 (17·1%) 150 (8·9%) 1900 (28·9%) 

6 to 10 63 (7·2%) 154 (9·2%) 1055 (16·1%) 

11 to 19 102 (11·6%) 234 (13·9%) 957 (14·6%) 

20 to 34 279 (31·8%) 508 (30·2%) 1222 (18·6%) 

35 up 283 (32·3%) 637 (37·8%) 1438 (21·9%) 

Plasmodium-positive by 
microscopy/RDT/PCR (% in site)* 0 (0·0%) 0 (0·0%) 889 (13·5%) 

P. falciparum-positive (by 
microscopy/RDT/PCR)* 0 (0·0%) 0 (0·0%) 595 (9·1%) 

P. vivax-positive (by 
microscopy/RDT/PCR)* 0 (0·0%) 0 (0·0%) 172 (2·6%) 

PCR-confirmed species ID, n (% in site)      

P. falciparum, Pf mono-infection 0 (0·0%) 0 (0·0%) 516 (7·9%) 

P. vivax, Pv mono-infection 0 (0·0%) 0 (0·0%) 110 (1·7%) 

Pf + Pv mixed infection 0 (0·0%) 0 (0·0%) 60 (0·9%) 

Other species (mono- or mixed 
infections) 0 (0·0%) 0 (0·0%) 55 (0·8%) 

With fever or history of fever (% in site) 69 (7·9%) 172 (10·2%) 2727 (41·5%) 

Symptomatic Pf and Pv infections* 0 (0·0%) 0 (0·0%) 388 (5·9%) 
Asymptomatic infections (no fever, 
Plasmodium-positive)* 0 (0·0%) 0 (0·0%) 428 (6·5%) 

Asymptomatic microscopy-
positive Pf infections 0 (0·0%) 0 (0·0%) 132 (2·0%) 

Asymptomatic microscopy-
positive Pv infections 

0 (0·0%) 0 (0·0%) 35 (0·5%) 

* Numbers include all Plasmodium infections detected by microscopy, RDT and/or PCR. Some samples did not have enough 
material for further species identification by PCR, for which results were based on microscopy and/or RDT diagnosis, while 
some (n=149) were confirmed Plasmodium-positive only. Pf and Pv numbers reported include mixed infections, which were 
specified in the PCR-confirmed species ID breakdown. 
** All 5 Plasmodium species, including P. malariae (n=50), P. ovale (n=4) and P. knowlesi (n=1), were detected in Palawan, 
with some as co-infections with Pf and/or Pv.  

and Negpop (supervised) classification models, with AUC values from the validation data ranging from 0·812 to 

0·932 for the 8 P. falciparum markers, and 0·534 to 0·943 for the 6 P. vivax markers (Figure 4A & 4B, 

Supplementary Tables 1 & 2). When applied to classifying study samples, some of the markers showed low 

predictive ability, with AUC values ranging from 0·497 to 0·756 for P. falciparum markers, and 0·513 to 0·731 for 

P. vivax markers. Etramp5.Ag1 and GEXP18 for P. falciparum, and PvMSP119 for P. vivax, had significantly higher 

AUC values (>0·735, p<0·002) compared to the rest of the markers analyzed  (Supplementary Tables 1 & 2). 

Density plots of antibody responses also show overlap of malaria-negative and positive distributions, contributing 

to the lower AUCs (Supplementary Figure 2). Seroprevalence rates for all antigens were consistently low in Bataan 

in all age groups (Figures 4A & 4B), with recent exposure markers (hollow circles) estimating lower rates.  
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We next applied ML methods for analyzing multiplex antibody response data. The Super Learner (SL) ensemble 

machine learning algorithm was used to simultaneously evaluate classifications from ML models, which included 

Random Forest (RF), k-Nearest Neighbor (kNN), generalized boosted models (GBM), Support Vector Machine 

(SVM), and GLM with Lasso (glmnet), and weights are applied to each learner after cross-validation. Covariates 

were assessed for their relative importance for the model, and different combinations in a model were assessed 

using the ROC curves of cross-validated predictions (Figure 4C & 4D; Supplementary Tables 1 & 2). The 9-

covariate model  

 
 

Figure 2. Antibody responses to serological markers of P. falciparum and P. vivax correlate with malaria incidence 

A. Antibody levels (reported as log10 MFI) in response to P. falciparum cumulative and recent exposure markers PfAMA1, 

PfMSP119, and Etramp5.Ag1, and P. vivax serological markers PvAMA1, PvMSP119 and PvDBP.RII by study site and age 

group. Statistical difference of overall antibody responses among study sites within age groups were determined using 

Kruskall-Wallis test and Wilcoxon test for pairwise comparisons (*p < 0·05, **p < 0·01, ***p < 0·001, ****p < 0·0001). 

