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Abstract    16 

Assessing the status of malaria transmission in endemic areas becomes increasingly challenging as 17 

countries approach elimination and infections become rare. Here, we evaluated the use of multiplex antibody 18 

response data to malaria-specific antigens to classify recent and historical infections of differentially exposed 19 

populations in three provinces in the Philippines. We utilized samples (n=9132) from health-facility based 20 

cross-sectional surveys in Palawan (ongoing malaria transmission), Occidental Mindoro (limited 21 

transmission), and Bataan (no transmission) and quantified antibody responses against 8 Plasmodium 22 

falciparum and 6 P. vivax-specific antigens. Different statistical and machine learning analytical methods 23 

were used to examine associations between antigen-specific antibody responses with malaria incidence, 24 

and the ability to predict recent or historical exposure. Consistent with the provinces’ endemicity status, 25 

antibody levels and seroprevalence were consistently highest in Palawan and lowest in Bataan. A machine 26 

learning (ML) approach (Random Forest model) using identified responses to 4 antigens (PfGLURP R2, 27 

Etramp5.Ag1, GEXP18 and PfMSP119) gave better predictions for P. falciparum infection (positive by 28 

microscopy, RDT and/or PCR) or likely recent exposure in Palawan (AUC: 0.9591, CI 0.9497-0.9684) than 29 

mixture models calculating seropositivity to individual antigens. Meanwhile, employing the same ML 30 

approaches for the vivax-specific antigens did not improve predictions for recent P. vivax infections. Still, 31 

the antigen panel was overall able to confirm the absence of recent exposure to P. falciparum and P. vivax 32 

in both Occidental Mindoro and Bataan through single and ensemble ML approaches. Seroprevalence and 33 

seroconversion rates based on cumulative exposure markers AMA1 and MSP119 showed accurate trends 34 

of historical P. falciparum and P. vivax transmission in the 3 sites. Our study emphasizes the utility of 35 

serological markers in predicting recent and historical exposure in a sub-national elimination setting, 36 

establishes baseline antibody data for monitoring risk in malaria-endemic areas in the Philippines, and also 37 

highlights the potential use of machine learning models using multiplex antibody responses to accurately 38 

assess the malaria transmission status of countries aiming for elimination. 39 

  40 
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Introduction 41 

The Philippines is aiming to eliminate malaria by 2030 following a sub-national elimination approach (World 42 

Health Organization, 2014). The country had more than 70% decrease in malaria cases in the past decade, 43 

with only 2 provinces reporting local cases; 19 provinces are in elimination phase, and the remaining 60 44 

declared malaria-free in 2021. Plasmodium falciparum (Pf) contributes more than 80% to the total malaria 45 

cases, P. vivax (Pv) is at >20%, while the other species P. malariae, P. ovale and P. knowlesi make up <1% 46 

of the cases (World Health Organization, 2019). As the number of areas still reporting local cases continue 47 

to decrease, assessing the malaria levels in endemic areas and differentiating areas with residual 48 

transmission becomes increasingly challenging. Innovative tools that are capable of detecting both past and 49 

present infections can be used to confirm the presence or absence of malaria transmission in endemic areas 50 

supporting sub national  specific control approaches (Drakeley et al., 2005; malERA Refresh Consultative 51 

Panel, 2017; World Health Organization and Global Malaria Programme, 2017).  52 

Several studies have utilized serology and malaria-specific antibody responses to estimate malaria 53 

transmission intensities (Folegatti et al., 2017; Fowkes et al., 2010), showing that these represent a viable 54 

additional metric of both historical and recent exposure (van den Hoogen et al., 2015; Idris et al., 2017; 55 

Kerkhof et al., 2016; Pothin et al., 2016; Ssewanyana et al., 2017; Wu et al., 2020a). Antibody prevalence 56 

alone and as age-adjusted seroconversion rates correlate with entomological and parasitological measures 57 

used in estimating malaria  transmission (Corran et al., 2007; Niass et al., 2017; Stanisic et al., 2015). 58 

Many of the original studies examined single antigen platforms and antigens associated with cumulative 59 

exposure to infection such as Pf apical membrane antigen-1 (PfAMA1) and the 19KDa fragment of Pf 60 

merozoite protein 1 (PfMSP119). More recent advances in array and bead-based assay platforms allow for 61 

simultaneous analysis of antibody responses to multiple antigens (Fouda et al., 2006; Kerkhof et al., 2016; 62 

Koffi et al., 2015; Ondigo et al., 2012; Perraut et al., 2014; Wu et al., 2019) . These approaches increase 63 

assay throughput and allow the inclusion of multiple targets that can represent diversity in the parasite and 64 

allow for variation in individual immune response.  Recent multi-antigen studies have identified markers 65 

associated with antibody responses describing recent and historical P. falciparum and P. vivax  exposure 66 

(Helb et al., 2015; van den Hoogen et al., 2015; Longley et al., 2020; Wu et al., 2020b). To fully realize 67 

the additional information provided by examining multiple antigenic targets, these studies have employed 68 

more advanced statistical approaches and algorithms such as machine learning to predict optimal 69 

combinations of antibody responses for the outcome of interest. 70 

The overall aim of this study was to evaluate known malaria-specific P. falciparum and P. vivax serological 71 

markers for their predictive capacity to distinguish current or recent infections from historically exposed 72 

individuals in order to better describe malaria endemicity in three areas of the Philippines. Specifically, we 73 

sought to evaluate different approaches to determining seropositivity for estimating malaria transmission 74 

intensities and exposure in areas of varying endemicity. To achieve this, we: 1) measured malaria-specific 75 

antibody responses in participants recruited through health facility surveys in 3 sites in the Philippines, 2) 76 

evaluated analysis methods to determine seropositivity using single and multiple antigens, and 3) analyzed 77 

antibody responses and estimated transmission intensities in relation to the supposed immune status of 78 

these populations. Our findings detailing the antibody responses to multiple malaria-specific antigens 79 

demonstrate the utility of serology in showing the heterogeneity of malaria transmission in malaria-endemic 80 

populations in the Philippine setting. 81 

Methods  82 

Ethical approval 83 

This study was reviewed and approved by the Research Institute for Tropical Medicine – Institutional Review 84 

Board (RITM IRB 2016-04) and LSHTM Research Ethics Committee (11597). 85 
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Study Sites and Samples 86 

The study was conducted in 3 municipalities in 3 87 

provinces in the Philippines, representing areas of 88 

varying malaria endemicity 1) Rizal in the province 89 

of Palawan, which is currently the most endemic 90 

area in the Philippines, and reported more than 91 

60% of the total cases in the country (annual 92 

parasite index (API) of 5.7 per 1,000 risk 93 

population) in 2018;  2) Abra de Ilog, Occidental 94 

Mindoro, a municipality reporting  sporadic local 95 

cases at the time of the survey and with declining 96 

transmission (API of 0.38 in 2018); and 3) Morong 97 

in Bataan with a last reported indigenous case in 98 

2011 and  declared malaria-free in 2019 (Figure 99 

1). 100 

Participants were recruited from June 2016 to 101 

June 2018 in a health facility-based rolling cross-102 

sectional survey detailed in Reyes et al (2021). 103 

Briefly, all consulting patients, as well as their 104 

companions, were invited to participate and 105 

provide a finger-pricked blood sample for malaria 106 

diagnosis through microscopy (blood smear), 107 

rapid diagnostic test (RDT), and a dried blood spot 108 

sample on Whatman 3MM CHR filter paper for 109 

malaria diagnosis by PCR and serological 110 

analysis. The DBS samples were air-dried and 111 

stored in resealable bags with desiccant at 4°C 112 

while in the field, and transported at ambient 113 

temperatures to the laboratory facility, where it 114 

was stored at 4°C and −20°C for short- and long-115 

term storage, respectively. A total of 9,132 DBS 116 

samples (6572 for Palawan, 1683 for Occidental 117 

Mindoro, and 877 for Bataan) were available for analysis for this study. 118 

Multiplex bead-based assay of malaria-specific antibodies 119 

Serological analysis was conducted using a multiplex bead-based assay as previously described  (Coutts 120 

et al., 2017; Helb et al., 2015; van den Hoogen et al., 2020b), with an antigen panel that included 8 P. 121 

falciparum-specific and 6 P. vivax-specific recombinant antigens coupled to Magplex beads (Luminex Corp, 122 

Austin, TX, USA). The antigens were PfAMA1 (apical membrane antigen 1), PfMSP119 (merozoite surface 123 

protein), and their P. vivax homologues PvAMA1 and PvMSP119; PfGLURP R2 (glutamate rich protein), 124 

Etramp5.Ag1 (early transcribed membrane protein 5), PfSEA1 (schizont egress antigen), GEXP18 125 

(Gametocyte exported protein 18), MSP2 CH150/9 (CH150/9 allele of MSP2), MSP 2 Dd2 (Dd2 allele of 126 

MSP2), PvEBP (erythrocyte binding protein), PvRBP1a (reticulocyte binding protein 1a), PvRII and PvDBPRII 127 

(region II, Duffy binding protein). Antigen characteristics are shown in Table 1.  128 

  129 

 

Figure 1.  Map showing the study sites, with red areas as 

the focused municipalities within the provinces marked 

yellow.  
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Table 1. List of antigens in the multiplex bead-based assay panel 

Antigen Description Gene ID Reference 

Pf-specific    

PfAMA1 apical membrane antigen 1 PF3D7_1133400 Collins et al., 2007 

PfMSP119 
19 kDa fragment of merozoite 

surface protein (MSP) 1 
PF3D7_0930300 

Burghaus and Holder, 1994 

PfGlurp R2 glutamate rich protein R2 PF3D7_1035300 Theisen et al., 1995 

Etramp5.Ag1 
early transcribed membrane 

protein 5 
PF3D7_0532100 

van den Hoogen et al., 2019; 

