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Abstract 

Background 

Treatment-Resistant Depression (TRD) refers to patients with major depressive disorder 

who do not remit after two or more antidepressant trials.  TRD is common and highly 

debilitating, but its neurobiological basis remains poorly understood. Recent 

neuroimaging studies have revealed cortical connectivity gradients that dissociate 

primary sensorimotor areas from higher-order associative cortices. This fundamental 

topography determines cortical information flow and is affected by psychiatric disorders. 

We examined how TRD impacts this hierarchical cortical organization. 

Methods 

We analyzed resting-state fMRI data from a mindfulness-based intervention study in 56 

TRD patients and 28 healthy controls. Using novel gradient extraction tools, measures 

of cortical gradient dispersion within and between functional brain networks were 

derived, compared across groups, and associated with graph theoretical measures of 

network topology. Within TRD, baseline cortical gradient dispersion measures were 

correlated with baseline clinical measures (anxiety, depression, mindfulness), as well as 

with changes in these measures following treatment with either mindfulness-based 

therapy or a health enhancement program. 

Results 

Cortical gradient dispersion was reduced within major intrinsic brain networks in TRD. 

Reduced cortical gradient dispersion correlated with increased network modularity 

assessed through graph theory-based measures of network topology. Lower dispersion 

among Default Mode Network regions, a transmodal system linked to depression 
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symptomatology, related to current levels of trait anxiety, depression, and mindfulness, 

but not to changes in these domains following treatment. 

Conclusions 

Our findings reveal widespread alterations in cortical gradient architecture in TRD, 

implicating a significant role for the Default Mode Network in mediating depression, 

anxiety, and lower mindfulness in patients. 

Introduction  

Major depression is a common, debilitating disorder and among the leading causes of 

disability worldwide (1). Although several treatment options are available for depression, 

a significant number of patients do not improve despite adequate antidepressant trials 

(2). Patients that, after repeated treatments, fail to reach acceptable levels of 

functioning and well-being, eventually present with treatment-resistant depression 

(TRD), a condition associated with a significant social and economic burden (2,3). TRD 

is often defined as the failure to remit after at least two antidepressant trials of adequate 

dose and duration (2,3). A consensus characterization of TRD, however, has yet to be 

achieved, partly due to poor understanding of its neurobiological basis and a lack of 

reliable diagnostic biomarkers (4,5).  

Resting-state fMRI (rs-fMRI) is a neuroimaging modality commonly used to measure 

functional connectivity of brain networks in terms of correlated spontaneous activity 

among distant brain regions (6,7). This method has proven useful in revealing altered 

functional connectivity within and between various limbic and higher-order brain 

networks in depression (5,8,9). Crucially, several depression studies have linked 

maladaptive self-referential processes, such as rumination and emotional dysregulation, 
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to functional alterations of the Default Mode Network (DMN) (9–11), a transmodal 

system comprising the medial prefrontal, medial temporal, medial parietal, and angular 

cortices (12,13).  

Fundamental principles in behavioral neurology and recent neuroimaging studies 

provide convergent support for a hierarchical cortical organization that separates 

primary sensorimotor systems from transmodal associative areas (14–16). Cortical 

microstructure, connectivity, and gene expression findings point to dominant 

sensorimotor-to-transmodal gradients organizing the propagation of sensory inputs from 

primary areas into transmodal regions along multiple cortical relays (14,15,17). This 

large-scale brain system organization anchors the DMN at one end of the hierarchy with 

respect to primary sensorimotor areas, capturing a functional topography that enables 

the transition from perception to more abstract cognitive functions (9–11). Several 

neuropsychiatric disorders, including major depression (18), cognitive vulnerability to 

depression (19), and autism (17), profoundly impact connectivity-based cortical gradient 

organization. Remarkably, major depression both disrupts global topography and 

produces focal alterations of cortical gradients among primary sensory and transmodal 

regions involved in high-order cognitive processing (18). 

Accordingly, we hypothesized that TRD would impact hierarchical brain network 

organization and that functional deficits affecting the DMN would predict current and 

future symptoms of depression following group treatment with either mindfulness-based 

cognitive therapy (MBCT) or a health enhancement program (HEP). We applied a novel 

gradient decomposition technique (20) to baseline rs-fMRI data from 56 TRD patients 

subsequently randomized to MBCT or HEP, and from 28 healthy controls (HC). This 
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approach was leveraged to test the hypothesis that TRD, relative to HC, involves 

perturbation of hierarchical gradients among “canonical” large-scale brain networks 

(21), and to further contextualize the results using graph theoretical metrics of network 

topology, specifically nodal degree (22). 

Materials and Methods 

Subjects 

All participants or their surrogates provided written informed consent prior to 

participation in accordance with the declaration of Helsinki. The University of California 

San Francisco Committee on Human Research approved the study.  

An initial cohort of 59 TRD patients were enrolled in randomized controlled behavioral 

intervention study that included baseline and post-treatment fMRI sessions, and 30 HC 

were recruited to provide normative baseline fMRI data. Participants were recruited from 

outpatient psychiatry and general medicine clinics at the University of California San 

Francisco (UCSF), the outpatient psychiatry clinic at Kaiser Permanente in San 

Francisco, and through fliers, Craigslist advertisements, and clinical referrals, as 

described previously (23,24). TRD patient eligibility screening was completed in person. 

Eligible patients met Structured Clinical Interview for DSM-IV-TR Axis I (SCID-I/P) (25) 

criteria for major depression and had a Hamilton Depression Severity Rating Scale 

(HAMD-17) score of 14 or greater. Furthermore, to qualify as TRD, patients had to be 

taking antidepressant medication with evidence of two or more adequate trials 

prescribed during the current episode as assessed with the Antidepressant Treatment 

History Form (26). Patients were excluded for the following: lifetime history of bipolar 

disorder, schizophrenia, or any psychotic disorder; substance abuse or dependence 
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within three months of study onset; currently suicidal, dangerous to others, or self-

injurious; undergoing psychotherapy that they were unwilling to discontinue during the 

eight-week treatment portion of the study (further details below); or a score of <25 on 

the Mini Mental Status Exam (27).  

The HC group was matched to the TRD group on age, gender, and handedness and 

had no history of a major Axis I psychiatric disorder, neurological illness, or current use 

of psychotropic medication. Participants were required to be at least 18 years old, fluent 

in English, have no MRI contraindications, and to have normal or corrected-to-normal 

vision. 