B. Spearman’s correlation coefficients for age, malaria diagnosis (Mal+: Plasmodium-positive, Pf+: P. falciparum-

positive, Pv+: P. vivax-positive), and antibody responses to the 14 antigens in the panel for Palawan samples 

(n=6572).   
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         Figure 3. Serological markers exhibit species-specific association with current infection in varying levels 

A-B) Comparison of antibody titers of Palawan samples (n=6572) for Plasmodium-positive (Pf: P. falciparum-positive, 

Pf/Pv: Pf and Pv mixed infection, Pv: P. vivax-positive) and negative (neg) samples by age group in each P. 

falciparum-specific (A) and P.vivax-specific antigen 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.06.16.22276488doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.16.22276488
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 11 of 29 
 

 
Figure 4. Analysis of serological markers through machine learning methods improves classifications for 

recent P. falciparum and P. vivax exposure or current infection (legend on next page) 
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 (SL: 9-covar; 8 antigens and age as covariates) had the highest AUC among all SL models, with a value of 0·9898 

(95% CI 0·9874-0·9921) and 0·9197 (95% CI 0·9093-0·9302) for the binary classification predictions for the 

training data and test data, respectively, and removing the age as covariate (SL:8-covar model) decreased the 

prediction capacity (Supplementary Table 1). For predicting P. vivax recent exposure, the model incorporating 

the 6 Pv antigens as covariates (SL:6-covar) had a resulting AUC of 0·8857 (95% CI 0·8429-0·9284) and 0·6332 

(0·5979-0·6686) for validation data and test data, respectively (Supplementary Table 2). 

After a 20-fold nested cross-validation, generalized boosted models with or without feature selection (GBM and 

GBM_corP) were given the highest weights in the SL ensemble models for both species’ recent exposure 

predictions (Supplementary Figure 3A & 3B). However, upon closer inspection of the classification accuracy of 

the individual learners for predicting P. falciparum recent infections, the Random Forest (RF) models were found 

to have the highest AUCs in both the validation data (not shown) and test data (Supplementary Figure 3C). 

Computing for the AUCs of resulting binary classifications (Figure 4C) also showed RF models with highly 

improved AUCs compared to FMM-based single antigen classifications and even the SL models, suggesting that 

RF is the best performing model in distinguishing current or recent falciparum malaria infections. On the other 

hand, vivax infection classification models had comparable AUCs ranging from 0·701 to 0·8 for test data 

(Supplementary Figure 3D), and also for binary classifications for SL, RF and GBM models (Figure 4D; 

Supplementary Table 2).  

Variable importance in the RF model for P. falciparum positivity (Figure 4E) shows that responses to Etramp5.Ag1, 

PfGLURP R2, GEXP18 and PfMSP119 had the highest influence in the predictions, while PvMSP119 and PvAMA1 

were the most predictive P. vivax antigens (Figure 4F). RF.covar4 gave an AUC of 0·9983 for the training data and 

0·9591 for the test data (Figure 4C; Supplementary Table 1), and had  comparable AUC with the RF 8-covariate 

model (RF.covar8), showing that analysis using the RF model combining just the 4 predictive Pf antigens was 

sufficient for predicting recent P. falciparum infection or exposure.  

 

Figure 4. Analysis of serological markers through machine learning methods improves classifications for recent 

P. falciparum and P. vivax exposure or current infection 

A-B. Seropositivity rates of sample population by site and age group based on cutoff values from finite mixture models 

(FMM) and negative population model (NegPop) for Pf and Pv antigens (detailed in Supplementary Tables 1 and 

2). Hollow dots represent the FMM and Negpop seropositivity rates for the two reported recent exposure markers 

Etramp5.Ag1 and GEXP18 for Pf (A), and PvMSP119 and PvDBP.RII for Pv (B) panel. Lines with error bars represent 

median with 95% CI.  

C-D. Receiver operating characteristic (ROC) curves for the antibody responses to single antigens for individual antigens, 

and for the SL models (shown in both as binary outcomes of seropositivity / prediction values).  

E-F. Variable importance of the 8 Pf-specific (E) and 6 Pv-specific (F) antigens based on the Random Forest model. 

G. Predicted rates of recent Pf exposure based on analysis of the continuous antibody responses of the 8-antigen panel 

using Super Learner. Each hollow dot represents differences in the number of covariates used for the model (3, 4, 8, 

9), as well as 2 showing rates from prediction values of the Random Forests (RF) component model (RF.covar4 and 

RF.covar8 in solid dots).  

H. Predicted rates of recent Pv exposure based on analysis of the continuous antibody responses of the 6-antigen panel 

using Super Learner. Dots represent the positivity rates from the prediction values of the SL model, and the 

individual predictions from the 2 most weighted base learners in the resulting model – RF and GBM. RF predictions 

(RF.covar6) are shown as solid dots.  

(SL: Super Learner, RF: random Forest, covar#: number of covariates included in the model, FMM: finite mixture models; 

*p < 0·05, **p < 0·01, ***p < 0·001, ****p < 0·0001 with significance assessed by one-way ANOVA followed by Tukey’s 

multiple comparison) 
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Figure 5. Seroconversion curves based on reverse catalytic models using AMA1 and MSP119 antibody responses 

provide accurate estimates of historical exposure. Age-specific seroprevalence was based on finite mixture models and 

Random Forest models (using both antigens: RF 2-covar models) for each species. Solid lines represent the fit of the reversible 

catalytic models, dashed lines represent 95% confidence intervals, and dots represent the observed proportions of 

seropositives per age divided into 10% centiles. For models assuming a change point in transmission, only the recent 

seroconversion rates and change point estimates (in years) are shown, while the historical seroconversion rates and 

seroreversion rates are detailed in Table 4.  
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Figure 6. Cumulative exposure markers confirm historical P. falciparum and P. vivax exposure, and heterogeneity 

of transmission in the 3 sites  

A. Plot of Super Learner prediction values for Pf historical exposure by site and age, using the model with 8 Pf-specific 

serological markers as covariates. Red dotted line represents positivity cutoff at 0·5.  

B. Variable importance based on the Random Forest model of the 8 Pf-specific antigens and 6 Pv-specific antigens in 

predicting historical exposure for each species. 

C. Distribution of antibody responses to PfAMA1 by site and age of individuals (n=9132). Red dashed line represents the 

seropositivity cutoff value from the FMM model. 

