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ABSTRACT

Multivariable Mendelian randomization (MVMR) is an instrumental variable technique that generalizes the MR framework
for multiple exposures. Framed as a linear regression problem, it is subject to the pitfall of multi-collinearity. The bias and
efficiency of MVMR estimates thus depends on the correlation of exposures. Dimensionality reduction techniques such as
principal component analysis (PCA) provide transformations of all the included variables that are effectively uncorrelated.
We propose the use of sparse PCA (sPCA) algorithms that create principal components of subsets of the exposures and
may provide more interpretable and reliable MR estimates. The approach consists of three steps. We first apply a sparse
dimension reduction method and transform the variant-exposure summary statistics to principal components. We then choose
a subset of the principal components based on data-driven cutoffs, and estimate their strength as instruments with an adjusted
F-statistic. Finally, we perform MR with these transformed exposures. This pipeline is demonstrated in a simulation study of
highly correlated exposures and an applied example using summary data from a genome-wide association study of 118 highly
correlated lipid metabolites. As a positive control, we tested the causal associations of the transformed exposures on CHD.
Compared to the conventional inverse-variance weighted MVMR method and a weak-instrument robust MVMR method (MR
GRAPPLE), sparse component analysis achieved a superior balance of sparsity and biologically insightful grouping of the lipid
traits.
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Key Messages

• In multivariable MR, investigation of multiple highly correlated exposures can hinder the efficiency of the estimators and
mask true associations.

• Dimensionality reduction approaches such as principal component analysis (PCA) appear to be effective in summarising
the variant-exposure summary statistics data in an example of correlated metabolite data.

• Sparse PCA approaches have the additional benefit of providing interpretable PCs as only a few exposures contribute to
each. This benefit is shown in simulation studies where there is a gain in accuracy over PCA.

• In a positive control analysis, the sparse PCs were representing biologically meaningful groups of metabolites (VLDL,
LDL, HDL) and in general were associated with coronary heart disease in an anticipated mannert.

Introduction
Mendelian randomization (MR) uses genetic variants as instrumental variables (IVs) to investigate the causal effect of a
genetically predicted exposure on an outcome of interest1. The random allocation of genetic variants at conception helps

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 16, 2022. ; https://doi.org/10.1101/2022.06.15.22276455doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.06.15.22276455
http://creativecommons.org/licenses/by/4.0/


overcome the environmental confounding that can hinder traditional epidemiological study designs based on observational
associations. Genetically predicted levels of lifelong exposures are also less likely to be affected by reverse causation, as genetic
variants are allocated before onset of the outcomes of interest.
When evidence suggests that multiple correlated phenotypes may contribute to a health outcome, multi-variable MR (MVMR),
an extension of the basic univariable approach, can disentangle more complex causal mechanisms and shed light on mediating
pathways. An example of this would be investigation into the effect of various lipid traits on coronary heart disease (CHD)
risk2. While MVMR can model correlated exposures, it performs suboptimally when there are highly correlated exposures due
to multi-collinearity. This can be equivalently understood as a problem of conditionally weak instruments3. That is, the genetic
variants used to proxy all exposures have to be strongly associated with each exposure conditionally on all the other included
exposures. An assessment of the extent to which this assumption is satisfied can be made using the conditional F-statistic, with
a value of 10 being considered sufficiently strong3. In settings when multiple highly correlated exposures are analysed, a set of
genetic instruments are much more likely to be conditionally weak instruments. In this event, causal estimates can be subject
to extreme bias and are therefore unreliable. Estimation bias can be addressed to a degree by fitting weak-instrument robust
MVMR methods4, 5, but usually at the cost of a further reduction in precision. Furthermore, MVMR models investigate causal
effects for each individual exposure, under the assumption that it is possible to intervene and change each one whilst holding
the others fixed. In the high dimensional, highly correlated exposure setting, this is potentially an unachievable intervention in
practice.