Spielmann et al., 2003 

PfSEA1 schizont egress antigen PF3D7_1021800 Raj et al., 2014 

GEXP18 Gametocyte exported protein 18 PF3D7_0402400 Helb et al., 2015 

MSP2 CH150 CH150/9 allele of MSP2 PF3D7_0206800 Polley et al., 2006 

MSP2 Dd2 Dd2 allele of MSP2 PF3D7_0206800 Taylor et al., 1995 

Pv-specific    

PvAMA1 apical membrane antigen 1 PVX_092275 Chuquiyauri et al., 2015 

PvMSP119 merozoite surface protein PVX_099980 França et al., 2016b 

PvRII region II, Duffy binding protein PVX_110810 França et al., 2016a 

PvDBP RII region II, Duffy binding protein PVX_110810 Ntumngia et al., 2012 

PvEBP erythrocyte binding protein PVX_110835 
Hester et al., 2013; Menard et al., 

2013 

PvRBP 1a reticulocyte binding protein 1a PVX_098585 França et al., 2016a 

  

The assay was conducted as described in Wu et al (2019). Briefly, serum was eluted from DBS samples 130 

(~1uL from 3mm punch) with overnight incubation on a shaker and used at final dilution of 1:400. 131 

Approximately 1000 beads per antigen were added per well in 96-well flat bottom plates, and were washed 132 

using a handheld magnetic washer (Bio-Plex®) before adding 50uL of the eluted serum samples and 133 

controls, which included 2 positive controls for P. falciparum and P. vivax (pool of plasma from adults in a 134 

hyperendemic malaria setting), and 1 negative control (European malaria-naïve blood donors). After 1.5 135 

hours on a shaker, plates were washed three times with PBS-T buffer, and 50uL of 1:200 secondary antibody 136 

(Jackson Immuno 109-116-098: Goat anti-human Fcy-fragment specific IgG conjugated to R-Phycoerythrin 137 

(R-PE) was added before a further 1.5-hour incubation. After washing, samples were read using the Luminex 138 

200 machine and net median fluorescence intensity (MFI) levels to all antigens were recorded for all samples. 139 

Plate specific adjustments were performed based on the outcome of standard control curves generated 140 

from positive control pools included on each plate.  141 

Data analysis 142 

Statistical analyses were performed using R version 3.6.3 and Graphpad Prism 8. IgG antibody responses 143 

recorded as net MFI values were analyzed using different methods. Quantitative continuous antibody 144 

response data (reported as log10 MFI values) were analyzed in relation to clinico-epidemiological data, and 145 

compared for different groups (i.e., by age group, study site or current malaria infection) using Student’s t-146 

test or one-way ANOVA Kruskal-Wallis test with Wilcoxon test for pairwise comparisons. Correlations 147 

between the levels of antibody responses as well as age and malaria positivity were analyzed using 148 

Spearman’s rank correlation.  149 

Determining seropositivity rates using single antigen responses 150 

Binary outcomes for seropositivity to each antigen were determined through the computation of cut-off 151 

values in 2 ways: by using a.) a 2-component finite mixture model (FMM), and b.) a reference naïve/ negative 152 

population (NegPop; mean MFI plus three standard deviations). The FMM was computed using the mixEM  153 
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function in R mixtools package, where the model identifies a negative component by modelling the log MFI 154 

of the entire dataset as two normally distributed populations and identifying a threshold value from the 155 

modelled negative population (mean MFI plus three standard deviations). To evaluate the accuracy of these 156 

classifications, we used samples from different known exposed and unexposed populations as validation 157 

data (Table 2). The validation data included a P. falciparum and P. vivax-positive group with African positive 158 

controls, as well as clinical samples from a Malaysia study (Fornace et al., 2019) and this study. The malaria-159 

negative group consisted of European malaria-naïve samples, and Philippine malaria-negative samples from 160 

individuals under 10 years of age in a 2017 cross-sectional study in Bataan (van den Hoogen et al., 2020a) 161 

and this study. For the negative population model, the European samples were used as reference population. 162 

Samples were considered seropositive for specific antigens if MFI values are higher than the antigen cutoff 163 

values (mean MFI plus 3 standard deviations for each antigen). Sensitivity and specificity for identifying 164 

current P. falciparum and P. vivax infection from this study and the validation dataset, as well as receiver 165 

operating characteristics (ROC) curves were determined for the seropositivity results of each antigen from 166 

this approach (Supplementary Tables 1 and 2).  167 

Applying machine learning techniques for multiplex analysis of antigen responses 168 

Additionally, we evaluated supervised classification approaches utilizing data from multiple antigen 169 

responses. We used machine learning techniques to assess the predictive ability of all or combinations of 170 

antigens for determining recent and historical malaria exposure. The 8 Pf-specific antigens were the 171 

covariates evaluated for P. falciparum exposure, along with age. For predicting P. vivax exposure, the 6 Pv-172 

specific antigens were used as the covariates. Age data was not available for all the P. vivax training data, 173 

and was therefore excluded. The training data used for these models, as detailed in Table 2, included the 174 

validation dataset described, and to account for the observed age-dependent cumulative responses to the 175 

antigens, the negative dataset included historical positives, which are data from survey participants aged 50 176 

years and older from Malaysia and Philippines (assumed to have had some historical exposure), as well as 177 

a random selection of Pf or Pv-negatives from all age groups from this current study. The historical positives 178 

were used as the positive training dataset for historical exposure, and the negative population training data 179 

included the same negatives from the validation dataset.   180 

Super Learner (SL) optimized with AUC (Area under the ROC Curve) was used as an ensemble modelling 181 

algorithm to allow for evaluating multiple models simultaneously (Helb et al., 2015; Hubbard et al., 2013), 182 

namely Random Forest (RF), k-Nearest Neighbor (kNN), generalized boosted models (GBM), Support Vector 183 

Machine (SVM), and GLM with Lasso (glmnet). Feature selection with corP, that screens for univariate 184 

correlation, was also included for some component models (GBM, RF). The SL model gives a prediction 185 

value that ranges from 0 to 1, and this can be used to obtain binary classification (i.e., those with prediction 186 

values higher than 0.5 were considered positive). A 20-fold cross-validation was performed for internal 187 

validation to evaluate the performance of the fitted SL models using a portion of the training dataset withheld 188 

from the model, and the whole training dataset. ROC curves were used to evaluate the outcome of predicted 189 

values for the samples and were then compared to the single antigen performances. The performance of 190 

each ML model, or base learner, in the SL ensemble was also assessed. For additional assessment of the 191 

model performance, external validation was performed for the classification models through an independent 192 

dataset from a Malaysia cross-sectional survey (Fornace et al., 2018), which used the same panel of P. 193 

falciparum antigens (not available for P. vivax panel). 194 

Evaluating model performance in identifying current Pf and Pv infections in this study 195 

Antibody responses to antigens included in this study (in particular, PfGLURP R2, Etramp5.Ag1 and GEXP18) 196 

have been previously shown to be predictive of recent exposure to P. falciparum infection (Helb et al., 2015;197 
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Table 2. Training and validation data used in the classification models   

Training data used N 
Validation 
dataset * 

Negative 
population 

model 

SuperLearner / 
Random Forest: 

SuperLearner / 
Random Forest: 

SuperLearner / 
Random Forest: 

Random Forest Random Forest 

Recent Pf 
exposure 

Recent Pv 
exposure 

Historical Pf 
exposure 

Historical Pf 
exposure 

Historical Pv 
exposure 

European naive controls 179 neg − − − − − − 
Positive controls          

African P. falciparum-positive 4 Pf+  +     

African P. vivax-positive 10 Pv+   +    

This study         

P. falciparum-positive subset 568 Pf+  +     

P. vivax microscopy-positive subset 46 Pv+   +    

Below 10 y.o. from Bataan 202 neg  − − − − − 
Historical positives aged ≥50y.o. from 
Occidental Mindoro and Palawan 

711   −  +   

PfAMA1 and PfMSP119 seropositive 
subset 

512      +  

PvAMA1 and PvMSP119 seropositive 
subset 

324       + 
Randomly selected malaria-negatives from 
Palawan aged <50y.o.** 

550   − −    

Bataan study (van den Hoogen et al., 2020a)         

Below 10 y.o. from Bataan 73 neg  − − − − − 
Malaysia study (Fornace et al., 2019)         

P. falciparum-positive subset 17 Pf+  +     

P. vivax-positive subset 37 Pv+   +    

Historical positives aged ≥50y.o. from 
Malaysia 2 

1581     +   

PfAMA1 and PfMSP119 seropositive 
subset 

1479   −   +  

PvAMA1 and PvMSP119 seropositive 
subset 

873     −       + 

* Finite mixture models (FMM) were derived from the entire ENSURE dataset (n=9132), and indicated validation dataset was used to determine receiver operating characteristics (ROC) curves for both FMM and 

Negative population models (seropositivity classifications from single antigens). For the supervised classification models, + means it was classified as positive for the model, and – means it is considered for 

negative classification. Abbreviations: Pf- P. falciparum, Pv- P. vivax, neg – malaria-negative; y.o.-years old 

198 
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van den Hoogen et al., 2020c) and thus we assessed their performance using the malaria-positive samples 199 

in this study (n=889). In addition to single antigens, the SL algorithm was used to generate predictive 200 

outcomes based on different combinations of the covariates. The importance of the antigens in providing 201 

accurate predictions were assessed by using 3 to 9 covariates at a time for the SL model (based on the 202 

variable influence reported by the base learners used). The AUC values from the ROC analysis based on 203 

training data and ENSURE malaria-positives data were compared among the single-antigen seropositivity 204 

rates and machine learning predictions for recent exposure. For the P. vivax analysis, responses to all 6 205 

antigens were evaluated as covariates. With Super Learner giving weights to multiple ML models assessed 206 

simultaneously, we also employed for classification the individual ML models that were given the most weight 207 

or importance, namely RF and GBM. 208 

Estimating seroconversion rates and historical exposure 209 

In line with previous studies, seropositivity of the cumulative exposure markers (AMA1, MSP119 for both P. 210 

falciparum and P. vivax) were used to estimate seroconversion rates (SCR), or the rate at which seronegative 211 

individuals become seropositive, and seroreversion rates (SRR), or the rate at which seropositive individuals 212 

revert to being seronegative, by fitting the age-specific prevalence in each of the 3 study sites into reverse 213 

catalytic models using likelihood ratio methods (Drakeley et al., 2005; Sepúlveda et al., 2015). 214 