D-E. Summary graphs per age category per site of SL-predicted Pf historical exposure (D) and PfAMA1, PfMSP1 

seropositivity rates graphed with estimated historical exposure rates using the Random Forest model with PfAMA1, 

PfMSP119 as covariates (E).  

F.     Summary graph of PvAMA1, PvMSP1 seropositivity rates with estimated historical exposure rates using the Random 

Forest model with PvAMA1, PvMSP119 as covariates seropositivity per age category per site 
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Model validation using external datasets 

To further evaluate the performance of the RF:4-covar model for predicting P. falciparum recent exposure, 

external validation was performed using a collated test dataset (Supplementary Table 3) that included samples 

from a cross-sectional survey in Malaysia34 (n=8163; all Pf-negative), a 2017 cross-sectional survey in Bataan30 

(n=1926; all malaria-negative), PCR-validated malaria cases (Pf=47, non-Pf=428), and malaria-naïve or malaria-

negative samples (n=506). The model prediction resulted in an AUC of 0·93 (CI 0·8817-0·9782), and was able to 

predict 0·47% prevalence of infection for the Malaysia cross-sectional survey, and 0·10% for the Bataan cross-

sectional survey. It also correctly identified 41 of 47 (87·2%) of the P. falciparum PCR-confirmed cases from the 

malaria-positive subset.  

Estimating P. falciparum and P. vivax historical exposure 

AMA1 and MSP119 responses for P. falciparum and P. vivax have been widely used to assess historical 

exposure by estimating seroconversion and seroreversion rates. Using reverse catalytic models and maximum 

likelihood tests on the age-specific seroprevalence based on the FMM model seropositivity rates for PfAMA1, 

PfMSP119, PvAMA1 and PvMSP119, we estimated the time of interruption of transmission in our study area 

(Figure 5, Table 4). The RF algorithm was also employed to generate models that combine both antigens (2-

covariate models Pf-RF:2-covar and Pv-RF:2-covar), and the predicted binary outcomes were also used in the 

reverse catalytic models. Most of the seroconversion curves were best fit with a model assuming a change in 

transmission based on log likelihood tests (p < 0·001), except for PvMSP119 (p= 0·507) and the Pv-RF:2-covar  

(p=0·285) model (Table 4). Based on these models, the time of change in transmission in Bataan was estimated 

at 29-33 years for P. falciparum and 28-29 years for P. vivax. Occidental Mindoro had varied estimates of the 

change point (7 and 12 years). For these 2 provinces, the seroconversion rates suggest a decrease in 

transmission, while an increase of the seroconversion rates for Palawan after the 2-year change point, 

suggested an increase in transmission in this study site. 

We further explored whether the use of SL model can provide improved estimates of historical exposure. The 

exposure prediction values from the SL model (8 P. falciparum markers) were graphed for each sample by site 

and age (Figure 6A & 6D), and compared with seropositivity rates of PfAMA1 (Figure 6C), which is shown to have 

the highest influence in the RF model prediction (Figure 6B). However, comparing the SL-predicted rates with 

AMA1 and MSP119 seropositivity rates (Figure 6D vs 6E) show that SL overestimated historical exposure, with 

higher-than-expected positivity rates in younger age groups from Bataan and Occidental Mindoro, where 

transmission is reportedly absent. The seropositivity rates based on the 2-covariate RF models with AMA1 and 

MSP119 seem to provide better estimates of historical exposure to both P. falciparum and P. vivax based on known 

malaria prevalence of the sites than the SL models (Figure 6E & 6F). 

Discussion 

In this study we assessed the utility of multiple antigen-specific antibody responses and different statistical 

methods to estimate both current malaria infection and historical transmission in areas of different endemicity in 

the Philippines. Using a multiplex bead-based assay with a panel of 8 P. falciparum-specific and 6 P. vivax-specific 

recombinant antigens on DBS samples, we showed how the use of combined antibody data can improve 
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predictions of recent or historical malaria exposure. In particular, machine learning model predictions of malaria 

exposure were consistent with reported levels of transmission in our sites, which highlight the potential for 

advanced analysis of multiplex serological data to provide accurate complementary data on incidence levels that 

could be used by control programs at small spatial scales.  

In many countries including the Philippines, malaria-endemic provinces apply for malaria-free status when 

indigenous cases have not been reported for a set number of years, typically 3 or more. More rapid, subnational 

demonstration of the absence of exposure could aid in this process. The use of multiple antigens to assess 

exposure to malaria infection circumvents some issues related to genetic diversity in the parasite and variation in 

the human immune response to different antigenic targets. The approach also allows application of more 

advanced statistical analysis to examine optimal combinations of antibody responses in predicting specific 

outcomes. Here, in addition to the well-studied antigens AMA1 and MSP119, we screened other antigenic markers 

that have been reported to accurately predict recent exposure in studies in Africa and the Caribbean14,23,36.  

PfGLURP R2, Etramp5.Ag1 and GEXP18 have been identified as recent exposure markers for P. falciparum23,36 

and PvMSP119 for P. vivax25. Our RF variable importance results also identified these markers to be the most 

predictive in our panel. 