For each participant, we additionally assessed depressive symptoms through the Quick 

Inventory of Depression Symptomatology (QIDS-SR16) (28) and the Nolen-Hoeksema's 

Response Styles Questionnaire (RSQ22) (29); levels of mindfulness were assessed 

with the Five Facet Mindfulness Questionnaire (FFMQ) (30); and levels of state and trait 

anxiety were assessed through the State-Trait Anxiety Inventory (STAI trait and state) 

(31). Study participants self-reported race and ethnicity.  Sex, handedness, and years of 

education were also reported.  

From the initially recruited sample, two HCs and three TRD patients had to be excluded 

based on excessive head movement in the scanner (see details below), resulting in the 

final analyzed sample of 56 TRD and 28 HC participants (Table 1).  

Protocol 

TRD patients were part of a randomized controlled trial comparing MBCT to a HEP as 

adjunctive treatments to ongoing antidepressant medication. From our final sample of 

56 TRD patients, 27 underwent MBCT and 28 underwent HEP. Details regarding 
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treatment programs and randomization procedures were described previously (23,24). 

Briefly, MBCT involved guided meditations and exercises intended to help participants 

identify cognitive distortions, disengage from rumination, and use nonjudgmental 

present-moment awareness (26). HEP involved physical exercise, functional movement, 

music therapy, diet education, and guided imagery intended to promote health and 

improve mood (33). Both treatment groups met for eight weeks in groups of 6–12 once 

a week for 135 min. Patients were assessed with rs-fMRI at baseline and following 

intervention, while HC were assessed at baseline and did not undergo treatment. Only 

baseline rs-fMRI data from TRD and HC participants are analyzed in the present study. 

TRD patients underwent clinical assessments at baseline and at weeks 8, 24, 36, and 

52 (23,24). 

Neuroimaging data acquisition and preprocessing 

Neuroimaging data were acquired on a Siemens 3-T TIM TRIO scanner located at the 

UCSF Neuroimaging Center.  A high-resolution anatomical scan was acquired using a 

3-D MP-RAGE sequence, with scan time 5 min 17 s, flip angle 9 degrees, FOV = 220 

mm, 160 slices per slab, 1.2 mm thick, no gap, TR = 2.30 s, TE = 2.94 ms.  Functional 

scans were acquired using an EPI-BOLD sequence, TR = 2, TE= 30 ms, FoV = 220 

MM, flip angle = 77 degrees, bandwidth = 2298 Hx/pixel, matrix = 64 x 64. 30 slices (3 

mm thick, 1-mm gap). Scans were acquired in an axial-oblique plane, parallel to the 

anterior-posterior commissure (AC-PC) line. Participants were instructed to rest with 

eyes open during the 5 min and 24 s EPI-BOLD functional sequence. 

The software fMRIPrep (https://fmriprep.org/en/stable/) (33) was used for subsequent 

neuroimaging data preprocessing. Anatomical MP-RAGE images were corrected for 
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intensity non-uniformity, skull-stripped, and segmented for cerebrospinal fluid, white 

matter, and gray matter. Volume-based spatial normalization to MNI standard space 

was performed through nonlinear registration of the MP-RAGE with the T1-weighted 

MNI template brain (CBM152). The first five functional image volumes were removed to 

allow for scanner equilibration. A mean reference volume and its skull-stripped version 

were generated, then co-registered to the structural reference using affine registration. 

Head-motion parameters (transformation matrices and the six corresponding rotation 

and translation parameters) were estimated and used to compute framewise head 

displacement time series. Functional images were slice-time corrected, realigned, and 

normalized to MNI standard space applying the structural transformation matrix to the 

co-registered functional data. The resulting volumes with 2 mm3 isotropic resolution 

were spatially smoothed with a 6 mm radius Gaussian kernel and bandpass filtered in 

the 0.008–0.15 Hz frequency range. Nuisance parameters in the preprocessed data 

were estimated for the cerebrospinal fluid and white matter. Additional nuisance 

parameters included the three translational and three rotational motion parameters, the 

temporal derivatives of the previous eight terms (white matter/cerebrospinal fluid/six 

motion time series), and the squares of the previous 16 terms (34,35). Nuisance 

parameters were filtered for the same frequency range as rs-fMRI data and regressed 

out from the filtered rs-fMRI data (34,35). The denoised data were used in subsequent 

analyses. Subjects were included only if their mean framewise head displacement in the 

scanner (34,35) was below the threshold of 0.55 mm recommended in previous work 

(36). Global signal regressed rs-fMRI data were also generated using the time series 

extracted from a whole-brain mask and used for control analyses. 
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Functional connectivity gradients 

The Schaefer Atlas (37) was used to derive rs-fMRI activity time series for 400 cortical 

regions (Figure 1A). This data-driven atlas, derived from 1498 healthy individuals, 

exploits local gradients in functional connectivity, while maximizing the similarity of rs-

fMRI time courses within a parcel. The resulting cerebral cortex parcellations are 

functionally and connectionally homogeneous and display a one-to-one correspondence 

to major intrinsic brain networks (21) (Figure 1B). Pearson’s correlation was applied to 

the regional activity time series to derive individual functional connectivity matrices 

(Figure 1Ca) and group-mean functional connectivity matrices for HC and TRD 

participants (Figure S1).  

The diffusion embedding approach (14,15),  as implemented by the toolbox BrainSpace 

 (https://brainspace.readthedocs.io/en/latest/pages/getting_started.html) (20), was then 

applied to the HC group mean functional connectivity matrix to estimate connectivity 

gradients. Briefly, the top 10% strongest functional connections were retained for each 

parcel, referred to hereafter as a node, and cosine similarity was calculated between 

each pair of nodes to generate a dissimilarity matrix (Figure 1Cb) (38,39). Diffusion map 

embedding, a data reduction technique, was then applied to decompose the functional 

connectome into primary components, referred to as gradients, explaining most of the 

variance in connectivity (Figure 1Cc). These gradients discriminate across levels of the 

cortical hierarchy (i.e., sensory processing versus higher-order cognition), whereas 

node-specific gradient values reflect the similarity in connectivity along this sensory-

transmodal axis. An identical approach was used to derive connectivity gradients from 

the TRD group mean connectivity matrix and from the connectivity matrices of individual 
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participants. The resulting gradient maps were subsequently aligned to the gradients 

derived at the group-level in HCs using iterative Procrustes rotation, therefore enabling 

comparisons across individual embedding solutions (17,21,40).  