Seroprevalence data were fitted to models that allow for a change in SCR, and this was preferred if the 215 

likelihood ratio tests result in a significant change when compared to a model assuming constant SCR. The 216 

predicted time of change in transmission is then analyzed. In addition to the AMA1 and MSP119 217 

seroprevalence based on FMM models, Random Forest classifications using the combined continuous data 218 

of AMA1 and MSP119 net MFI values for both P. falciparum (Pf-RF:2-covar) and P. vivax (Pv-RF:2-covar) 219 

were also used to generate seroprevalence curves used for the analysis. The positive training data used for 220 

these RF models are subsets of the historical positives that were seropositive to both markers for each 221 

species based on FMM cutoff values (Table 2). The Super Learner approach was also used to predict Pf and 222 

Pv historical exposure using quantitative data from all the antigens, with analysis performed separately for 223 

each species.         224 

Results 225 

Heterogeneity of antibody responses from the 3 collection sites 226 

A total of 9132 samples from a health facility-based survey conducted from 2016 to 2018 (Reyes et al., 227 

2021) were available for serological evaluation, with the majority (>70%) from Rizal, Palawan, where the 228 

monthly sampling spanned 2 years, while collection in the other sites Morong, Bataan and Abra de Ilog, 229 

Occidental Mindoro spanned 1 year. Females comprised more than 60% of the total number of participants, 230 

with higher proportions in Bataan and Occidental Mindoro, though individuals from all ages and gender 231 

groups were represented (Table 3).  232 

Malaria infections were detected only in Palawan with ~50% of infections in participants of both sexes aged 233 

under 10 years old (51.8% and 48.2% males and females, respectively). Of the 889 Plasmodium-positive 234 

samples confirmed through either microscopy, RDT and/or PCR, 58.0% had P. falciparum, 12.4% had P. 235 

vivax, 6.7% had mixed Pf+Pv infections, 6.1% had P. malariae, P. ovale and P. knowlesi, while species 236 

identification could not be confirmed for 16.8% of the PCR-positive samples. From the Pf and Pv malaria-237 

positive individuals (n=707, including mixed infections), 388 (54.8%) had fever before or during the visit to 238 

the health facility, 62.1% of which were aged 10 years and under. Conversely, 63.1% of the asymptomatic 239 

malaria infections were in individuals above 10 years old. 240 

Firstly, we compared the magnitude of antibody responses to P. falciparum and P. vivax antigens from the 241 

3 collection sites. Corroborating with the reported case prevalence in the area, we show that individuals 242 
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from Palawan consistently had the highest antibody levels to all antigens and in all age groups, followed by 243 

individuals from Occidental Mindoro then Bataan (Fig 2A, Supplementary Figure 1).   244 

Table 3. Characteristics of study population by site 

  
Morong, Bataan 

Abra de Ilog, Occidental 
Mindoro 

Rizal, Palawan 

Number of analyzed samples 877 1683 6572 

Female, % 628 (71.6%) 1101 (65.4%) 3734 (56.8%) 

Age, median (IQR) 26 (11-39) 28 (15-43) 13 (5-31) 

number (% in site)       

0 to 5 150 (17.1%) 150 (8.9%) 1900 (28.9%) 

6 to 10 63 (7.2%) 154 (9.2%) 1055 (16.1%) 

11 to 19 102 (11.6%) 234 (13.9%) 957 (14.6%) 

20 to 34 279 (31.8%) 508 (30.2%) 1222 (18.6%) 

35 up 283 (32.3%) 637 (37.8%) 1438 (21.9%) 

Plasmodium-positive by 
microscopy/RDT/PCR (% in site)* 0 (0.0%) 0 (0.0%) 889 (13.5%) 

P. falciparum-positive (by 
microscopy/RDT/PCR)* 0 (0.0%) 0 (0.0%) 595 (9.1%) 

P. vivax-positive (by 
microscopy/RDT/PCR)* 0 (0.0%) 0 (0.0%) 172 (2.6%) 

PCR-confirmed species ID, n (% in site)      

P. falciparum, Pf mono-infection 0 (0.0%) 0 (0.0%) 516 (7.9%) 

P. vivax, Pv mono-infection 0 (0.0%) 0 (0.0%) 110 (1.7%) 

Pf + Pv mixed infection 0 (0.0%) 0 (0.0%) 60 (0.9%) 

Other species (mono- or mixed 
infections) 0 (0.0%) 0 (0.0%) 55 (0.8%) 

With fever or history of fever (% in site) 69 (7.9%) 172 (10.2%) 2727 (41.5%) 

Symptomatic Pf and Pv infections* 0 (0.0%) 0 (0.0%) 388 (5.9%) 
Asymptomatic infections (no fever, 
Plasmodium-positive)* 0 (0.0%) 0 (0.0%) 428 (6.5%) 

Asymptomatic microscopy-
positive Pf infections 0 (0.0%) 0 (0.0%) 132 (2.0%) 

Asymptomatic microscopy-
positive Pv infections 

0 (0.0%) 0 (0.0%) 35 (0.5%) 

* Numbers include all Plasmodium infections detected by microscopy, RDT and/or PCR. Some samples did not have enough 
material for further species identification by PCR, for which results were based on microscopy and/or RDT diagnosis, while 
some (n=149) were confirmed Plasmodium-positive only. Pf and Pv numbers reported include mixed infections, which were 
specified in the PCR-confirmed species ID breakdown. 
** All 5 Plasmodium species, including P. malariae (n=50), P. ovale (n=4) and P. knowlesi (n=1), were detected in Palawan, 
with some as co-infections with Pf and/or Pv.  

While antibody levels increased with age in all sites, there were marked differences observed between sites. 245 

Younger age groups from Bataan and Occidental Mindoro had similar magnitude for antigens Etramp5.Ag1, 246 

PvAMA1, PvMSP119 and PvDBPRII, which were significantly lower than in individuals from Palawan (p<0.001). 247 

The association between antibody levels and age as well as malaria positivity was then assessed for each 248 

antigen for the Palawan population, and expectedly, those associated with cumulative exposure PfAMA1, 249 

PfMSP119, PfGLURP R2, PvAMA1 and PvMSP119 were strongly correlated with age (Spearman’s coefficient 250 

>0.5, p<0.0001), while those associated with recent exposure to P. falciparum, Etramp5.Ag1 and GEXP18, 251 

were less strongly associated (Spearman’s coefficient of 0.39 and 0.42, respectively, p<0.0001), along with 252 

other P. vivax markers (Figure 2B). Strong positive correlations in antibody responses to all antigens were 253 

observed (Figure 2B), but the highest associations were between responses to antigens from the same 254 

species. For the P. falciparum-specific antigens, Etramp5.Ag1, PfGLURP R2 and GEXP18 had the stronger 255 
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associations with current P. falciparum infection (Spearman’s correlation coefficient ranging from 0.26 to 256 

0.27, p<0.0001), and PvMSP119 and PvDBPRII showed weak correlation (Spearman’s coefficient of 0.13 and 257 

0.12, respectively, p<0.0001) for current P. vivax infection. 258 

Similarly, mean antibody levels were higher in a species-specific manner (Figure 3); Etramp5.Ag1, PfGLURP 259 

R2 and GEXP18 showed significantly higher antibody levels in those with active Pf infections (p<0.0001) and 260 

PvMSP119 antibody levels were highest in P. vivax-positive cases (p<0.001), with better resolution in younger 261 

age groups. Taken together, our results confirm the applicability of these serological markers in 262 

differentiating areas of varying malaria endemicity, and there were species-specific associations with current 263 

infection. 264 

 265 

 

 
 

Figure 2. Antibody responses to serological markers of P. falciparum and P. vivax correlate with malaria incidence 

A. Antibody levels (reported as log10 MFI) in response to P. falciparum cumulative and recent exposure markers 

PfAMA1, PfMSP119, and Etramp5.Ag1, and P. vivax serological markers PvAMA1, PvMSP119 and PvDBP.RII by study 

site and age group. Statistical difference of overall antibody responses among study sites within age groups were 

determined using Kruskall-Wallis test and Wilcoxon test for pairwise comparisons (*p < 0.05, **p < 0.01, ***p < 0.001, 

****p < 0.0001). 

B. Spearman’s correlation coefficients for age, malaria diagnosis (Mal+: Plasmodium-positive, Pf+: P. falciparum-positive, 

Pv+: P. vivax-positive), and antibody responses to the 14 antigens in the panel for Palawan samples (n=6572).   
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 266 

 
 

Figure 3. Serological markers exhibit species-specific association with current infection in varying levels 

A-B) Comparison of antibody titers of Palawan samples (n=6572) for Plasmodium-positive (Pf: P. falciparum-positive, Pf/Pv: 

Pf and Pv mixed infection, Pv: P. vivax-positive) and negative (neg) samples by age group in each P. falciparum-specific 

(A) and P.vivax-specific antigen. 