In assessing the individual performances of the serological markers, we show that the antibody responses to all 

antigens were species-specific, consistent with previous observations37,38. For some recent exposure makers, we 

observed <10% seropositivity in younger age groups from malaria-free Bataan, suggesting background 

seropositivity. When we employed machine learning23,25,39, our models were able to confirm the absence of current 

infection in Occidental Mindoro and Bataan (although there was lower precision for P. vivax exposure prediction), 

and, using the Random Forest predictions from a 4-covariate model including PfGLURP R2, Etramp5.Ag1, 

GEXP18 and PfMSP119, accurately identified >92·0% of the Plasmodium-positive study samples from this study, 

whether detected through microscopy, RDT and/or PCR. It also correctly identified 87·2% of P. falciparum 

positives from a Malaysian dataset. The observation that this relatively simple model, which did not require 

epidemiological variables such as age, was able to provide accurate predictions for different datasets, shows its 

potential as a robust indicator for recent exposure and current infections, in areas with varying levels of 

transmission.  

We expected that the Super Learner model would improve the predictions with its ensemble approach; however, 

for predicting P. falciparum current infections in particular, RF-based models had the better AUC for both training 

and test data. This was not the case for the P. vivax predictions, which showed similar AUCs (<0·7) for the final 

SL model and its component models. It is likely that the low predictive ability we observed from the P. vivax panel 

is a limitation of the panel itself rather than the analytical approaches used. Notwithstanding, the SL approach was 

able to provide the means for evaluating multiple supervised ML models simultaneously, and, for the purpose of 

accurately distinguishing recent exposure from historical exposure with high sensitivity, the RF model seems to 

provide accurate estimates.  

This study had other limitations. For classifying recent and historical exposure, we had no data on the malaria 

history of the survey participants, such that we instead focused on predicting for current infections. Still, external 

validation of our prediction algorithm for P. falciparum infection confirms its promising performance in accurately 

predicting malaria infections. Also, since the study analyzed samples from a health facility-based survey, whether 
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or not it accurately represents the populations needs to be assessed. The bias towards sampling health-seeking 

individuals was partially addressed by also recruiting companions of patients who visited the health facilities26. 

When we used our RF.covar4 model to predict recent exposure in the 2017 cross-sectional survey also conducted 

in Morong, Bataan, it also predicted 0·10% recent exposure – similar with our health facility-based data. The 29 

to 30-year change point in transmission for Bataan can also be deemed consistent with the reported change point 

at 22 years in this previous survey30.  

Although we cannot validate the predicted historical exposure, we are able to show that consistent with previous 

studies10,21,24,40,41, AMA1 and MSP119 seropositivity rates (individually or combined) for P. falciparum and P. vivax 

seemed to agree with the known malaria situation of our study sites. The seroconversion rates also reflect this, 

with Bataan having the lowest, followed by Occidental Mindoro, and highest for Palawan. Our results are able to 

confirm the absence of P. falciparum and P. vivax transmission in malaria-free Bataan for the age groups 10 and 

below, providing evidence for its malaria elimination status. For Occidental Mindoro, the interruption in 

transmission from 7-12 years ago may be explained by the extensive malaria control activities implemented 

through the Global Fund for Malaria since the 2000s. Our seroconversion curve results also suggest an increase 

in malaria transmission in Rizal, Palawan during the time of our survey (2016 to 2018), and upon checking the 

records of reported malaria cases, there was indeed a steady rise of the API in this municipality from 25·43 in 

2014, 33·97 in 2015, to 46·09 in 2016 and 56·78 in 2018.  

Despite the mentioned limitations of the study, our results clearly show the potential use of multiplex antibody 

responses and applications of machine learning approaches in assessing malaria transmission for countries 

aiming for malaria elimination. Of interest for countries aiming for elimination is evaluating the impact of a decrease 

in transmission on the immunity or vulnerability of a population, especially in differing endemic settings42,43. 

Immunological studies are needed to investigate this further. In a sub-national elimination setting such as the 

Philippines, both recent and historical P. falciparum and P. vivax exposure metrics were indicative of the absence 

of recent transmission in Bataan and Occidental Mindoro, and also identified current infections in Rizal, Palawan, 

thus showing its ability in assessing the malaria situation in varying areas of endemicity. Our study provides 

baseline immunological data for monitoring risk populations in the Philippines. This serological surveillance 

approach can aid in devising control measures by malaria elimination programs, as well as provide evidence of 

the effectiveness of programs being implemented.  
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Table 4. Seroconversion and seroreversion rates from reverse catalytic models in each study site 

  Bataan Occidental Mindoro Palawan 

PfAMA1 SCRhistorical 0·02102 (0·00599 - 0·07375) 0·03306 (0·02150 - 0·05082) 0·06953 (0·06251 - 0·07736) 

SCRrecent 0·00193 (0·00112 - 0·00332) 0·01024 (0·00707 - 0·01483) 0·13346 (0·11802 - 0·15092) 

SRR 0·010002 (0·0010 - 0·10353) 0·01239 (0·00575 - 0·02673) 0·00841 (0·00626 - 0·01129) 

Time of change in 
transmission (yrs) 

29 12 2 

PfMSP119 SCRhistorical 0·04042 (0·00836 - 0·19516) 0·03399 (0·02221 - 0·05204) 0·07521 (0·06658 - 0·08495) 

SCRrecent 0·00243 (0·00148 - 0·00396) 0·01412 (0·00842 - 0·02367) 0·14811 (0·13109 - 0·16734) 

SRR 0·01959 (0·00564 - 0·06796) 0·01779 (0·00926 - 0·03416) 0·01221 (0·00946 - 0·01575) 

Time of change in 
transmission (yrs) 

33 7 2 

RF with 
PfAMA1 and 
PfMSP119 

SCRhistorical 0·01513 (0·00426 - 0·05370) 0·03338 (0·02172 - 0·05130) 0·06836 (0·06133 - 0·07619) 