Our aim in this paper is instead to use dimensionality reduction approaches to concisely summarise a set of highly cor-
related genetically predicted exposures into a smaller set of independent principal components (PCs). We then perform MR
directly on the PCs, thereby estimating their effect on health outcomes of interest. We additionally suggest employing sparsity
methods to reduce the number of exposures that contribute to each principal component, in order to improve their interpretability
in the resulting factors.

Using summary genetic data for multiple hightly correlated lipid fractions and CHD6, 7, we first illustrate the pitfalls en-
countered by the standard MVMR approach. We then apply a range of sparse PCA methods within an MVMR framework to
the data. Finally, we examine the comparative performance of the sparse PCA approaches in a detailed simulation study, in a
bid to understand which ones perform best in this setting.

Methods

Workflow Overview. Our proposed analysis strategy is presented in Figure 1. Using summary statistics for the single-
nucleotide polymorphism (SNP)-exposure (γ) and SNP-outcome (Γ) associations, where γ exhibits strong correlation, we
initially perform a principle component analysis (PCA) on γ . Additionally, we perform multiple sparse PCA modalities that aim
to provide sparse loadings that are more interpretable (block 3, Fig. 1). The choice of the number of principal components (PCs)
is guided by permutations or an eigenvalue threshold. Finally, the PCs are used in place of γ in an IVW MVMR meta-analysis
to obtain an estimate of the causal effect of the PC on the outcome. Similar to PC regression and in line with unsupervised
methods, the outcome (SNP-outcome associations (Γ) and corresponding standard error (SEΓ)) is not transformed by PCA and
is used in the second-step MVMR in the original scale. In the real data application and in the simulation study, the best balance
of sparsity and statistical power was observed for the method of sparse component analysis (SCA)8. This favoured method and
the related steps are coded in an R function and are available at github (https://github.com/vaskarageorg/SCA_MR/).
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1: MVMR with high-dimensional correlated exposures

(L x 118) correlation matrix 
for G-X associations  γ

2a:PCA  on γ 2b:Sparse PCA  on γ 3:Choose PC Number 

4: MVMR with low dimensional independent principal components

Sparse PCA: each SNP does 
not contribute to each PC

Causal estimates for each PC using 
standard and sparse method

MR estimates 
affected by 
multi-collinearity

Each PC strongly instrumented (no multi-collinearity)

Figure 1. Proposed workflow. In step 3, the yellow colouring represents values close to zero or exactly zero in the right plot
for the sparse PCA loadings. In step 4, the choice of the number of PCs that are carried forward for analysis is visualised
(green: eigenvalue cutoff9; red: permutation-based approach). In step 5, the causal estimates with PC scores (orange) and
sparse PC scores (blue) are presented. X: exposures; Y: outcome; k: number of exposures; PCA: principal component analysis;
MVMR: multivariable MR

Data. The risk factor dataset reports the associations of 148 genetic variants (SNPs) with 118 NMR-measured metabolites6.
This study reports a high-resolution profiling of mainly lipid subfractions. Fourteen size/ density classes of lipoprotein particles
(ranging from extra small (XS) high density lipoprotein (HDL) to extra-extra-large (XXL) very low density lipoprotein (VLDL))
were available and, for each class, the traits of total cholesterol, triglycerides, phospholipids, and cholesterol esters content, and
the average diameter of the particles were additionally provided. Through the same procedure, estimates from NMR on genetic
associations of amino acids, apolipoproteins, fatty and fluid acids, ketone bodies and glycerides were also included. Instrument
selection for this dataset has been previously described10. Namely, 185 variants were selected, based on association with either
one of: LDL-cholesterol, HDL-cholesterol or triglycerides in the external sample of the Global Lipid Genetics Consortium
at the genome-wide level p < 5×10−8)11. Then, this set was pruned to avoid inclusion of genes in linkage disequilibrium
(threshold: r2 < 0.05) and filtered (variants in distance less than 1 megabase pairs were excluded) resulting in the final set. This
pre-processing strategy was performed with a view to study CHD risk.
Positive control outcome assessment is recommended in MR as an approach of investigating a risk factor that has an established
causal effect on the outcome of interest12. We used CHD as a positive control outcome, given that lipid fractions are known
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to modulate its risk, with VLDL- and LDL-related traits being positively associated with CHD and HDL-related traits
negatively12. Summary estimates from the CARDIoGRAMplusC4D Consortium and UK Biobank meta-analysis7, 13 were used.
For both datasets, a predominantly European population was included, as otherwise spurious results could have arisen due to
population-specific, as opposed to CHD-specific, differences14.