 

 267 
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Identifying markers of recent falciparum and vivax malaria exposure and current infection 268 

Next, we applied different analytical approaches to ascertain whether the serological markers can be used 269 

to predict recent or historical exposure. We first assessed the performance of responses to single antigens 270 

in determining binary outcomes for seropositivity by estimating cutoff values using finite mixture models 271 

(FMM) and negative population models that represented unsupervised and supervised classification models, 272 

respectively (Figure 4A & 4B, Supplementary Tables 1 & 2). Seropositivity results were then compared with 273 

P. falciparum and P. vivax positivity, as assessed by microscopy, RDT or PCR. The resulting seropositivity 274 

cutoff values were comparable for both models, with AUC values from the validation data ranging from 0.812 275 

to 0.932 for the 8 P. falciparum markers, and 0.534 to 0.943 for the 6 P. vivax markers.  276 

When evaluated in classifying study samples, AUC values ranged from 0.497 to 0.756 for P. falciparum 277 

markers and 0.513 to 0.731 for P. vivax markers, showing low predictive ability for some of the markers, 278 

although previously reported recent exposure markers Etramp5.Ag1 and GEXP18 for P. falciparum and 279 

PvMSP119 for P. vivax, had significantly higher AUC values (>0.735, p<0.002) compared to the rest of the 280 

markers analyzed (ranged from 0.4971 to 0.7065) (Supplementary Tables 1 & 2). Density plots of antibody 281 

responses also show an overlap in samples from malaria-negative and positive individuals, contributing to 282 

the lower AUCs (Supplementary Figure 2) though overall seropositivity to antigens matched with 79.2% of 283 

the falciparum-positive and 60% of the vivax-positive cases in the project dataset. Proportions of samples 284 

seropositive to at least 4 of the 8 Pf markers and at least 3 of 6 Pv markers were 5.02% and 5.70% for Bataan, 285 

30.96% and 25.85% for Occidental Mindoro, and 53.90% and 40.03% for Palawan, respectively. 286 

Seroprevalence rates for all antigens were consistently low in Bataan in all age groups as shown in Figures 287 

4A & 4B, with recent exposure markers (hollow circles) estimating lower rates, consistent with their lower 288 

correlation with age and lower likelihood of exposure to infection in this setting.  289 

To analyze the multi-antigen continuous antibody data, we used supervised machine learning methods for 290 

antibody responses to antigens for both species. The Super Learner (SL) ensemble machine learning 291 

algorithm was used to simultaneously evaluate machine learning models, which included Random Forest 292 

(RF), k-Nearest Neighbor (kNN), generalized boosted models (GBM), Support Vector Machine (SVM), and 293 

GLM with Lasso (glmnet), in predicting recent and historical malaria exposure through the resulting weights 294 

applied to each learner after cross-validation. Different combinations of covariates were assessed for their 295 

relative importance for the model using the ROC curves of the cross-validated predictions (Figure 4C & 4D; 296 

Supplementary Tables 1 & 2). A 9-covariate model (SL: 9-covar) was evaluated for the Pf panel, which had 297 

the antibody responses to 8 antigens and age as covariates. This model had the highest AUC among all SL 298 

models, with a value of 0.9898 (95% CI 0.9874-0.9921) and 0.9197 (95% CI 0.9093-0.9302) for the binary 299 

classification predictions for the training data and test data, respectively. It was able to correctly identify 300 

71.1% of the P. falciparum-positive individuals from this study (Supplementary Table 1). Removing the age 301 

as covariate (SL:8-covar model) decreased the prediction capacity of the model for the test data, with 53.3% 302 

of the P. falciparum infections identified. For predicting P. vivax recent exposure, i.e., confirmed Pv infections, 303 

the 6 Pv antigens were used as covariates for the SL model (SL:6-covar) and had a resulting AUC of 0.8857 304 

(95% CI 0.8429-0.9284) and 0.6332 (0.5979-0.6686) for validation data and test data, respectively 305 

(Supplementary Table 2). 306 

Super Learner assigns weights to each machine learning model included in the ensemble algorithm after 307 

cross-validation, and for both Pf and Pv exposure predictions, generalized boosted models with or without 308 

feature selection (GBM and GBM_corP) were given the highest weights, followed by 3 included variations of 309 

the RF model (RF, RF-ranger and RF-ranger_corP) (Supplementary Figure 3A & 3B). However, upon using 310 

20-fold nested cross-validation and closer inspection of the classification accuracy of the individual learners, 311 

the Random Forest (RF) models were found to have the highest AUCs for predicting P. falciparum recent 312 

infections in both the validation data (not shown) and test data (Supplementary Figure 3C), while component  313 
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Figure 4. Analysis of serological markers through machine learning methods improves classifications for recent 

P. falciparum and P. vivax exposure or current infection 

A-B. Seropositivity rates of sample population by site and age group based on cutoff values from finite mixture models 

(FMM) and negative population model (NegPop) for Pf and Pv antigens (detailed in Supplementary Tables 1 and 

2). Hollow dots represent the FMM and Negpop seropositivity rates for the two reported recent exposure markers 

Etramp5.Ag1 and GEXP18 for Pf (A), and PvMSP119 and PvDBP.RII for Pv (B) panel. Lines with error bars represent 

median with 95% CI.  

C-D. Receiver operating characteristic (ROC) curves for the antibody responses to single antigens for individual antigens, 

and for the SL models (shown in both as binary outcomes of seropositivity / prediction values).  

E-F. Variable importance of the 8 Pf-specific (E) and 6 Pv-specific (F) antigens based on the Random Forest model. 

G. Predicted rates of recent Pf exposure based on analysis of the continuous antibody responses of the 8-antigen panel 

using Super Learner. Each hollow dot represents differences in the number of covariates used for the model (3, 4, 8, 

9), as well as 2 showing rates from prediction values of the Random Forests (RF) component model (RF.covar4 and 

RF.covar8 in solid dots).  

H. Predicted rates of recent Pv exposure based on analysis of the continuous antibody responses of the 6-antigen panel 

using Super Learner. Dots represent the positivity rates from the prediction values of the SL model, and the 

individual predictions from the 2 most weighted base learners in the resulting model – RF and GBM. RF predictions 

(RF.covar6) are shown as solid dots.  

(SL: Super Learner, RF: random Forest, covar#: number of covariates included in the model, FMM: finite mixture models; 

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 with significance assessed by one-way ANOVA followed by Tukey’s 

multiple comparison) 

 

models for classifying vivax malaria infections had similar AUCs, ranging from 0.701 to 0.8 for test data 314 

(Supplementary Figure 3D).  315 

The Super Learner ensemble model did not show any increase in classification accuracy compared to RF, 316 

which suggests that RF is the best performing model in distinguishing current or recent falciparum malaria 317 

infections. Still, both SL and SL-RF (RF prediction within the SL ensemble) predictions from the Pf panel had 318 

highly improved AUCs compared to single antigen classifications based on finite mixture models (Figure 4C), 319 

while model predictions for the Pv panel had comparable AUCs, and machine learning models did not 320 

improve the AUC predictions (Figure 4D). Variable importance in the RF model shows that responses to 321 

Etramp5.Ag1, PfGLURP R2, GEXP18 and PfMSP119 had the highest influence in the predictions for P. 322 

falciparum positivity (Figure 4E), while PvMSP119 and PvAMA1 were the most predictive P. vivax antigens 323 

(Figure 4F). Using the top 3 antigens (SL:3-covar - PfGLURP R2, Etramp5.Ag1, GEXP18) and top 4 (SL:4-324 

covar, which included PfMSP119) as covariates resulted in further lowered AUC values with 0.8790 and 325 

0.8967, respectively, and identified >50% of the P. falciparum cases (Supplementary Table 1).  326 

Performing Random Forest models outside SL (using Random Forest package) had the same predictions as 327 

SL-RF, and using the 4 covariates Etramp5.Ag1, PfGLURP R2, GEXP18 and PfMSP119 (RF.covar4) gave an 328 

AUC of 0.9983 for the training data and 0.9591 for the test data – the highest for all Pf models tested (Figure 329 

3C; Supplementary Table 1). The RF.covar4 model was able to accurately identify 92.8% of the P. falciparum 330 

infections in our data, and had a comparable AUC with the RF 8-covariate model (RF.covar8), showing that 331 

analysis using the 4 antigens is sufficient for predicting recent P. falciparum infection or exposure (Figure 332 

3C; Supplementary Table 1). Meanwhile, predictions of P. vivax recent exposure were also not different for 333 

the SL, RF and GBM models (Figure 4D; Supplementary Table 2). 334 

The predictive performance of the resulting SL models (SL:3-covar, SL:4-covar, SL:8-covar, SL:9-covar for 335 

Pf exposure predictions, and SL:6-covar for Pv exposure predictions) were then compared with RF (both 336 

species) and GBM (for Pv) predictions (RF.covar4 and RF.covar8 for Pf; RF.covar6 and GBM.covar6 for Pv) 337 

(Figure 4G & 4H), and the rates of predicted current P. falciparum infection based on SL and RF models all 338 

consistently gave 0-0.2% prediction for Occidental Mindoro and Bataan, where no P. falciparum malaria 339 

cases were reported in recent years, suggesting that these models can accurately predict the absence of 340 

recent falciparum malaria exposure and infection (Figure 4G). Analysis of antibody responses to P. vivax  341 
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Figure 5. Seroconversion curves based on reverse catalytic models using AMA1 and MSP119 antibody responses provide 

accurate estimates of historical exposure. Age-specific seroprevalence was based on finite mixture models and Random Forest 

models (using both antigens: RF 2-covar models) for each species. Solid lines represent the fit of the reversible catalytic models, 

dashed lines represent 95% confidence intervals, and dots represent the observed proportions of seropositives per age divided into 

10% centiles. For models assuming a change point in transmission, only the recent seroconversion rates and change point estimates 

(in years) are shown, while the historical seroconversion rates and seroreversion rates are detailed in Table 4.  
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antigens also had <1% prediction rate for Bataan and <5% for Occidental Mindoro, also indicative of the 342 

absence of recent P. vivax infections in these sites (Figure 4H; Supplementary Table 2). 343 