SCRrecent 0·00122 (0·00064 - 0·00234) 0·00931 (0·00630 - 0·01377) 0·12847 (0·11333 - 0·14564) 

SRR 0·00463 (0·00002 - 0·91264) 0·01327 (0·00639 - 0·02755) 0·00901 (0·00674 - 0·01204) 

Time of change in 
transmission (yrs) 

29 12 2 

PvAMA1 SCRhistorical 0·07078 (0·01619 - 0·30943) 0·02760 (0·02094 - 0·03638) 0·05210 (0·04652 - 0·05834) 

SCRrecent 0·00197 (0·00102 - 0·00377) 0·00840 (0·00451 - 0·01564) 0·08800 (0·07591 - 0·10202) 

SRR 0·03138 (0·01524 - 0·06460) 0·00715 (0·00269 - 0·01898) 0·01074 (0·00801 - 0·01441) 

Time of change in 
transmission (yrs) 

29 7 2 

PvMSP119 SCRhistorical 0·02858 (0·00465 - 0·17570) 
0·01143 (0·00921 - 0·01419) 

0·03760 (0·03172 - 0·04458) 

SCRrecent 0·00178 (0·00092 - 0·00347) 0·08687 (0·07507 - 0·10052) 

SRR 0·02941 (0·00862 - 0·10026) 0·00404 (0·00047 - 0·03486) 0·02146 (0·01599 - 0·02880) 

Time of change in 
transmission (yrs) 

28 - 2 

RF with 
PvAMA1 and 
PvMSP119 

SCRhistorical 0·03387 (0·00559 - 0·20521) 
0·01139 (0·00919 - 0·01414) 

0·04023 (0·03472 - 0·04661) 

SCRrecent 0·00169 (0·00084 - 0·00340) 0·08479 (0·07313 - 0·09833) 

SRR 0·03498 (0·01265 - 0·09673) 0·00388 (0·00042 - 0·03598) 0·02227 (0·01674 - 0·02963) 

Time of change in 
transmission (yrs) 

28 - 2 

Seroconversion rates (SCR) and seroreversion rates (SRR) are presented for P. falciparum and P. vivax based on reverse catalytic models using age-
specific seroprevalence from finite mixture models with AMA1 and MSP119 and Random Forest (RF) 2-covariate models. If the best reverse catalytic 
model to fit the age-adjusted seropositivity data was one with no change point in transmission, only 1 SCR is indicated, while if the best fit is one with a 
change point, the SCR before the change point is indicated as SCRhistorical and the SCR after the change point is indicated as SCRrecent. The estimated 
change point in transmission (in years) is also indicated. 
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Supplementary Table 1.  Seropositivity rates based on Pf-specific antigens and SuperLearner predictions for recent Pf exposure  

Model   
Seropositivity cutoff 
value for antigens 

AUC – validation data AUC – study data 
Positive in 

Pf+ samples 
(n=625) 

Positive in 
Palawan, 

n=6572 (%) 

Positive in 
Occidental 
Mindoro, 

n=1683 (%) 

Positive in 
Bataan, n=877 

(%) 

PfAMA1 
FMM 129·552007 0·9075 (0·8866-0·9284) 0·6921 (0·6771-0·7072) 509 (85·5%) 3842 (58·5%) 599 (35·6%) 91 (10·4%) 

Negpop 146·705091 0·9115 (0·892-0·9311) 0·6948 (0·6795-0·71) 507 (85·2%) 3792 (57·7%) 582 (34·6%) 82 (9·4%) 

PfMSP119 
FMM 315·978321 0·9321 (0·9182-0·9459) 0·6849 (0·6696-0·7002) 503 (84·5%) 3872 (58·9%) 639 (38·0%) 85 (9·7%) 

Negpop 294·522036 0·9301 (0·9152-0·9449) 0·6821 (0·667-0·6973) 508 (85·4%) 3940 (60·0%) 658 (39·1%) 89 (10·1%) 

Etramp5.Ag1 
FMM 343·006451 0·9075 (0·8918-0·9232) 0·7556 (0·7389-0·7722) 477 (80·2%) 2659 (40·5%) 267 (15·9%) 60 (6·8%) 

Negpop 254·493948 0·9111 (0·8941-0·9281) 0·7397 (0·7235-0·7559) 489 (82·2%) 2963 (45·1%) 362 (21·5%) 87 (9·9%) 

GEXP18 
FMM 402·149776 0·8848 (0·8663-0·9033) 0·7456 (0·7278-0·7633) 452 (76·0%) 2524 (38·4%) 203 (12·1%) 65 (7·4%) 

Negpop 267·001733 0·9037 (0·8849-0·9225) 0·7317 (0·7154-0·748) 487 (81·8%) 3067 (46·7%) 326 (19·4%) 126 (14·4%) 

PfGLURP R2 
FMM 346·692889 0·9206 (0·901-0·9401) 0·6849 (0·6701-0·6997) 516 (86·7%) 3817 (58·1%) 747 (44·4%) 147 (16·8%) 

Negpop 361·031502 0·9254 (0·9074-0·9435) 0·6855 (0·6706-0·7004) 512 (86·1%) 3810 (58·0%) 738 (43·9%) 143 (16·3%) 

MSP2 
CH150/9 

FMM 137·354929 0·8558 (0·8325-0·879) 0·6849 (0·6665-0·7034) 437 (73·4%) 3093 (47·1%) 414 (24·6%) 76 (8·7%) 