First author Year PMID N Cases Controls Study Name (Population)

Metabolites Kettunen 2016 27005778 24,925 NMR GWAS (European)
CHD Nelson 2017 28714975 453,595 113,937 339,658 CARDIoGRAMplusC4D (European)

Table 1. Two-sample MR. Study characteristics.

MR Assumptions. The first assumption (IV1) states that IVs should be associated with the exposure. The second
assumption (IV2) states that the IVs should be independent of all confounders of the risk factor-outcome association (IV2) and,
finally, independent of the outcome conditional on the exposure and the confounders (IV3). The validity of the final assumption
cannot be directly tested with the available data. For the inferences to be valid, it is necessary that the three IV assumptions
apply15. In situations when IV3 is not deemed likely, additional risk factors that are possible mediators can be introduced in a
multivariable MR (MVMR) model2. Additional assumptions should hold for MVMR results to be valid. Particularly, a) all
included exposures have to be associated with at least one of the IVs, and, b) there should be no evidence of multicollinearity.
If there is significant overlap (if G1 and G2 associate with both the exposures in Fig. 2), this may result in conditionally
weak instruments4. The latter assumption and the way it limits eligibility of high-dimensional, correlated exposures is a key
motivation for the present work.

G1

G2

X1

X2

Y

U

IV 3

IV 2

Figure 2. Directed acyclic graph (DAG) for the MVMR assumptions. IV2, IV3: instrumental variable assumptions 2 and 3.

Univariable (UVMR) & Multivariable MR (MVMR). To examine how each of the metabolites is causally associated
with CHD, a univariable MR (UVMR) approach was first undertaken under the two-sample summary data framework. This
uses SNP-exposure and SNP-outcome GWAS summary statistics (γ̂ and Γ̂ respectively), obtained by regressing the exposure or
outcome trait on each SNP individually. Usually, an additional adjustment has been made for variables such as age, gender, and
genetic principal components. A UVMR analysis is the most straightforward way to obtain an estimate for the causal effect of
the exposure, but is only reliable if all SNPs are valid instruments. However, in the Kettunen dataset, where the exposure set
comprises 118 highly correlated lipid fractions, one variant may influence multiple exposures. This will generally invalidate a
UMVR analysis and a multivariable MR (MVMR) approach is more appropriate.

Estimating equation (1) provides a general means for representing the mechanics of a UMVR or MVMR analysis:

QA =
p

∑
j=1

(
1

σ2
A j
)(Γ̂ j −

K

∑
k=1

βk γ̂k j)
2, where σ

2
A j = σ

2
Y j + ∑

k=1
β

2
k σ

2
k j +

K

∑
k=1

K

∑
l=1

2βlβkσlk j, (1)

where

• γ̂k j represents the association of SNP j with exposure k, with variance σ2
k j;

• Γ̂ j represents the association of SNP j with the outcome, with variance σ2
Y j;
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• βk represents the causal effect of exposure k on the outcome to be estimated.

• σlk j represents Cov(γ̂l j,γ̂k j).