To further evaluate the performance of the RF 4-covariate model for predicting P. falciparum recent 344 

exposure, external validation was performed using an available test dataset that included samples from a 345 

cross-sectional survey in Malaysia (n=8163; Fornace et al., 2018), PCR-validated malaria cases (Pf=47, non-346 

Pf=423), and malaria-naïve or malaria-negative samples (n=511). The model prediction resulted in an AUC 347 

of 0.93 (CI 0.8817-0.9782), and was able to predict 0.47% prevalence of infection for the cross-sectional 348 

survey, correctly identifying 41 of 47 (87.2%) of the P. falciparum PCR-confirmed cases seen in the survey. 349 

The observation that this relatively simple model was able to provide accurate predictions for both the 350 

Philippine and Malaysian datasets suggests potential as a robust indicator for recent exposure and current 351 

infections, in areas with varying levels of transmission. 352 

Estimating P. falciparum and P. vivax historical exposure 353 

AMA1 and MSP119 responses for P. falciparum and P. vivax have been widely used to assess historical 354 

 
Table 4. Seroconversion and seroreversion rates from reverse catalytic models in each study site 

  Bataan Occidental Mindoro Palawan 

PfAMA1 SCRhistorical 0.02102 (0.00599 - 0.07375) 0.03306 (0.02150 - 0.05082) 0.06953 (0.06251 - 0.07736) 

SCRrecent 0.00193 (0.00112 - 0.00332) 0.01024 (0.00707 - 0.01483) 0.13346 (0.11802 - 0.15092) 

SRR 0.010002 (0.0010 - 0.10353) 0.01239 (0.00575 - 0.02673) 0.00841 (0.00626 - 0.01129) 

Time of change in 
transmission (yrs) 

29 12 2 

PfMSP119 SCRhistorical 0.04042 (0.00836 - 0.19516) 0.03399 (0.02221 - 0.05204) 0.07521 (0.06658 - 0.08495) 

SCRrecent 0.00243 (0.00148 - 0.00396) 0.01412 (0.00842 - 0.02367) 0.14811 (0.13109 - 0.16734) 

SRR 0.01959 (0.00564 - 0.06796) 0.01779 (0.00926 - 0.03416) 0.01221 (0.00946 - 0.01575) 

Time of change in 
transmission (yrs) 

33 7 2 

RF with 
PfAMA1 and 
PfMSP119 

SCRhistorical 0.01513 (0.00426 - 0.05370) 0.03338 (0.02172 - 0.05130) 0.06836 (0.06133 - 0.07619) 

SCRrecent 0.00122 (0.00064 - 0.00234) 0.00931 (0.00630 - 0.01377) 0.12847 (0.11333 - 0.14564) 

SRR 0.00463 (0.00002 - 0.91264) 0.01327 (0.00639 - 0.02755) 0.00901 (0.00674 - 0.01204) 

Time of change in 
transmission (yrs) 

29 12 2 

PvAMA1 SCRhistorical 0.07078 (0.01619 - 0.30943) 0.02760 (0.02094 - 0.03638) 0.05210 (0.04652 - 0.05834) 

SCRrecent 0.00197 (0.00102 - 0.00377) 0.00840 (0.00451 - 0.01564) 0.08800 (0.07591 - 0.10202) 

SRR 0.03138 (0.01524 - 0.06460) 0.00715 (0.00269 - 0.01898) 0.01074 (0.00801 - 0.01441) 

Time of change in 
transmission (yrs) 

29 7 2 

PvMSP119 SCRhistorical 0.02858 (0.00465 - 0.17570) 
0.01143 (0.00921 - 0.01419) 

0.03760 (0.03172 - 0.04458) 

SCRrecent 0.00178 (0.00092 - 0.00347) 0.08687 (0.07507 - 0.10052) 

SRR 0.02941 (0.00862 - 0.10026) 0.00404 (0.00047 - 0.03486) 0.02146 (0.01599 - 0.02880) 

Time of change in 
transmission (yrs) 

28 - 2 

RF with 
PvAMA1 and 
PvMSP119 

SCRhistorical 0.03387 (0.00559 - 0.20521) 
0.01139 (0.00919 - 0.01414) 

0.04023 (0.03472 - 0.04661) 

SCRrecent 0.00169 (0.00084 - 0.00340) 0.08479 (0.07313 - 0.09833) 

SRR 0.03498 (0.01265 - 0.09673) 0.00388 (0.00042 - 0.03598) 0.02227 (0.01674 - 0.02963) 

Time of change in 
transmission (yrs) 

28 - 2 

Seroconversion rates (SCR) and seroreversion rates (SRR) are presented for P. falciparum and P. vivax based on reverse catalytic models using age-
specific seroprevalence from finite mixture models with AMA1 and MSP119 and Random Forest (RF) 2-covariate models. If the best reverse catalytic 
model to fit the age-adjusted seropositivity data was one with no change point in transmission, only 1 SCR is indicated, while if the best fit is one with a 
change point, the SCR before the change point is indicated as SCRhistorical and the SCR after the change point is indicated as SCRrecent. The estimated 
change point in transmission (in years) is also indicated. 
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Figure 6. Cumulative exposure markers confirm historical P. falciparum and P. vivax exposure, and heterogeneity 

of transmission in the 3 sites  

A. Plot of Super Learner prediction values for Pf historical exposure by site and age, using the model with 8 Pf-specific 

serological markers as covariates. Red dotted line represents positivity cutoff at 0.5.  

B. Variable importance based on the Random Forest model of the 8 Pf-specific antigens and 6 Pv-specific antigens in 

predicting historical exposure for each species. 

C. Distribution of antibody responses to PfAMA1 by site and age of individuals (n=9132). Red dashed line represents 

the seropositivity cutoff value from the FMM model. 

D-E. Summary graphs per age category per site of SL-predicted Pf historical exposure (D) and PfAMA1, PfMSP1 

seropositivity rates graphed with estimated historical exposure rates using the Random Forest model with PfAMA1, 

PfMSP119 as covariates (E).  

F.     Summary graph of PvAMA1, PvMSP1 seropositivity rates with estimated historical exposure rates using the 

Random Forest model with PvAMA1, PvMSP119 as covariates seropositivity per age category per site 

 

 355 
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exposure by estimating seroconversion and seroreversion rates. Using reverse catalytic models and 356 

maximum likelihood tests on the age-specific seroprevalence based on the FMM model seropositivity rates 357 

for PfAMA1, PfMSP119, PvAMA1 and PvMSP119, we estimated the time of interruption of transmission in our 358 

study area (Figure 5, Table 4).  359 

The Random Forest algorithm was also employed to generate models that make use of both cumulative 360 

exposure antigens (2-covariate models for the 2 species: Pf-RF:2-covar and Pv-RF:2-covar), and the 361 

predicted binary outcomes were also used in the reverse catalytic models. Most of the seroconversion 362 

curves were best fit with a model assuming a change in transmission based on log likelihood tests (p < 363 

0.001), except for PvMSP119 (p= 0.507) and the RF-Pv model (p=0.285) with PvAMA1 and PvMSP119 as 364 

covariates (Table 4). 365 

Based on these models, the time of change in transmission in Bataan was estimated at 29-33 years for P. 366 

falciparum and 28-29 years for P. vivax. Occidental Mindoro had varied estimates of the change point (7 and 367 

12 years), while PvMSP119 and consequently the RF Pv 2-covar model did not better fit in the model 368 

assuming a change in transmission. For these 2 provinces, the seroconversion rates were decreased after 369 

the change point, suggesting a decrease in transmission, while for Palawan, an increase of the 370 

seroconversion rates was observed in all models after the 2-year change point, suggesting that there was 371 

an increase in transmission in this study site. 372 

We further explored whether the use of the SL model can provide improved estimates of historical exposure. 373 

The 8 Pf antigens and 6 Pv antigens were separately used as covariates, and the binary classification derived 374 

from the SL prediction values for each site by age group were then compared with the single antigen 375 

seropositivity rates and RF 2-covariate models’ estimated exposure rates (Figure 6A & 6C, summarized in 376 

Figure 6D & 6E, respectively). The contribution of each covariate based on the RF model (Figure 6B), as 377 

expected, showed that the antigens associated with long-lived antibody responses – AMA1 and MSP119 – 378 

had the highest influence in the prediction for both P. falciparum and P. vivax historical exposure. However, 379 

comparing the SL-predicted rates with seropositivity rates of the top Pf antigen PfAMA1 (Figure 6A & 6B) 380 

show that SL overestimated historical exposure, with higher-than-expected positivity rates observed in 381 

younger age groups from Bataan and Occidental Mindoro where transmission is reportedly absent (Figure 382 

6E). The seropositivity rates based on the 2-covariate RF models with AMA1 and MSP119 seem to provide 383 

better estimates of historical exposure to both P. falciparum and P. vivax based on known malaria prevalence 384 

of the sites than the SL models that included all antigens (Figure 6E & 6F). 385 

Discussion 386 

In this study we assessed the utility of multiple antigen specific antibody responses and different statistical 387 

methods to estimate both current malaria infection and historical transmission in areas of different 388 

endemicity in the Philippines. Using a multiplex bead-based assay with a panel of 8 P. falciparum-specific 389 

and 6 P. vivax-specific recombinant antigens, we showed that whilst antibody levels to most antigens 390 

described broad differences in transmission, Random Forest predictions with 4 P. falciparum-specific 391 

antigens (Etramp5.Ag1, PfGLURP R2, GEXP18 and PfMSP119) accurately identified >90% of P. falciparum 392 

infections in the data. Rates of predicted infection with these models were also highly consistent with ongoing 393 

levels of transmission described by routine data. Similar observations were made for P. vivax with 2 antigens 394 