Nodal dispersion 

For each participant, we then derived a measure of within-network nodal dispersion. We 

plotted the first three connectivity gradients – since these explained most of the 

underlying variance (see also elbow plot in Figure 1 Cc) – against each other to derive a 

three-dimensional manifold in which we calculated the Euclidean distance between 

nodes belonging to the same intrinsic brain network (42) (Figure 1Cd). Nodal dispersion 

was derived for each node belonging to a specific intrinsic brain network and averaged 

across nodes within intrinsic brain networks, yielding a final estimate of within-network 

nodal dispersion for each participant. We performed several control analyses to assess 

the impact of methodological parameters on our analyses (see Supplement). Further, 

we derived a measure of between-network nodal dispersion calculated as the Euclidean 

distance between network centroids (i.e., the arithmetic mean in gradient space of all 

nodes belonging to the same network). 

Nodal degree 

In parallel to the novel connectivity gradient approach, we also derived a traditional 

measure of within-network nodal degree for all participants (22) by using the publicly 

available Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/). 

Nodal degree is a widely used measure of network topology commonly derived using 

graph-theoretical approaches (22). Briefly, individual connectivity matrices were 

thresholded for correlation values below 0.35 and binarized (Figure 1Ce). For control 
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analyses, measures of nodal degree were derived also for connectivity thresholds of 

0.45 and 0.25. Weighted connectivity matrices were used to count the number of 

surviving edges between a specific node within a network and all other nodes within the 

same network (Figure 1Cf). The sum of surviving edges for a node was then divided by 

the total amount of edges within the network. Nodal degree measures were derived for 

each single node in a network and averaged across nodes in the same network. This 

procedure resulted in a measure of within-network nodal degree reflecting the level of 

integration between nodes belonging to the same network.  

Statistical analyses 

In house MATLAB R2021a (https://www.mathworks.com/products/matlab.html) and R 

4.1.1 (https://www.r-project.org/) scripts were used to perform the statistical analyses. 

For more details, see Supplementary Methods. 

Results 

Cortical connectivity gradients in HCs and TRD patients 

We applied a diffusion gradient approach separately on rs-fMRI-based connectivity data 

from HCs and TRD patients to derive cortical connectivity gradients reflecting 

processing hierarchies spanning sensory and transmodal areas (Figure 2 and Figure 

S2A).  We next describe the first three principal gradients derived from rs-fMRI data of 

HCs, since these explained most of the variance in functional connectivity (elbow plot in 

Figure 1 Cc). Gradient 1 anchored sensorimotor areas at its positive extreme, while 

regions belonging to the DMN were located at the opposite, negative extreme (Figure 

2A-B). The DMN occupied the negative extreme on Gradient 2, while visual-sensory 

areas populated the positive end of this gradient (Figure 2A-B). Notably, these first two 
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connectivity gradients overlap with previously reported gradients in functional 

connectivity, structural connectivity, myelin density, and genetic expression (14,15), 

which consistently separate sensory processing regions from transmodal areas of the 

DMN. Gradient 3 showed a more complex pattern, segregating regions of the Dorsal 

Attention Network from regions belonging to the Salience Network, potentially reflecting 

a higher-order, attention-related gradient separating regions attending to externally 

presented cues (43) from regions devoted to processing visceral and interoceptive 

information (44,45). Similar fundamental properties of hierarchical brain organization 

were found in patients with TRD after aligning the principal connectivity gradients of 

patients to those of HCs (Figure 2C-D), in support of the notion that cortical gradients 

reflect fundamental properties of brain topography in both health and disease 

(14,15,17,18,42). Of note, the elbow plot in Figure 1Cc suggested that also Gradients 4-

6 contributed to a significant amount of explained variance, although to a lesser degree 

when compared to the first three gradients. These cortical gradients displayed less 

discernable patterns of regional variation, separating sensory areas from regions 

belonging to cingulo-opercular and frontoparietal networks (Figure S2). 

Within-network nodal dispersion 

Node-level gradient comparisons (p<0.05, uncorrected) revealed increased gradient 

scores in TRD patients in sensory and early transmodal regions, such as the 

ventromedial occipital and posterior inferior temporal cortices, together with decreased 

gradient scores in transmodal areas including the precuneus, the medial prefrontal, and 

cingulate cortices (Figure 3A). We then derived a measure of within-network nodal 

dispersion (Figure 1Cd), reflecting how closely nodes belonging to the same intrinsic 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.16.22276402doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.16.22276402
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13

brain network are located in the topographical three-dimensional gradient space (42). 

All networks, except for the Salience and Sensorimotor Networks, showed reduced 

within-network nodal dispersion in TRD patients compared to HCs (Figure 3B; p<0.05, 

FDR corrected for multiple comparisons). We explored the relationship between within-

network nodal dispersion in TRD patients and confounds such as mean frame-wise 

head displacement during scanning and demographic variables, including age and sex, 

using multiple linear regression models (Table S1; p<0.05, uncorrected), which revealed 

no significant associations. Of note, adding Gradients 4-6 when computing measures of 

within-network nodal dispersion affected group differences, with only the Visual and 

Control Networks showing significantly reduced within-network nodal dispersion in TRD 

(Table S2; p<0.05, FDR corrected for multiple comparisons). We performed additional 

control analyses to assess the impact of methodological parameters on group 

differences in within-network nodal dispersion. We found similar cortical gradients as 

those reported in the main findings regardless of whether we used: (1) global signal 

regression; (2) higher or lower parcellated atlases; (3) gradient decomposition through 

Laplacian embedding; (4) or angular normalization to generate the dissimilarity matrices 

(Figure S2 C-F). While data preprocessed with global signal regression or higher atlas 

parcellation consistently revealed decreased within-network nodal dispersion in TRD, 

group differences were affected when using a lower parcellated atlas, Laplacian 

embedding, or angular normalization (Table S2). Finally, we analyzed whether TRD 

also affected cortical hierarchies between networks in addition to within-network 

gradient organization. We derived a measure of between-network nodal dispersion that 

revealed reduced nodal dispersion in TRD between the Sensorimotor and the DMN, 
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between the Salience and the DMN, and between the Control and Dorsal Attention 

Network, although none of these findings survived FRD correction for multiple 

comparisons (Figure S3; p<0.05, uncorrected).  