Negpop 141·708302 0·8541 (0·8307-0·8774) 0·4971 (0·4921-0·5022) 437 (73·4%) 3074 (46·8%) 406 (24·1%) 75 (8·6%) 

MSP2 Dd2 
FMM 121·316261 0·9177 (0·9027-0·9326) 0·6762 (0·6598-0·6926) 484 (81·3%) 3673 (55·9%) 657 (39·0%) 126 (14·4%) 

Negpop 110·971531 0·9202 (0·9054-0·935) 0·6798 (0·6632-0·6965) 482 (81·0%) 3607 (54·9%) 615 (36·5%) 105 (12·0%) 

PfSEA 
FMM 733·501223 0·8207 (0·7975-0·844) 0·6714 (0·6515-0·6912) 384 (64·5%) 2387 (36·3%) 470 (27·9%) 131 (14·9%) 

Negpop 867·158828 0·8121 (0·7918-0·8324) 0·6614 (0·6411-0·6816) 357 (60·0%) 2203 (33·5%) 409 (24·3%) 112 (12·8%) 

Random Forest:   4 
covariates (RF.covar4) 

(Etramp5.Ag1, GEXP18, 
PfGLURP R2, PfMSP119) 

0·9983 (0·996-1) 0·9591 (0·9497-0·9684) 552 (92·8%) 1081 (16·4%) 5 (0·3%) 1 (0·1%) 

Random Forest:   8 
covariates (RF.covar8) 

All 8 Pf-specific antigens 0·9898 (0·998-1) 0·9682 (0·9605-0·9759) 555 (93·3%) 1065 (16·2%) 3 (0·2%) 0 (0·0%) 

SL: 3 covariates 
(SL:3-covar) 

(Etramp5.Ag1, GEXP18, 
PfGLURP R2) 

0·918 (0·9067-0·9293) 0·879 (0·8658-0·8921) 265 (44·5%) 809 (12·3%) 0 (0·0%) 0 (0·0%) 

SL: 4 covariates 
(SL:4-covar) 

(Etramp5.Ag1, GEXP18, 
PfGLURP R2, PfMSP119) 

0·9338 (0·9214-0·9462) 0·8967 (0·8867-0·9067) 297 (49·9%) 687 (10·5%) 0 (0·0%) 0 (0·0%) 

SL: 8 covariates 
(SL:8-covar) 

All 8 Pf-specific antigens 0·955 (0·9486-0·9614) 0·914 (0·9055-0·9226) 317 (53·3%) 828 (12·6%) 0 (0·0%) 0 (0·0%) 

SL:  9 covariates 
(SL:9-covar) 

All 8 Pf-specific antigens 
and age 

0·9898 (0·9874-0·9921) 0·9197 (0·9093-0·9302) 423 (71·1%) 1245 (18·9%) 4 (0·2%) 0 (0·0%) 

*Abbreviations used: Pf: P. falciparum;  FMM: Finite mixture model; Negpop: Negative population model; SL: Super Learner prediction model using different sets of covariates (including the 8 Pf antigens) for predicting 
recent and historical malaria exposure. 
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Supplementary Table 2.  Seropositivity rates based on 6 Pv-specific antigens and SuperLearner predictions for recent Pv exposure  

Model   
Seropositivity 

cutoff value for 
antigens 

AUC – validation data AUC – study data 
Positive in 

Pv+ samples 
(n=172) 

Positive in 
Palawan, 

n=6572 (%) 

Positive in 
Occidental 
Mindoro, 

n=1683 (%) 

Positive in 
Bataan, n=877 

(%) 

PvAMA1 
FMM 149·776739 0·9185 (0·8934 - 0·9436) 0·6744 (0·6424 - 0·7064) 130 (75·6%) 2991 (45·5%) 650 (38·6%) 84 (9·6%) 

Negpop 172·486298 0·9164 (0·8895 - 0·9434) 0·6720 (0·6391 - 0·7049) 127 (73·8%) 3035 (46·2%) 626 (37·2%) 77 (8·8%) 

PvMSP119 
FMM 395·678911 0·9429 (0·9229 - 0·9629) 0·7308 (0·6997 - 0·7618) 134 (77·9%) 2588 (39·4%) 430 (25·5%) 63 (7·2%) 

Negpop 666·248684 0·9234 (0·8935 - 0·9533) 0·7049 (0·6692 - 0·7406) 114 (66·3%) 2135 (32·5%) 295 (17·5%) 38 (4·3%) 

PvDBP.RII 
FMM 403·658933 0·8036 (0·7546 - 0·8527) 0·7065 (0·6697 - 0·7434) 105 (61·0%) 1699 (25·9%) 165 (9·8%) 50 (5·7%) 

Negpop 285·09444 0·8143 (0·7668 - 0·8618) 0·7037 (0·6681 - 0·7392) 115 (66·9%) 2087 (31·8%) 221 (13·1%) 72 (8·2%) 

PvRBP·1a 
FMM 777·354467 0·7367 (0·6865 - 0·7869) 0·6248 (0·5871 - 0·6625) 92 (53·5%) 1979 (30·1%) 416 (24·7%) 242 (27·6%) 

Negpop 2986·35245 0·5343 (0·5006 - 0·5679) 0·5127 (0·4901 - 0·5352) 17 (9·9%) 507 (7·7%) 104 (6·2%) 61 (7·0%) 

PvRII 
FMM 843·409764 0·7706 (0·7195 - 0·8218) 0·6302 (0·5935 - 0·6670) 67 (39·0%) 1079 (16·4%) 104 (6·2%) 38 (4·3%) 