(PvMSP119 and PvAMA1) but with lower precision. Moreover, reconstruction of historical transmission 395 

patterns was improved by combining seropositivity to two antigens (MSP119 and AMA1 for both P. falciparum 396 

and P. vivax) assessed using finite mixture models, and further improved using the Random Forest model 397 

on continuous data from these antigens combined. These findings highlight the potential for advanced 398 
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analysis of multiplex serological data to provide additional accurate data on incidence levels that could be 399 

used by control programs at small spatial scales.    400 

The use of multiple antigens to assess exposure to malaria infection circumvents some issues related to 401 

genetic diversity in the parasite and variation in the human immune response to different antigenic targets. 402 

The approach also allows application of more advanced statistical analysis to examine optimal combinations 403 

of antibody responses in predicting specific outcomes. Here, in addition to the well-studied antigens AMA1 404 

and MSP119, we screened other antigenic markers that have been reported to accurately predict recent 405 

exposure in studies in Africa and the Caribbean (Helb et al., 2015; van den Hoogen et al., 2020c; Wu et 406 

al., 2020a).  We then employed a machine learning approach for predicting classification outcomes of 407 

disease exposure which has been used previously to analyze antibody response data (Helb et al., 2015; 408 

Longley et al., 2020; Rosado et al., 2020). We showed that the machine learning models were able to both 409 

confirm the absence of current infection in Occidental Mindoro and Bataan, and, using the Random Forest 410 

predictions from a 4-covariate model including PfGLURP R2, Etramp5.Ag1, GEXP18 and PfMSP119, 411 

accurately identify >92% of the Plasmodium-positive study samples from this study, whether detected 412 

through microscopy, RDT and/or PCR.  The relative simplicity of this model and lack of requirement for basic 413 

epidemiological variables such as age is a benefit in assessing current infection and recent exposure, 414 

including stable transmission settings (i.e., like in Palawan with an API of >5 for the whole province, and >30 415 

for the study site Rizal).  We expected that the Super Learner model would improve the predictions with its 416 

ensemble approach; however, for predicting P. falciparum current infections in particular, RF-based models 417 

had the better AUC for both training and test data. This was not the case for the P. vivax current infection 418 

predictions, which showed similar AUCs (<0.7) for the final SL model and its component models.  RF variable 419 

importance showed that PvMSP119 was the most predictive among the 6 antigens in our panel, which is 420 

consistent with the recent study by Longley et al (2020), likewise utilizing a RF prediction algorithm that 421 

identified PvMSP119 as one of the 8 most predictive P. vivax recent exposure markers. It is likely that the low 422 

AUC and predictive ability we observed is a limitation of the panel of antigens available to us at the time of 423 

the study rather than the analytical approach itself.  Notwithstanding, the SL approach was able to provide 424 

the means for evaluating multiple supervised machine learning models simultaneously, and, for the purpose 425 

of accurately distinguishing recent exposure from historical exposure with high sensitivity, the RF model 426 

seems to be the most predictive. The satisfactory results from the external validation using the cross-427 

sectional survey data from Malaysia also suggests broader utility not least in neighboring Southeast Asian 428 

countries with similar historical transmission patterns.  429 

In stratification of malaria transmission, a key component is determining its absence. In many countries 430 

including the Philippines, malaria-endemic provinces apply for malaria-free status when indigenous or local 431 

cases have not been reported for a set number of years, typically 3 or more. More rapid, subnational 432 

demonstration of the absence of exposure could aid in this process. Cumulative exposure markers are used 433 

in various studies to estimate malaria transmission intensities, wherein age-specific seroprevalence can be 434 

used to confirm the level of historical exposure of endemic areas. Malaria-specific serological assays can 435 

then be utilized for determining the absence of transmission by evaluating antibody responses of populations. 436 

In assessing the individual performances of recent exposure markers, it can be observed that younger age 437 

groups in Bataan reported <10% seropositivity, although this province has not reported indigenous cases 438 

since 2011, and this may be attributed to background seropositivity. Moreover, the lower seropositivity rates 439 

observed in younger age groups in Palawan may be attributed to children who have not yet developed 440 

adequate IgG responses for detection in a serological assay. Nevertheless, our results provide an alternative 441 

approach using a multiplex analysis of 4 predictive P. falciparum serological markers that was able to 442 

improve the computation of binary outcomes for accurately predicting current or recent falciparum malaria 443 

infections. 444 
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Strong correlations among the P. falciparum and P. vivax antigens in the panel were observed, consistent 445 

with previous observations (Chotirat et al., 2021; Rogier et al., 2021) and suggesting the combined risk of 446 

P. falciparum and P. vivax infection in Rizal, Palawan. Nonetheless, our results also indicate that the P. 447 

falciparum-positive and P. vivax-positive samples had species-specific increase and significantly different 448 

patterns in its antibody responses to the P. falciparum and P. vivax-specific antigens. The simultaneous 449 

cumulative increase in species-specific antibodies has been explored for its possible role in the development 450 

of cross-protective immunity (Gnidehou et al., 2019; Mitran and Yanow, 2020; Muh et al., 2020), and can 451 

be an area for further investigation, as this could potentially explain the observed asymptomatic PCR-only 452 

cases (including mixed infections) in Rizal, Palawan (Reyes et al., 2021). 453 

This study had a number of limitations. Since the study analyzed samples from a health facility-based survey, 454 

whether or not it accurately represents the populations needs to be assessed. Due to the nature of the 455 

survey we were only able to sample health-seeking individuals, though this was partially addressed by also 456 

recruiting companions of patients who visited the health facilities (Reyes et al., 2021). For predicting recent 457 

infections, we had not asked survey participants if they recently had malaria, or if they had past malaria 458 

episodes for that matter (self-reported malaria history), such that we have only attempted to predict current 459 

infections. Still, external validation of our prediction algorithm for P. falciparum infection confirms its 460 

promising performance in accurately predicting malaria infections.  461 

There are also no accessible detailed records of the malaria history of individual visitors in the health facilities, 462 

such that the results for the predicted historical exposure cannot be validated. Nonetheless, we are able to 463 

show that consistent with previous studies (Biggs et al., 2017; Idris et al., 2017; Perraut et al., 2014; 464 

Rosas-Aguirre et al., 2015; Wu et al., 2020b), seropositivity rates from cumulative exposure markers AMA1 465 

and MSP119 for P. falciparum and P. vivax seemed to agree with the known malaria situation of our study 466 

sites. The “historical positives” used as training data for predicting historical exposure were the adult 467 

population (aged 50 years old and above) in malaria-endemic areas, wherein we assumed that all these 468 

individuals were exposed at some point, and that their antibody profiles would reflect historical exposure. 469 

The high variations in the dataset would have greatly affected these predictions. Since the reference 470 

population data available for predicting historical exposure using supervised classification approaches was 471 

not suitable, using the unsupervised approach of determining AMA1 and MSP119 seropositivity rates based 472 

on FMM may then suffice. Based on the known malaria situation in the collection sites, results from the SL 473 

model, RF 2-covar model and individual seropositivity rates of AMA1 and MSP119 may be able to provide a 474 

reliable estimate of malaria exposure in the area. The seroconversion rates also reflect the transmission 475 

status of our sites, with Bataan having the lowest, followed by Occidental Mindoro, and highest for Palawan. 476 

Our results are able to confirm the absence of P. falciparum and P. vivax transmission in malaria-free Bataan 477 

for the age groups 10 and below, providing evidence for its malaria elimination status. Moreover, the change 478 

point in transmission for Bataan is estimated higher but still consistent with the results of a serological survey 479 

conducted in the same area a year prior, which estimated the change point at 22 years (van den Hoogen 480 

et al., 2020a), and coincided with the decline in cases in the municipality. For Occidental Mindoro, the 481 

interruption in transmission from 7-12 years ago may be explained by the extensive malaria control activities 482 

implemented in the area, as the province has been part of the priority provinces of the Global Fund for 483 

Malaria since the 2000s. Our seroconversion curve results also suggest an increase in malaria transmission 484 

in Rizal, Palawan during the time of our survey (2016 to 2018), and upon checking the numbers of the 485 

reported malaria cases, there was indeed a steady rise of the API in this municipality from 25.43 in 2014, 486 

33.97 in 2015, to 46.09 in 2016 and 56.78 in 2018. 487 

The longevity of IgG antibody responses to malaria-specific antigens has the potential to also provide 488 

information on the development of naturally acquired immunity in populations (King et al., 2015) – although 489 

if and how assay responses translate to immune protection is not well understood (Crompton et al., 2010; 490 
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Proietti et al., 2019; Stanisic et al., 2015). From the 3 sites in the study, we were able to detect Plasmodium 491 

infections only in Rizal, Palawan. Asymptomatic infections comprised 265 (44.5%) of the malaria cases 492 

detected, and were observed in all age groups, which suggests the development of clinical immunity in this 493 

endemic population with relatively stable transmission. Our results showed that >80% of the PfAMA1 494 

seropositives in Bataan had lived there for >10 years, and had net MFI levels that were comparable with 495 

adults in Occidental Mindoro and Palawan (data not shown), suggesting that what we observed could be 496 

long-lived antibody responses to P. falciparum and P. vivax malaria in the population. Still, the lower 497 

seropositivity rates in Bataan and Occidental Mindoro, areas which had high transmission 20 and <10 years 498 

ago, respectively, may highlight the impact of a reduced transmission in malaria immune responses.  Still, 499 

our data supports the notion that long-lived antibodies can be maintained even in the absence of ongoing 500 

transmission. Of interest for countries aiming for elimination is evaluating the impact of a decrease in 501 

transmission on the immunity or vulnerability of a population, especially in differing endemic settings 502 

(Fowkes et al., 2016; World Health Organization, 2017). Understanding the generation and maintenance 503 

of effective immune responses during natural infection, particularly in the era of changing malaria 504 

epidemiology, is crucial for the rational development and evaluation of future interventions and vaccines. 505 

Immunological studies are needed to investigate this further. 506 

Despite the mentioned limitations of the study, our results clearly show the potential use of multiplex antibody 507 

responses and applications of machine learning approaches in assessing malaria transmission for countries 508 

aiming for malaria elimination. In a sub-national elimination setting such as the Philippines, both recent and 509 

historical P. falciparum and P. vivax exposure metrics were indicative of the absence of recent transmission 510 

in Bataan and Occidental Mindoro, and were also able to identify current infections in Rizal, Palawan, thus 511 

showing its ability in assessing the malaria situation in varying areas of endemicity. These serological 512 

markers provide accurate estimates of recent and historical exposure to malaria and our study provides 513 

baseline immunological data for monitoring risk populations. This serological surveillance approach can aid 514 

in devising control measures by malaria elimination programs, as well as provide evidence of the 515 

effectiveness of programs being implemented.  516 
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Supplementary Figure 1. Antibody levels in response to the rest of the P. falciparum and P. vivax serological markers in 

the panel, by study site and age group. Statistical difference of overall antibody responses among study sites within age 

groups were determined using Kruskall-Wallis test and Wilcoxon test for pairwise comparisons.  