Within-network nodal degree 

Comprehensively, the previous findings suggested that in TRD, nodes belonging to the 

same network are more integrated with each other. To confirm this hypothesis, we 

derived a measure of within-network modularity based on graph theoretical approaches. 

Within-network degree was derived for each intrinsic brain network, reflecting the ratio 

between existing edges a specific node shares with other nodes belonging to the same 

network and the total number of edges available in that network. Within-network nodal 

degree did not substantially differ between HC and TRD participants, except nodal 

degree decreased in the DMN and Sensorimotor Networks of patients with TRD (Figure 

3C; p<0.05, uncorrected for multiple comparisons). However, when relating within-

network nodal dispersion to within-network nodal degree, we consistently found a 

significant negative association between both nodal measures, particularly in TRD 

patients and to a lesser degree in HC (Figure 3D; p<0.05, FDR corrected for multiple 

comparisons if not reported otherwise, Pearson’s correlation coefficients and associated 

Fisher r-to-z tests for independent samples comparing the strength of correlations 

across groups reported in the plots). Notably, these findings were robust across distinct 

thresholds applied to generate the weighted connectivity matrices used to estimate 

nodal degree (Figure S4). In summary, these findings support the notion that decreased 

within-nodal dispersion, at least in patients, reflects increased within-network functional 

modularity. This negative association between nodal measures was prominent in TRD 
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but not as developed in HCs, suggesting a more complex relationship between brain 

topology and cortical topography in the healthy human brain. 

DMN nodal dispersion and symptoms of depression 

Finally, we aimed to associate typical symptoms of TRD with altered levels of within-

network nodal dispersion and nodal degree. We focused only on changes affecting the 

DMN, given the recurrent association of this system with typical symptoms of major 

depression such as increased anxiety, depressed mood, and reduced mindfulness 

(11,23,24). In line with previous work, our patient sample showed increased levels of 

trait anxiety as measured through the STAI questionnaire (Figure 4A; p<0.05, FDR 

corrected for multiple comparisons). Trait anxiety correlated negatively with within-DMN 

nodal dispersion (RTRD = -0.27; RHC = 0.33; Fisher r-to-z tests for independent samples, 

z = -2.48) in TRD patients, but not in HCs, and positively with within-DMN nodal degree 

(RTRD = 0.38; RHC = 0.30; z = -0.36) in both groups (Figure 4B-C; p<0.05, FDR corrected 

for multiple comparisons). Similarly, depressive symptoms measured using the RSQ22 

questionnaire were increased in TRD patients (Figure 4D; p<0.05, FDR corrected for 

multiple comparisons). Depressive symptoms showed a significant negative association 

with within-DMN nodal dispersion (RTRD = -0.31; RHC = 0.10; z = 1.73) in TRD patients, 

but not in HCs, while being positively linked to within-DMN nodal degree (RTRD = 0.24; 

RHC = 0.20; z = -0.17) in both groups (Figure 4E-F; p<0.05, FDR corrected for multiple 

comparisons if not specified otherwise). Mindfulness levels are often reduced in patients 

suffering from major depressive episodes (23,24) in line with the lower FFMQ scores 

found in our patient sample (Figure 4G; p<0.05, FDR corrected for multiple 

comparisons). Mindfulness scores were positively associated with within-DMN nodal 
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dispersion (RTRD = 0.31; RHC = -0.37, z = -2.83) and negatively correlated with within-

DMN nodal degree (RTRD = -0.39; RHC = -0.05; z = 1.45) in TRD patients but not in HCs 

(Figure 4E-F; p<0.05, FDR corrected for multiple comparisons). These findings suggest 

that, at least in TRD patients, reduced nodal dispersion and increased nodal degree 

among DMN regions are of a dysfunctional nature and may underlie common clinical 

symptoms of TRD.  

We finally assessed whether within-DMN nodal dispersion at baseline could predict 

clinical changes in TRD patients following an 8-week course of group therapy involving 

either the MBCT or HEP intervention. In this sample, both treatment arms did not 

significantly differ from each other regarding clinical changes over time, despite a 

previous study by our group using a larger sample that included the current one 

revealing a significant clinical advantage for MBCT relative to HEP (23,24). However, in 

line with the previous study, we found a main effect of time across both groups with 

improved STAI trait, FFMQ, and RSQ22 scores after 8 and 24 weeks (Figure S5 and 

Table S3). Contrary to our expectations, DMN nodal dispersion at baseline did not 

significantly predict clinical change scores at 8 or at 24 weeks (Table S4).   

Discussion 

The brain is functionally organized along connectivity gradients that separate primary 

sensory and motor areas from transmodal associative cortices overlapping with the 

DMN. This study explored how TRD impacts this fundamental topography of 

hierarchical cortical organization. We capitalized on rs-fMRI data acquired in TRD 

patients and HCs and applied novel gradient extraction tools to assess gradient 

imbalances within major intrinsic brain networks. Although the global hierarchical 
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architecture was similar across the two groups, we found that the brain regions 

belonging to the same network are located more closely to each other in topographical 

gradient space in TRD patients relative to HCs. Reduced within-network nodal 

dispersion correlated with higher levels of nodal degree derived through graph theory-

based topology measures, overall suggesting higher within-network functional 

integration in TRD. Decreased DMN dispersoin in TRD patients correlated with higher 

current depression and anxiety, as well as reduced mindfulness. Overall, these findings 

suggest deleterious cortical network topography and topology in TRD and highlight an 

important role for the DMN in mediating core symptoms of depression.  

Increased within-network integration in TRD 

The pervasive correlation between nodal degree and nodal dispersion in our patient 

sample suggests that TRD impacts cortical hierarchies by driving hyper-modularity 

within several brain networks (46). Other neuropsychiatric conditions have been shown 

to impact cortical connectivity gradients. Autism spectrum disorder has been shown to 

alter brain topography by showing atypical connectivity transitions between sensory and 

higher-order DMN regions (17). Our findings align with previous reports of altered 

cortical gradient organization in individuals with cognitive vulnerability to depression (19) 

and in a larger sample of patients with major depression (18). Individuals with cognitive 

vulnerability to depression have been shown to display reduced gradient scores in the 

left insula, which correlated with attentional scores commonly deficient in patients, 

suggesting that gradient reorganization may precede the onset of depression (19). A 

recent study involving a large sample of patients showed that major depressive disorder 

exhibits abnormal global topography of the principal primary-to-transmodal gradient 
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(18). These focal alterations of gradient scores mostly affected transmodal areas 

implicated in higher-order cognition overlapping with the DMN (18).  