Negpop 377·466964 0·8007 (0·7530 - 0·8484) 0·6322 (0·5955 - 0·6688) 107 (62·2%) 2717 (41·3%) 489 (29·1%) 102 (11·6%) 

PvEBP 
FMM 147·668259 0·7735 (0·7247 - 0·8224) 0·6471 (0·6144 - 0·6799) 128 (74·4%) 3328 (50·6%) 719 (42·7%) 106 (12·1%) 

Negpop 661·785062 0·7133 (0·6616 - 0·7649) 0·6184 (0·5809 - 0·6559) 101 (58·7%) 2608 (39·7%) 566 (33·6%) 63 (7·2%) 

SL: 6 Pv antigens 
All Pv-specific 

antigens as 
covariates 

0·8857 (0·8429-0·9284) 0·6332 (0·5979-0·6686) 57 (33·1%) 603 (9·2%) 35 (2·1%) 2 (0·2%) 

RF: 6 Pv antigens 1 0·6918 (0·6542-0·7293) 81 (47·1%) 802 (12·2%) 57 (3·4%) 5 (0·6%) 

GBM: 6 Pv antigens 0·9043 (0·8647-0·9439) 0·6462 (0·6095-0·6828) 67 (39·0%) 851 (12·9%) 80 (4·8%) 7 (0·8%) 

*Abbreviations used: Pv: P. vivax; FMM: Finite mixture model; Negpop: Negative population model; SL: Superlearner prediction model using different sets of covariates (including the 8 Pf antigens) for predicting 
recent and historical malaria exposure. 

 

Supplementary Table 3.  Collated dataset for external validation of RF 4-covariate model for predicting Pf recent exposure 

Datasets N Pf+ Predicted Pf recent exposure AUC (CI) 

Bataan 2017 cross-sectional survey30 1926 0 2 / 1926 (0·10%) 

0·9300  
(0·8818 - 0·9782) 

Malaysia 2015 study29    

Cross-sectional survey 8163 0 38 / 8163 (0·47%) 

Naïve and negative controls 506 0 4 / 506 (0·79%) 

PCR-validated cases - Pf 47 47 41 / 47 (87·23%) 

PCR-validated cases - Pv, Pm, Pk 428 0 71 / 428 (16·59%) 
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Supplementary Figure 1. Antibody levels in response to the rest of the P. falciparum and P. vivax serological markers in the 

panel, by study site and age group. Statistical difference of overall antibody responses among study sites within age groups 

were determined using Kruskall-Wallis test and Wilcoxon test for pairwise comparisons.  

Related to Fig. 1. 
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Supplementary Figure 2. Antibody responses of malaria-negative and malaria-positive populations (presented as density 

plots of log10 net MFI values) to the Pf and Pv serological markers in the panel (Pf and Pv diagnosed by microscopy, RDT 

and/or PCR.  

Related to Fig. 1. 
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Supplementary Figure 3. Performances of the individual base learners in the Super Learner ensemble.  

A-B)  Plots of the assigned weights to each learner included in the Super Learner models for predicting P. falciparum (A) 

and P. vivax recent exposure (B), obtained after 20-fold nested cross-validation of the Pf SL-covar8 and Pv SL-

covar6 models. 

C-D)  Receiver operating characteristic (ROC) curves for detecting current Pf (C) and Pv (D) infections in the test dataset 

(n=9132) using the 8 Pf and 6 Pv antigens as covariates, respectively. (SL.final: final Super Learner model, RF: 

random Forest, RF.ranger: RF from ranger package, kNN: k-Nearest Neighbor, GBM: generalized boosted models 

(implementation for BRT: boosted regression trees), SVM:Support Vector Machine, and GLM: Generalized linear 

models; variation of algorithms with “corP” denotes a feature selection that screens for univariate correlation) 
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Tables and figures  

Tables 

Table 1. List of antigens in the multiplex bead-based assay panel 

Table 2. Training and validation data used in the classification models 

Table 3. Characteristics of study population by site  

Table 4. Seroconversion and seroreversion rates from reverse catalytic models in each study site 

Supplementary Table 1.  Seropositivity rates based on Pf-specific antigens and SuperLearner predictions for 

recent Pf exposure 

Supplementary Table 2.  Seropositivity rates based on 6 Pv-specific antigens and SuperLearner predictions 

for recent Pv exposure 

Supplementary Table 3.  Collated dataset for external validation of RF 4-covariate model for predicting Pf 

recent exposure 

 

Figures 

Figure 1. Map showing the study sites, with red areas as the focused municipalities within the provinces marked 

yellow. 

Figure 2. Antibody responses to serological markers of P. falciparum and P. vivax correlate with malaria 

incidence 

A. Antibody levels (reported as log10 MFI) in response to P. falciparum cumulative and recent exposure 

markers PfAMA1, PfMSP119, and Etramp5.Ag1, and P. vivax serological markers PvAMA1, PvMSP119 and 

PvDBP.RII by study site and age group. Statistical difference of overall antibody responses among study 

sites within age groups were determined using Kruskall-Wallis test and Wilcoxon test for pairwise 

comparisons (*p < 0·05, **p < 0·01, ***p < 0·001, ****p < 0·0001). 

B. Spearman’s correlation coefficients for age, malaria diagnosis (Mal+: Plasmodium-positive, Pf+: P. 

falciparum-positive, Pv+: P. vivax-positive), and antibody responses to the 14 antigens in the panel for 

Palawan samples (n=6572).   