Related to Fig. 1. 
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Supplementary Figure 2. Antibody responses of malaria-negative and malaria-positive populations (presented as density 

plots of log10 net MFI values) to the Pf and Pv serological markers in the panel (Pf and Pv diagnosed by microscopy, RDT 

and/or PCR.  

Related to Fig. 1. 
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Supplementary Figure 3. Performances of the individual base learners in the Super Learner ensemble.  

A-B)  Plots of the assigned weights to each learner included in the Super Learner models for predicting P. falciparum (A) 

and P. vivax recent exposure (B), obtained after 20-fold nested cross-validation of the Pf SL-covar8 and Pv SL-

covar6 models. 

C-D)  Receiver operating characteristic (ROC) curves for detecting current Pf (C) and Pv (D) infections in the test dataset 

(n=9132) using the 8 Pf and 6 Pv antigens as covariates, respectively. (SL.final: final Super Learner model, RF: 

random Forest, RF.ranger: RF from ranger package, kNN: k-Nearest Neighbor, GBM: generalized boosted models 

(implementation for BRT: boosted regression trees), SVM:Support Vector Machine, and GLM: Generalized linear 

models; variation of algorithms with “corP” denotes a feature selection that screens for univariate correlation) 
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Supplementary Table 1.  Seropositivity rates based on Pf-specific antigens and SuperLearner predictions for recent Pf exposure  

Model   
Seropositivity cutoff 
value for antigens 

AUC – validation data AUC – study data 
Positive in 

Pf+ samples 
(n=625) 

Positive in 
Palawan, 

n=6572 (%) 

Positive in 
Occidental 
Mindoro, 

n=1683 (%) 

Positive in 
Bataan, n=877 

(%) 

PfAMA1 
FMM 129.552007 0.9075 (0.8866-0.9284) 0.6921 (0.6771-0.7072) 509 (85.5%) 3842 (58.5%) 599 (35.6%) 91 (10.4%) 

Negpop 146.705091 0.9115 (0.892-0.9311) 0.6948 (0.6795-0.71) 507 (85.2%) 3792 (57.7%) 582 (34.6%) 82 (9.4%) 

PfMSP119 
FMM 315.978321 0.9321 (0.9182-0.9459) 0.6849 (0.6696-0.7002) 503 (84.5%) 3872 (58.9%) 639 (38.0%) 85 (9.7%) 

Negpop 294.522036 0.9301 (0.9152-0.9449) 0.6821 (0.667-0.6973) 508 (85.4%) 3940 (60.0%) 658 (39.1%) 89 (10.1%) 

Etramp5.Ag1 
FMM 343.006451 0.9075 (0.8918-0.9232) 0.7556 (0.7389-0.7722) 477 (80.2%) 2659 (40.5%) 267 (15.9%) 60 (6.8%) 

Negpop 254.493948 0.9111 (0.8941-0.9281) 0.7397 (0.7235-0.7559) 489 (82.2%) 2963 (45.1%) 362 (21.5%) 87 (9.9%) 

GEXP18 
FMM 402.149776 0.8848 (0.8663-0.9033) 0.7456 (0.7278-0.7633) 452 (76.0%) 2524 (38.4%) 203 (12.1%) 65 (7.4%) 

Negpop 267.001733 0.9037 (0.8849-0.9225) 0.7317 (0.7154-0.748) 487 (81.8%) 3067 (46.7%) 326 (19.4%) 126 (14.4%) 

PfGLURP R2 
FMM 346.692889 0.9206 (0.901-0.9401) 0.6849 (0.6701-0.6997) 516 (86.7%) 3817 (58.1%) 747 (44.4%) 147 (16.8%) 

Negpop 361.031502 0.9254 (0.9074-0.9435) 0.6855 (0.6706-0.7004) 512 (86.1%) 3810 (58.0%) 738 (43.9%) 143 (16.3%) 

MSP2 
CH150/9 

FMM 137.354929 0.8558 (0.8325-0.879) 0.6849 (0.6665-0.7034) 437 (73.4%) 3093 (47.1%) 414 (24.6%) 76 (8.7%) 

Negpop 141.708302 0.8541 (0.8307-0.8774) 0.4971 (0.4921-0.5022) 437 (73.4%) 3074 (46.8%) 406 (24.1%) 75 (8.6%) 

MSP2 Dd2 
FMM 121.316261 0.9177 (0.9027-0.9326) 0.6762 (0.6598-0.6926) 484 (81.3%) 3673 (55.9%) 657 (39.0%) 126 (14.4%) 

Negpop 110.971531 0.9202 (0.9054-0.935) 0.6798 (0.6632-0.6965) 482 (81.0%) 3607 (54.9%) 615 (36.5%) 105 (12.0%) 

PfSEA 
FMM 733.501223 0.8207 (0.7975-0.844) 0.6714 (0.6515-0.6912) 384 (64.5%) 2387 (36.3%) 470 (27.9%) 131 (14.9%) 

Negpop 867.158828 0.8121 (0.7918-0.8324) 0.6614 (0.6411-0.6816) 357 (60.0%) 2203 (33.5%) 409 (24.3%) 112 (12.8%) 

Random Forest:   4 
covariates (RF.covar4) 

(Etramp5.Ag1, GEXP18, 
PfGLURP R2, PfMSP119) 

0.9983 (0.996-1) 0.9591 (0.9497-0.9684) 552 (92.8%) 1081 (16.4%) 5 (0.3%) 1 (0.1%) 

Random Forest:   8 
covariates (RF.covar8) 

All 8 Pf-specific antigens 0.9898 (0.998-1) 0.9682 (0.9605-0.9759) 555 (93.3%) 1065 (16.2%) 3 (0.2%) 0 (0.0%) 

SL: 3 covariates 
(SL:3-covar) 

(Etramp5.Ag1, GEXP18, 
PfGLURP R2) 

0.918 (0.9067-0.9293) 0.879 (0.8658-0.8921) 265 (44.5%) 809 (12.3%) 0 (0.0%) 0 (0.0%) 

SL: 4 covariates 
(SL:4-covar) 

(Etramp5.Ag1, GEXP18, 
PfGLURP R2, PfMSP119) 

0.9338 (0.9214-0.9462) 0.8967 (0.8867-0.9067) 297 (49.9%) 687 (10.5%) 0 (0.0%) 0 (0.0%) 

SL: 8 covariates 
(SL:8-covar) 

All 8 Pf-specific antigens 0.955 (0.9486-0.9614) 0.914 (0.9055-0.9226) 317 (53.3%) 828 (12.6%) 0 (0.0%) 0 (0.0%) 

SL:  9 covariates 
(SL:9-covar) 

All 8 Pf-specific antigens 
and age 

0.9898 (0.9874-0.9921) 0.9197 (0.9093-0.9302) 423 (71.1%) 1245 (18.9%) 4 (0.2%) 0 (0.0%) 

*Abbreviations used: Pf: P. falciparum;  FMM: Finite mixture model; Negpop: Negative population model; SL: Super Learner prediction model using different sets of covariates (including the 8 Pf antigens) for predicting 
recent and historical malaria exposure. 
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Supplementary Table 2.  Seropositivity rates based on 6 Pv-specific antigens and SuperLearner predictions for recent Pv exposure  

Model   
Seropositivity 

cutoff value for 
antigens 

AUC – validation data AUC – study data 
Positive in 

Pv+ samples 
(n=172) 

Positive in 
Palawan, 

n=6572 (%) 

Positive in 
Occidental 
Mindoro, 

n=1683 (%) 

Positive in 
Bataan, n=877 

(%) 

PvAMA1 
FMM 149.776739 0.9185 (0.8934 - 0.9436) 0.6744 (0.6424 - 0.7064) 130 (75.6%) 2991 (45.5%) 650 (38.6%) 84 (9.6%) 

Negpop 172.486298 0.9164 (0.8895 - 0.9434) 0.6720 (0.6391 - 0.7049) 127 (73.8%) 3035 (46.2%) 626 (37.2%) 77 (8.8%) 

PvMSP119 
FMM 395.678911 0.9429 (0.9229 - 0.9629) 0.7308 (0.6997 - 0.7618) 134 (77.9%) 2588 (39.4%) 430 (25.5%) 63 (7.2%) 

Negpop 666.248684 0.9234 (0.8935 - 0.9533) 0.7049 (0.6692 - 0.7406) 114 (66.3%) 2135 (32.5%) 295 (17.5%) 38 (4.3%) 

PvDBP.RII 
FMM 403.658933 0.8036 (0.7546 - 0.8527) 0.7065 (0.6697 - 0.7434) 105 (61.0%) 1699 (25.9%) 165 (9.8%) 50 (5.7%) 