DMN modularity mediates symptoms of depression  

Despite numerous efforts to map DMN dysfunctions in depression, important 

inconsistencies exist regarding the location and directionality of connectivity changes, 

with both hyper- (10), and hypoconnectivity findings reported in the literature (47). 

Several factors could contribute to these inconsistent findings, including differences in 

analytical approaches and heterogeneity among the recruited patients. Disease 

duration, perseverance of symptoms, and heterogenous subtypes of depression (8,9) 

may account for important sources of variability, as do head movement in the scanner, 

and differing data acquisition protocols and preprocessing pipelines (35–37). Overall, 

our findings align well with previous reports of DMN hyperconnectivity found in patients 

with depression (9,10). Hyperconnectivity among DMN regions in depression is 

consistent with our interpretation of reduced nodal dispersion reflecting increased 

within-network modularity. Several prior studies in both HCs and patients with 

depression have associated DMN hypersynchrony with self-referential processes 

affected in depression, including reduced mindfulness and social-emotional dysfunction 

(10,11,48), supporting the deleterious nature of DMN hyper-modualrity in TRD.   

Limitations and future directions 

Three limitations need to be considered when interpreting our findings as potential 

evidence of within-network hyper-modularity in TRD. First, methods used to extract 

connectivity gradients may overly focus on cortical aspects of hierarchical brain 

organization, ignoring the influence of subcortical areas. Further efforts are needed to 
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better assess the contribution of subcortical regions to predominant brain gradients and 

their dysfunction in neuropsychiatric diseases. Second, although findings of reduced 

within-network nodal dispersion were consistently found when using global signal 

regression or medium to high parcellated atlases, the method chosen to derive cortical 

connectivity gradients greatly influenced the outcome of the analyses. Third, and 

contrary to our expectations, DMN nodal dispersion in TRD did not predict 

improvements in clinical scores following either a mindfulness-based intervention or a 

health enhancement program. Given the recent discovery of distinct biotypes in major 

depressive disorder (8,9), longitudinal intervention studies involving larger patient 

samples with differing levels of clinical severity are needed to validate our findings of 

dysfunctional gradient architecture in TRD. 
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Tables and Legends 

 

 

Figure 1. Analytic pipeline. (A) 400 nodes from the Schaefer Atlas, each overlapping

with a specific intrinsic brain network (IBN) (B), were used to derive functional

connectivity matrices using rs-fMRI data of HCs and patients with TRD. (Ca). Individual

connectivity matrices (Si) went through two distinct processing pipelines. To derive

cortical connectivity gradients (upper stream), individual connectivity matrices were

transformed to affinity matrices using cosine similarity (Cb) and Laplacian

decomposition was used to derive three primary connectivity gradients, which explained

most of the variance in the data (Cc). The position of an individual node belonging to a

specific intrinsic brain network (e.g. Network x) was used to derive a topographical
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measure of nodal dispersion (Cd), reflecting the average Euclidean distance in gradient 

space between a node and all other nodes belonging to the same network. Individual 

connectivity matrices were also leveraged to derive topological measures of nodal 

degree (lower stream). Connectivity matrices were weighted by binarizing at a 

connectivity threshold of 0.35 (Ce). For each node within a network, we assessed the 

level of degree by counting the edges of this node to all other nodes within a network 

and dividing by the total amount of edges (Cf). CoN = Control Network; DAN = Dorsal 

Attention Network; DMN = Default Mode Network; HC = healthy controls; LiN = Limbic 

Network; SaN = Salience Network; SMN = Sensorimotor network; TRD = patients with 

treatment resistant depression; ViN = Visual Network. 
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Figure 2. Cortical connectivity gradients. (A) Cortical connectivity gradients of HCs

projected into cortical surface. The three-dimensional scatterplot below shows how

individual nodes distribute along the first three gradients. Colors reflect the loadings of

nodes on individual gradients. For example, the sensorimotor cortex appears purple and

regions overlapping with the DMN appear blue, reflecting that these systems

respectively anchor the extremes of Gradient 1. (B) Scatterplots reflecting how nodes

belonging to distinct intrinsic brain networks align along cortical gradients in HC. (C)
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Cortical connectivity gradients of patients with TRD aligned to the gradients of HCs 

following Procrustes rotation. (D) Scatterplots reflecting how nodes belonging to distinct 

intrinsic brain networks align along cortical gradients in patients with TRD. CoN = 

Control Network; DAN = Dorsal Attention Network; DMN = Default Mode Network; HC = 

healthy controls; LiN = Limbic Network; SaN = Salience Network; SMN = Sensorimotor 

network; TRD = patients with treatment resistant depression; ViN = Visual Network. 
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Figure 3. Nodal dispersion and nodal degree. (A) Node-wise statistical comparisons

between HCs and TRD, with increases/decreases in TRD shown in cold/warm colors

(p<0.05 uncorrected). (B) Violinplots reflecting topographical differences in within-

network nodal dispersion between patients with TRD (red) and HCs (blue). (C)

Violinplots reflecting topological differences in within-network nodal degree between

patients with TRD and HCs. (D) Scatterplots reflecting the association between within-

network nodal degree and within-network nodal dispersion separately for patients with
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TRD and HCs. Pearson’s correlation coefficients are reported below the scatterplots for 

each group separately, together with associated Fisher r-to-z tests for independent 

samples comparing the strength of the correlations across groups. CoN = Control 

Network; DAN = Dorsal Attention Network; DMN = Default Mode Network; HC = healthy 

controls; LiN = Limbic Network; SaN = Salience Network; SMN = Sensorimotor network; 

TRD = patients with treatment resistant depression; ViN = Visual Network. *p<0.05 FDR 

corrected, +p<0.05 uncorrected 
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Figure 4. DMN nodal dispersion correlates with symptoms of depression. (A)

Levels of trait anxiety as measured through STAI trait total scores are significantly

higher in patients with TRD (red violinplots) when compared to HCs (blue violinplots). A

significant negative correlation is found between trait anxiety and within-DMN nodal

dispersion in TRD but not in HC (B), while trait anxiety shows a positive correlation to

within-DMN nodal degree in both groups (C). (D) Depressive symptoms as measured

through RSQ22 total scores are significantly higher in patients with TRD (red violinplots)

when compared to HCs (blue violinplots). A significant negative correlation is found

between depressive symptoms and within-DMN nodal dispersion in TRD but not in HC

(E). Depressive symptoms show a positive correlation to within-DMN nodal degree in

both groups (F). (G) Levels of mindfulness as measured through FFMQ total scores are

significantly lower in patients with TRD when compared to HCs. Mindfulness correlates
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positively with within-DMN nodal dispersion in TRD but not in HC (H), while it correlates 

negatively with within-DMN nodal degree in TRD but not in HC (I). DMN = Default Mode 

Network; HC = healthy controls; TRD = patients with treatment resistant depression. 