Figure 3. Serological markers exhibit species-specific association with current infection in varying levels 

A-B) Comparison of antibody titers of Palawan samples (n=6572) for Plasmodium-positive (Pf: P. falciparum-

positive, Pf/Pv: Pf and Pv mixed infection, Pv: P. vivax-positive) and negative (neg) samples by age group 

in each P. falciparum-specific (A) and P.vivax-specific antigen. 

Figure 4. Analysis of serological markers through machine learning methods improves classifications for 

recent P. falciparum and P. vivax exposure or current infection 

A-B. Seropositivity rates of sample population by site and age group based on cutoff values from finite 

mixture models (FMM) and negative population model (NegPop) for Pf and Pv antigens (detailed in 

Supplementary Tables 1 and 2). Hollow dots represent the FMM and Negpop seropositivity rates for 

the two reported recent exposure markers Etramp5.Ag1 and GEXP18 for Pf (A), and PvMSP119 and 

PvDBP.RII for Pv (B) panel. Lines with error bars represent median with 95% CI.  

C-D. Receiver operating characteristic (ROC) curves for the antibody responses to single antigens for 

individual antigens, and for the SL models (shown in both as binary outcomes of seropositivity / 

prediction values).  

E-F. Variable importance of the 8 Pf-specific (E) and 6 Pv-specific (F) antigens based on the Random Forest 

model. 

G. Predicted rates of recent Pf exposure based on analysis of the continuous antibody responses of the 8-

antigen panel using Super Learner. Each hollow dot represents differences in the number of covariates 

used for the model (3, 4, 8, 9), as well as 2 showing rates from prediction values of the Random 

Forests (RF) component model (RF.covar4 and RF.covar8 in solid dots).  
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H. Predicted rates of recent Pv exposure based on analysis of the continuous antibody responses of the 6-

antigen panel using Super Learner. Dots represent the positivity rates from the prediction values of the 

SL model, and the individual predictions from the 2 most weighted base learners in the resulting model 

– RF and GBM. RF predictions (RF.covar6) are shown as solid dots.  

(SL: Super Learner, RF: random Forest, covar#: number of covariates included in the model, FMM: finite mixture 

models; *p < 0·05, **p < 0·01, ***p < 0·001, ****p < 0·0001 with significance assessed by one-way ANOVA 

followed by Tukey’s multiple comparison) 

Figure 5. Seroconversion curves based on reverse catalytic models using AMA1 and MSP119 antibody 

responses provide accurate estimates of historical exposure.  

Age-specific seroprevalence was based on finite mixture models and Random Forest models (using both 

antigens: RF 2-covar models) for each species. Solid lines represent the fit of the reversible catalytic models, 

dashed lines represent 95% confidence intervals, and dots represent the observed proportions of seropositives 

per age divided into 10% centiles. For models assuming a change point in transmission, only the recent 

seroconversion rates and change point estimates (in years) are shown, while the historical seroconversion rates 

and seroreversion rates are detailed in Table 4. 

Figure 6. Cumulative exposure markers confirm historical P. falciparum and P. vivax exposure, and 

heterogeneity of transmission in the 3 sites  

A. Plot of Super Learner prediction values for Pf historical exposure by site and age, using the model with 8 

Pf-specific serological markers as covariates. Red dotted line represents positivity cutoff at 0·5.  

B. Variable importance based on the Random Forest model of the 8 Pf-specific antigens and 6 Pv-specific 

antigens in predicting historical exposure for each species. 

C. Distribution of antibody responses to PfAMA1 by site and age of individuals (n=9132). Red dashed line 

represents the seropositivity cutoff value from the FMM model. 

D-E. Summary graphs per age category per site of SL-predicted Pf historical exposure (D) and PfAMA1, 

PfMSP1 seropositivity rates graphed with estimated historical exposure rates using the Random Forest 

model with PfAMA1, PfMSP119 as covariates (E).  

F.     Summary graph of PvAMA1, PvMSP1 seropositivity rates with estimated historical exposure rates using 

the Random Forest model with PvAMA1, PvMSP119 as covariates seropositivity per age category per site 

Supplementary Figure 1. Antibody levels in response to the rest of the P. falciparum and P. vivax serological 

markers in the panel, by study site and age group. Statistical difference of overall antibody responses among 

study sites within age groups were determined using Kruskall-Wallis test and Wilcoxon test for pairwise 

comparisons.  Related to Fig. 1. 

Supplementary Figure 2. Antibody responses of malaria-negative and malaria-positive populations (presented 

as density plots of log10 net MFI values) to the Pf and Pv serological markers in the panel (Pf and Pv diagnosed 

by microscopy, RDT and/or PCR. Related to Fig. 1. 

Supplementary Figure 3. Performances of the individual base learners in the Super Learner ensemble.  

A-B)  Plots of the assigned weights to each learner included in the Super Learner models for predicting P. 

falciparum (A) and P. vivax recent exposure (B), obtained after 20-fold nested cross-validation of the Pf 

SL-covar8 and Pv SL-covar6 models.  

C-D)  Receiver operating characteristic (ROC) curves for detecting current Pf (C) and Pv (D) infections in the 

test dataset (n=9132) using the 8 Pf and 6 Pv antigens as covariates, respectively. (SL.final: final Super 

Learner model, RF: random Forest, RF.ranger: RF from ranger package, kNN: k-Nearest Neighbor, GBM: 

generalized boosted models (implementation for BRT: boosted regression trees), SVM:Support Vector 

Machine, and GLM: Generalized linear models; variation of algorithms with “corP” denotes a feature 

selection that screens for univariate correlation) 
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