Negpop 285.09444 0.8143 (0.7668 - 0.8618) 0.7037 (0.6681 - 0.7392) 115 (66.9%) 2087 (31.8%) 221 (13.1%) 72 (8.2%) 

PvRBP.1a 
FMM 777.354467 0.7367 (0.6865 - 0.7869) 0.6248 (0.5871 - 0.6625) 92 (53.5%) 1979 (30.1%) 416 (24.7%) 242 (27.6%) 

Negpop 2986.35245 0.5343 (0.5006 - 0.5679) 0.5127 (0.4901 - 0.5352) 17 (9.9%) 507 (7.7%) 104 (6.2%) 61 (7.0%) 

PvRII 
FMM 843.409764 0.7706 (0.7195 - 0.8218) 0.6302 (0.5935 - 0.6670) 67 (39.0%) 1079 (16.4%) 104 (6.2%) 38 (4.3%) 

Negpop 377.466964 0.8007 (0.7530 - 0.8484) 0.6322 (0.5955 - 0.6688) 107 (62.2%) 2717 (41.3%) 489 (29.1%) 102 (11.6%) 

PvEBP 
FMM 147.668259 0.7735 (0.7247 - 0.8224) 0.6471 (0.6144 - 0.6799) 128 (74.4%) 3328 (50.6%) 719 (42.7%) 106 (12.1%) 

Negpop 661.785062 0.7133 (0.6616 - 0.7649) 0.6184 (0.5809 - 0.6559) 101 (58.7%) 2608 (39.7%) 566 (33.6%) 63 (7.2%) 

SL: 6 Pv antigens 
All Pv-specific 

antigens as 
covariates 

0.8857 (0.8429-0.9284) 0.6332 (0.5979-0.6686) 57 (33.1%) 603 (9.2%) 35 (2.1%) 2 (0.2%) 

RF: 6 Pv antigens 1 0.6918 (0.6542-0.7293) 81 (47.1%) 802 (12.2%) 57 (3.4%) 5 (0.6%) 

GBM: 6 Pv antigens 0.9043 (0.8647-0.9439) 0.6462 (0.6095-0.6828) 67 (39.0%) 851 (12.9%) 80 (4.8%) 7 (0.8%) 

*Abbreviations used: Pv: P. vivax; FMM: Finite mixture model; Negpop: Negative population model; SL: Superlearner prediction model using different sets of covariates (including the 8 Pf antigens) for predicting 
recent and historical malaria exposure. 
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Tables and figures  722 

Tables 723 

Table 1. List of antigens in the multiplex bead-based assay panel 724 

Table 2. Training and validation data used in the classification models 725 

Table 3. Characteristics of study population by site  726 

Table 4. Seroconversion and seroreversion rates from reverse catalytic models in each study site 727 

Supplementary Table 1.  Seropositivity rates based on Pf-specific antigens and SuperLearner predictions 728 

for recent Pf exposure 729 

Supplementary Table 2.  Seropositivity rates based on 6 Pv-specific antigens and SuperLearner 730 

predictions for recent Pv exposure 731 

Figures 732 

Figure 1. Map showing the study sites, with red areas as the focused municipalities within the provinces 733 

marked yellow. 734 

Figure 2. Antibody responses to serological markers of P. falciparum and P. vivax correlate with 735 

malaria incidence 736 

A. Antibody levels (reported as log10 MFI) in response to P. falciparum cumulative and recent exposure 737 

markers PfAMA1, PfMSP119, and Etramp5.Ag1, and P. vivax serological markers PvAMA1, PvMSP119 738 

and PvDBP.RII by study site and age group. Statistical difference of overall antibody responses 739 

among study sites within age groups were determined using Kruskall-Wallis test and Wilcoxon test 740 

for pairwise comparisons (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). 741 

B. Spearman’s correlation coefficients for age, malaria diagnosis (Mal+: Plasmodium-positive, Pf+: P. 742 

falciparum-positive, Pv+: P. vivax-positive), and antibody responses to the 14 antigens in the panel 743 

for Palawan samples (n=6572).   744 

Figure 3. Serological markers exhibit species-specific association with current infection in varying 745 

levels 746 

A-B) Comparison of antibody titers of Palawan samples (n=6572) for Plasmodium-positive (Pf: P. 747 

falciparum-positive, Pf/Pv: Pf and Pv mixed infection, Pv: P. vivax-positive) and negative (neg) 748 

samples by age group in each P. falciparum-specific (A) and P.vivax-specific antigen. 749 

Figure 4. Analysis of serological markers through machine learning methods improves 750 

classifications for recent P. falciparum and P. vivax exposure or current infection 751 

A-B. Seropositivity rates of sample population by site and age group based on cutoff values from finite 752 

mixture models (FMM) and negative population model (NegPop) for Pf and Pv antigens (detailed 753 

in Supplementary Tables 1 and 2). Hollow dots represent the FMM and Negpop seropositivity 754 

rates for the two reported recent exposure markers Etramp5.Ag1 and GEXP18 for Pf (A), and 755 

PvMSP119 and PvDBP.RII for Pv (B) panel. Lines with error bars represent median with 95% CI.  756 

C-D. Receiver operating characteristic (ROC) curves for the antibody responses to single antigens for 757 

individual antigens, and for the SL models (shown in both as binary outcomes of seropositivity / 758 

prediction values).  759 

E-F. Variable importance of the 8 Pf-specific (E) and 6 Pv-specific (F) antigens based on the Random 760 

Forest model. 761 

G. Predicted rates of recent Pf exposure based on analysis of the continuous antibody responses of the 762 

8-antigen panel using Super Learner. Each hollow dot represents differences in the number of 763 

covariates used for the model (3, 4, 8, 9), as well as 2 showing rates from prediction values of the 764 

Random Forests (RF) component model (RF.covar4 and RF.covar8 in solid dots).  765 

H. Predicted rates of recent Pv exposure based on analysis of the continuous antibody responses of the 766 

6-antigen panel using Super Learner. Dots represent the positivity rates from the prediction 767 
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values of the SL model, and the individual predictions from the 2 most weighted base learners in 768 

the resulting model – RF and GBM. RF predictions (RF.covar6) are shown as solid dots.  769 

(SL: Super Learner, RF: random Forest, covar#: number of covariates included in the model, FMM: finite 770 

mixture models; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 with significance assessed by one-way 771 

ANOVA followed by Tukey’s multiple comparison) 772 

Figure 5. Seroconversion curves based on reverse catalytic models using AMA1 and MSP119 773 

antibody responses provide accurate estimates of historical exposure.  774 

Age-specific seroprevalence was based on finite mixture models and Random Forest models (using both 775 

antigens: RF 2-covar models) for each species. Solid lines represent the fit of the reversible catalytic 776 

models, dashed lines represent 95% confidence intervals, and dots represent the observed proportions of 777 

seropositives per age divided into 10% centiles. For models assuming a change point in transmission, only 778 

the recent seroconversion rates and change point estimates (in years) are shown, while the historical 779 

seroconversion rates and seroreversion rates are detailed in Table 4. 780 

Figure 6. Cumulative exposure markers confirm historical P. falciparum and P. vivax exposure, and 781 

heterogeneity of transmission in the 3 sites  782 

A. Plot of Super Learner prediction values for Pf historical exposure by site and age, using the model 783 

with 8 Pf-specific serological markers as covariates. Red dotted line represents positivity cutoff at 0.5.  784 

B. Variable importance based on the Random Forest model of the 8 Pf-specific antigens and 6 Pv-785 

specific antigens in predicting historical exposure for each species. 786 

C. Distribution of antibody responses to PfAMA1 by site and age of individuals (n=9132). Red dashed 787 

line represents the seropositivity cutoff value from the FMM model. 788 

D-E. Summary graphs per age category per site of SL-predicted Pf historical exposure (D) and PfAMA1, 789 

PfMSP1 seropositivity rates graphed with estimated historical exposure rates using the Random 790 

Forest model with PfAMA1, PfMSP119 as covariates (E).  791 

F.     Summary graph of PvAMA1, PvMSP1 seropositivity rates with estimated historical exposure rates 792 

using the Random Forest model with PvAMA1, PvMSP119 as covariates seropositivity per age 793 

category per site 794 

Supplementary Figure 1. Antibody levels in response to the rest of the P. falciparum and P. vivax 795 

serological markers in the panel, by study site and age group. Statistical difference of overall antibody 796 

responses among study sites within age groups were determined using Kruskall-Wallis test and Wilcoxon 797 

test for pairwise comparisons.  Related to Fig. 1. 798 

Supplementary Figure 2. Antibody responses of malaria-negative and malaria-positive populations 799 

(presented as density plots of log10 net MFI values) to the Pf and Pv serological markers in the panel (Pf 800 

and Pv diagnosed by microscopy, RDT and/or PCR. Related to Fig. 1. 801 

Supplementary Figure 3. Performances of the individual base learners in the Super Learner 802 

ensemble.  803 

A-B)  Plots of the assigned weights to each learner included in the Super Learner models for predicting P. 804 

falciparum (A) and P. vivax recent exposure (B), obtained after 20-fold nested cross-validation of the 805 

Pf SL-covar8 and Pv SL-covar6 models.  806 

C-D)  Receiver operating characteristic (ROC) curves for detecting current Pf (C) and Pv (D) infections in 807 

the test dataset (n=9132) using the 8 Pf and 6 Pv antigens as covariates, respectively. (SL.final: final 808 

Super Learner model, RF: random Forest, RF.ranger: RF from ranger package, kNN: k-Nearest 809 

Neighbor, GBM: generalized boosted models (implementation for BRT: boosted regression trees), 810 

SVM:Support Vector Machine, and GLM: Generalized linear models; variation of algorithms with 811 

“corP” denotes a feature selection that screens for univariate correlation) 812 
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