*p<0.05 FDR corrected, +p<0.05 uncorrected 
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 HC 

(n=28) 

TRD 

(n=56) 

T p 

Age in years 45.4 (9.3) 42.9 (9.9) 1.14 0.260 

Female 20 44 0.21& 0.651 

Handedness ambidextrous/left/right 1/2/25 2/5/49 0.08& 0.962 

Education in years 16.9 (2.5) 16.1 (2.1) 1.57 0.123 

Hispanic-Latino 4 4 0.40& 0.529 

Asian/Black/Other/White 1/2/0/25 6/4/1/45 12.38& <0.01 

Mean FD in mm 0.23 (0.10) 0.25 (0.11) -1.01 0.316 

Age of MDE onset in years - 20.8 (10.1) - - 

Number of MDEs - 3.6 (2.5) - - 

Current onset duration in months - 85.6 (110.5) - - 

Number of trials - 2.9 (1.3) - - 

Concurrent medication at baseline     

Antidepressants - 56 (100.0%) - - 

Mood stabilizers - 8 (14.3%) - - 

Sedatives - 19 (33.9%)   

Stimulants - 13 (23.2%) - - 

Antipsychotics - 1 (20.0%) - - 

Other - 1 (1.8%) - - 

Clinical questionnaires     

HAMD-17 1.6 (1.3) 17.4 (2.7) -35.5 <0.001 

QIDS-SR16 2.6 (1.4) 14.9 (3.7) -21.6 <0.001 

STAI trait 27.6 (5.8) 60.1 (8.5) -19.6 <0.001 

STAI state 26.5 (7.8) 56.3 (9.8) -14.5 <0.001 

RSQ22 31.8 (9.0) 59.7 (11.0) -12.0 <0.001 

FFMQ 157.2 106.1 12.0 <0.001 

Table 1. Participants’ demographic and clinical characteristics at baseline. Mean 

and standard deviation in brackets. &Chi-square test. FD = framewise head 

displacement; FFMQ = Five Facet Mindfulness Questionnaire; HAMD-17 = Hamilton 
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Depression Rating Scale; HC = healthy control; MAOI = monoamine oxidase inhibitors; 

MDE = major depressive episode; QIDS-SR16 = Quick Inventory of Depression 

Symptomatology; RSQ22 = Nolen-Hoeksema's Response Styles Questionnaire; SNRI = 

selective and norepinephrine reuptake inhibitors; SRI = selective reuptake inhibitors; 

SSRI = selective serotonin reuptake inhibitors; STAI = State-Trait Anxiety Inventory; 

TCA = tricyclic antidepressants; TRD = treatment resistant major depression.  
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Supplementary Information 

Supplementary information for “Dysfunctional cortical gradient architecture in 

treatment resistant major depression” 

Lorenzo Pasquini1*, Susanna L. Fryer2, 3, Stuart J. Eisendrath2, Zindel V. Segal2, Paul 

Betancourt2, 3, Brain J. Roach2, 3, Alex J. Lee1, Jesse A. Brown1, Manish Saggar4, Daniel 

H. Mathalon2, 3 

 
Content: 

1. Supplementary Methods: 

- Nodal dispersion 

- Statistical analyses 

2. Supplementary Figures and Tables:  

- Five Supplementary Figures and four Supplementary Tables 
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Supplementary Methods 

Nodal dispersion 

We derived a measure of within-network nodal dispersion for each participant by 

plotting the first three connectivity gradients against each other to derive a topographical 

three-dimensional Euclidean space. Within this manifold we then calculated the 

Euclidean distance between nodes belonging to the same intrinsic brain network (42) 

(Figure 1Cd). More formally, nodal dispersion was defined for each node as:  

NDj � ����, 

���

�,�

�/�
 � 1� 

where NDj refers to the nodal dispersion of an individual node within a specific intrinsic 

brain network, e.g., the DMN, and n refers to the total number of nodes within this 

network. δj,i reflects de Euclidean distance between node j and another node i 

belonging to that network. δj,i is iteratively generated between a node and all other 

nodes in a network and eventually averaged. Nodal dispersion measures were derived 

for each node belonging to a specific intrinsic brain network and averaged across 

nodes, yielding a final estimate of within-network nodal dispersion for each participant. 

We performed several control analyses to assess the impact of methodological 

parameters on our findings. We derived measures of within-network nodal dispersion by 

using the first six gradients instead of three; global signal regression on rs-fMRI data; 

the Schaefer Altas with 1000 or 200 parcels; Laplacian embedding instead of diffusion 

embedding to derive cortical gradients; or angular normalization instead of cosine 

similarity to derive the dissimilarity matrices. Findings from these analyses are 

presented in the Supplementary Figures and Tables. Finally, we also derived a measure 
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of between-network nodal dispersion calculated as the Euclidean distance between 

network centroids (i.e., the arithmetic mean of all nodes belonging to the same 

network). 

Statistical analyses 

Chi-square tests were used to compare sex, handedness, ethnicity, and race 

distributions across groups (p<0.05 uncorrected). Two sample t-tests were used to 

compare continuous demographical and clinical variables, functional connectivity 

matrices, and parcel-level gradient maps between HCs and patients (p<0.05 

uncorrected). ANOVA models and associated post-hoc t-test were used to compare 

measures of within-network nodal dispersion and nodal degree across HCs and patients 

with TRD (p<0.05 FDR corrected for multiple comparisons if not specified otherwise). 

Multiple linear regression analyses were used to associate measures of within-network 

nodal dispersion to demographical variables and mean framewise head displacement 

(p<0.05 uncorrected). Pearson’s correlation analyses were used to associate measures 

of within-network nodal degree to measures of within-network nodal dispersion 

separately for each group (p<0.05 FDR corrected for multiple comparisons if not 

specified otherwise). To compare the strength of the correlations across groups, Fisher 

r-to-z transformation tests for independent samples were performed using an online 

calculator (https://www.psychometrica.de/correlation.html). Pearson’s correlation 

analyses were used to associate measures of within-DMN nodal degree and dispersion 

to neuropsychological questionnaire scores at baseline separately for each group 

(p<0.05 FDR corrected for multiple comparisons if not specified otherwise). Again, 

Fisher r-to-z tests for independent samples were performed to compare the strength of 
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the correlations across groups. Three repeated measures ANOVA were performed to 

evaluate the effect of MBCT and HEP interventions over time on STAI trait, RSQ22, and 

FFMQ scores of patients with TRD. Pearson’s correlation analyses were used to 

associate within-DMN nodal dispersion to change in STAI trait, RSQ22, and FFMQ 

scores at 8 and 24 weeks after completing the interventions. Both intervention arms 

were combined into one sample for this last set of analyses assessing the association 

between longitudinal change scores and DMN functional measures at baseline. 
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Supplementary Figures and Tables 
 

 

Supplementary Figure S1. Functional connectivity matrices derived from rs-fMRI data

of (A) HCs and (B) patients with TRD. (C) Subtraction matrix showing functional

connectivity differences across both groups. Warm colors reflect connectivity decreases

in patients, while cold colors reflect connectivity increases in patients (p<0.05

uncorrected, no group differences survived FDR multiple comparison correction). CoN =

Control Network; DAN = Dorsal Attention Network; DMN = Default Mode Network; HC =

healthy controls; LiN = Limbic Network; SaN = Salience Network; SMN = Sensorimotor

network; TRD = patients with treatment resistant depression; ViN = Visual Network. 
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Supplementary Figure S2. Cortical gradient extraction control analyses. (A) Maps

of cortical Gradients 1-3 as shown in the main findings. These gradients explained most

of the variance in connectivity, followed by Gradients 5-6 (B). First three cortical

Gradients derived either through (C) global signal regressed rs-fMRI data; (D) Schaefer

atlas with 200 parcels; (E) Laplacian embedding; or (F) angular normalization to

generate the dissimilarity matrices. The sing assigned to gradients by the

2

 

ps 

st 

al 

fer 

to 

he 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.16.22276402doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.16.22276402
http://creativecommons.org/licenses/by-nc-nd/4.0/


 43

decomposition algorithm is arbitrary; we flipped the sign of some Gradients to better 

visualize the spatial similarity across corresponding gradient maps.  
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Supplementary Figure S3. Between-network nodal dispersion. Between-network

nodal distance in (A) HCs and (B) patients with TRD. (C) Significant reductions in

between-network nodal dispersion were found in patients with TRD, affecting the

Sensorimotor and DMN, the Salience and DMN, and the Control and Dorsal Attention

Network. None of these findings survived FDR correction for multiple comparisons.

+p<0.05 uncorrected. CoN = Control Network; DAN = Dorsal Attention Network; DMN =

Default Mode Network; HC = healthy controls; LiN = Limbic Network; SaN = Salience

Network; SMN = Sensorimotor network; TRD = patients with treatment resistant

depression; ViN = Visual Network.
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Supplementary Figure S4. Within-network nodal dispersion and nodal degree

control analyses. Scatterplots reflecting the association between within-network nodal

degree and within-network nodal dispersion separately for patients with TRD and HCs.

Within-network nodal degree was repeatedly estimated by applying distinct thresholds

when generating the weighted connectivity matrices. (A) Connectivity threshold set at

0.45. (B) Connectivity threshold set at 0.25. Pearson’s correlation coefficients are

reported below the scatterplots for each group separately together with associated

Fisher r-to-z tests for independent samples comparing the strength of the correlations

across groups. CoN = Control Network; DAN = Dorsal Attention Network; DMN =

Default Mode Network; HC = healthy controls; LiN = Limbic Network; SaN = Salience

Network; SMN = Sensorimotor network; TRD = patients with treatment resistant

depression; ViN = Visual Network. *p<0.05 FDR corrected, +p<0.05 uncorrected 
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Supplementary Figure S5. Changes in clinical scores with MBCT and HEP

interventions. Patients with TRD report higher levels of mindfulness, lower levels of

depression, and lower levels of trait anxiety at 8 and 24 weeks after completing a MBCT

(orange) or a HEP intervention (blue). HEP = health enhancement program; FFMQ =

Five Facet; MBCT = Mindfulness Questionnaire; Mindfulness-Based Cognitive Therapy;

RSQ22 = Nolen-Hoeksema's Response Styles Questionnaire; STAI = State-Trait

Anxiety Inventory. 
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 Within-network nodal dispersion 

CoN DAN DMN LiN SaN SMN ViN 

Age β = -

0.02 

p = 0.17 

β = 0.00 

p = 0.95 

β = -0.01 

p = 0.51 

β = 0.00 

p = 0.76 

β = 0.00 

p = 0.86 

β = -0.01 

p = 0.56 

β = 0.00 

p = 0.83 

Sex β = 0.16 

p = 0.58 

β = 0.06 

p = 0.86 

β = 0.19 

p = 0.54 

β = -0.25 

p = 0.43 

β = -0.18 

p = 0.48 

β = -0.04 

p = 0.90 

β = 0.17 

p = 0.55 

FD β = 0.03 

p = 0.98 

β = -0.83 

p = 0.49 

β = 0.92 

p = 0.44 

β = -1.04 

p = 0.40 

β = -0.44 

p = 0.66 

β = 0.39 

p = 0.73 

β = -1.58 

p = 0.14 

 

Supplementary Table S1. Within-network nodal dispersion is not associated with 

head movement, age, or sex. Seven separate multiple linear regression models were 

run in patients with TRD to assess the link between within-network nodal dispersion, 

used as the dependent variable, and mean frame-wise head displacement (FD), age, 

and sex. There were no significant associations. CoN = Control Network; DAN = Dorsal 

Attention Network; DMN = Default Mode Network; LiN = Limbic Network; SaN = 

Salience Network; SMN = Sensorimotor network; TRD = patients with treatment 

resistant depression; ViN = Visual Network. 
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i. First six cortical gradients 

ViN SMN DAN SaN LiN CoN DMN 

TRD 3.7 (0.9) 3.2 (0.9) 3.9 (0.8) 3.7 (0.8) 3.6 (1.0) 4.1 (0.8) 4.2 (1.0) 

HC 4.5 (1.3) 2.8 (0.9) 4.3 (0.8) 3.6 (0.9) 4.0 (1.1) 4.7 (1.1) 4.5 (1.1) 

p 0.003* 0.074 0.025 0.850 0.083 0.010* 0.155 

ii. Global signal regression 

ViN SMN DAN SaN LiN CoN DMN 

TRD 3.5 (0.9) 2.8 (0.8) 3.6 (0.9) 3.1 (0.7) 3.3 (1.1) 3.8 (1.0) 3.7 (1.0) 

HC 4.3 (1.6) 2.6 (0.8) 4.3 (1.0) 3.5 (0.9) 4.2 (1.5) 4.6 (1.7) 4.3 (1.3) 

p 0.007*    0.601    0.002*    0.026*    0.003*    0.005*    0.013* 

iii. Schaefer Atlas 200 parcels 

ViN SMN DAN SaN LiN CoN DMN 

TRD 3.6 (1.3) 3.2 (1.4) 4.0 (1.5) 3.8 (1.2) 3.4 (1.5) 4.3 (1.4) 4.0 (1.4) 

HC 4.5 (1.7) 2.9 (1.2) 4.4 (1.3) 3.5 (1.4) 3.7 (1.5) 4.7 (1.6) 4.2 (1.2) 

p 0.007* 0.299     0.227     0.401     0.353     0.283     0.416 

iv. Schaefer Atlas 1000 parcels 

ViN SMN DAN SaN LiN CoN DMN 

TRD 2.8 (0.9) 2.1 (0.6) 2.9 (0.7) 2.5 (0.6) 2.5 (0.8) 3.0 (0.8) 2.9 (0.8) 

HC 3.4 (1.1) 2.0 (0.6) 3.4 (0.8) 2.7 (0.7) 3.1 (1.0) 3.6 (1.1) 3.2 (0.8) 

p 0.002*    0.562     0.003*    0.218     0.004*    0.013*    0.043 

v. Laplacian embedding – values multiplied by 100 

ViN SMN DAN SaN LiN CoN DMN 

TRD 1.3 (0.2) 1.3 (0.2) 1.3 (0.2) 1.3 (0.3) 1.2 (0.2) 1.3 (0.2) 1.2 (0.2) 

HC 1.4 (0.2) 1.3 (0.3) 1.3 (0.2) 1.3 (0.2) 1.2 (0.2) 1.3 (0.2) 1.2 (0.2) 

p 0.080     0.150     0.266     0.379     0.514     0.968     0.234 

vi. Angular normalization – values multiplied by 100 

ViN SMN DAN SaN LiN CoN DMN 

TRD 6.8 (1.0) 7.3 (1.2) 7.9 (1.0) 7.2 (1.0) 5.9 (1.3) 7.3 (0.9) 7.1 (1.0) 

HC 6.9 (1.1) 7.5 (1.3) 8.4 (1.1) 7.5 (1.1) 6.0 (1.1) 7.5 (1.2) 7.5 (1.1) 
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P 0.657     0.440     0.051    0.214     0.601     0.337     0.069 

Supplementary Table S2. Within-network nodal dispersion across methodological 

parameters. Group-mean within-network nodal dispersion and standard deviation in 

brackets. We systematically assessed whether group differences in within-network 

nodal dispersion were affected by methodological parameters, such as: (i) including up 

to six cortical gradients when assessing the Euclidean distance between nodes; (ii) 

performing global signal regression on rs-fMRI data; (iii) using the Schaefer Atlas at a 

lower spatial resolution of 200 parcels; (iv) using the Schaefer Atlas at a higher spatial 

resolution of 1000 parcels; (v) applying Laplacian embedding to derive cortical 

gradients; or (vi) using angular normalization to generate the dissimilarity matrices. Raw 

p values are reported; *denotes p<0.05 FDR corrected for multiple comparisons. 

Significant FDR corrected reductions in within-network nodal degree in patients are 

highlighted in the orange cells. CoN = Control Network; DAN = Dorsal Attention 

Network; DMN = Default Mode Network; LiN = Limbic Network; SaN = Salience 

Network; SMN = Sensorimotor network; TRD = patients with treatment resistant 

depression; ViN = Visual Network. 
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Change score Group Time Group*Time 

STAI trait F = 0.0 

p = 0.96 

F = 19.2 

p < 0.001 

F =0.5 

p = 0.61 

RSQ22 F = 0.10 

p = 0.78 

F = 10.9 

p < 0.001 

F =0.6 

p = 0.57 

FFMQ F = 4.0 

p < 0.05 

F = 11.6 

p < 0.001 

F = 1.0 

p = 0.36 

Supplementary Table S3. Repeated measurement ANOVA models assessing 

change in STAI trait, RSQ22, and FFMQ scores in patients. Repeated measurement 

ANOVA models revealed a significant effect of time on scores of STAI trait, RSQ22, and 

FFMQ from baseline to 8 and 24 weeks. No significant group-time interactions were 

found. FFMQ = Five Facet Mindfulness Questionnaire; RSQ22 = Nolen-Hoeksema's 

Response Styles Questionnaire; STAI = State-Trait Anxiety Inventory. 
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Within-DMN nodal dispersion at baseline 

Change score 8 weeks - baseline  24 weeks - baseline 

STAI trait R = 0.11 

p = 0.42 

R= 0.01 

p = 0.92 

RSQ22 R = 0.05 

p = 0.74 

R = 0.00 

p = 0.95 

FFMQ R = 0.01 

p = 0.95 

R = 0.10 

p = 0.49 

Supplementary Table S4. Within-DMN nodal dispersion and change in STAI trait, 

RSQ22, and FFMQ scores in patients. Within-DMN nodal dispersion at baseline was 

correlated with change in STAI trait, RSQ22, and FFMQ scores at 8 and 24 weeks after 

the intervention. Since our analyzes revealed a main effect of time on clinical scores but 

not a time x group interaction, these correlation analyses were performed by combining 

in one group patients undergoing Mindfulness-Based Cognitive Therapy and the health 

enhancement program. There were no significant associations. FFMQ = Five Facet 

Mindfulness Questionnaire; RSQ22 = Nolen-Hoeksema's Response Styles 

Questionnaire; STAI = State-Trait Anxiety Inventory. 
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