In a UMVR analysis there is only one exposure, so that K=1, whereas in a MVMR analysis K ≥ 2 (or in the case of the
Kettunen data, K=118). In an IVW UMVMR or MVMR analysis, the causal effect parameters estimated are obtained by finding
the values β̂1, ..., β̂K that minimise QA, under the simplifying assumption that σ2

A = σ2
Y j. This is justified if all causal effects are

zero, or if the uncertainty in the SNP-exposure associations is negligible (the No Measurement Error (NOME) assumption). In
the general MVMR context, the NOME assumption is approximately satisfied if the conditional F-statistics (CFS) for each
exposure are large, but if it is not, then IVW MVMR estimates will suffer from weak instrument bias. For exposure k, CFSk
takes the form

CFSk =
QXk

p− (K −1)
,

where:

QX k =
p

∑
j=1

(
1

σ2
Xk j

)(γ̂k j − ∑
m̸=k

δ̂mγ̂m j)
2, where σ

2
Xk j = σ

2
Xk j + ∑

m̸=k
δ

2
mσ

2
m j + ∑

m ̸=k
∑
l ̸=k

2δ̂mδ̂lσml j, (2)

and where the δ̂ are obtained by OLS regression. CFS statistics will generally be small (indicating weak instrument bias)
whenever there is a high degree of correlation between the SNP-exposure association estimates. Such a high correlation is
an indication of multi-colinearity. This would be the case in an MVMR analysis of all 118 lipid fractions in the Kettunen
data. One option to address this would be to use weak instrument robust MVMR, such as MR-GRAPPLE5. This method
performs estimation using the full definition of σ2

A in (1). It can work well for MVMR analyses of relatively small numbers
of exposures (e.g. up to 10) and relatively weak instruments (CFS statistics as low as 3), but the dimension and high cor-
relation of the Kettunen data is arguably too challenging. This motivates the use of dimension reduction techniques, such as PCA.

Dimension reduction via PCA. The PCA method used was a singular value decomposition of the p×K matrix of SNP-exposure
associations γ̂γγ as:

γ̂γγ =UDV T

where U and V are orthogonal matrices and D is a square matrix whose diagonal values are the variances explained by each
component and all off diagonal values are 0. V is the loadings matrix and serves as an indicator of the contribution of each
metabolite to the transformed space of the PCs. The matrix UD (PCs/ scores matrix) is used in the second-step IVW regression
in place of γ . As V estimation does not necessarily guarantee sparsity, certain exposures can contribute to multiple components,
making the interpretation more complicated. Therefore, we assessed multiple sparse PCA methods that facilitate this.

Sparse PCA (Zou et al): Sparse PCA by Zou et al.16 estimates the loadings matrix through an iterative procedure that
progressively penalises exposures so that they do not contribute to certain PCs. In principle, this leads to a more clear picture
for the consistency of each PC. This is performed as follows

1. Setting a fixed matrix, the following elastic net problem is solved
ξ j = argminξ (α j −ξ )T γT γ(α j −ξ )+λ1 j∥ξ∥+λ∥ξ∥2, where j is the PC.

2. For a fixed Ξ, γT γΞ =UDV T is estimated and update A =UV T

3. Repeat until convergence

As a result of the additional λ1∥ξ∥ norm, there is sparsity in the loadings matrix and only some of the SNP-exposure associations
γ contribute to each PC, specifically a particular subset of highly correlated exposures in γ .

RSPCA: This approach differs in that it employs a robust measure of dispersion (Qn estimator)17, 18. As above, an L1
norm is used to induce sparsity. For optimisation, the Tradeoff Product Optimization (TPO) was maximised. Its advantage
is that it does not impose a single λ value on all PCs, thus allowing different degrees of sparsity. The maximum number of
iterations was set at 100. In our application of a robust measure of dispersion for transforming the Kettunen data, this could
result in data such that outlying associations may not distort the resulting transformations. Outliers in this context are defined
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only in γ , in contrast with the median and mode methods19, 20.

Sparse Fused Principal Component Analysis (SFPCA)21: A method that can in theory exploit distinct correlation struc-
tures. The goal is to derive a loadings matrix in which highly positively correlated variables are similar in sign and highly
negative ones are opposite. Similar magnitudes also tend to be obtained for those variables that are in the same blocks in the
correlation matrix. Like the optimisation in Zou et al.16, the following criterion is used

minA,Ξ∥γ − γΞAT∥F +λ1∥ξ∥+λ2|ρs,t ||ξs,t − sign(ρs,tξt,k)|

s.t. AT A = IK . The ’fused’ penalty (last term) purposely penalises discordant loadings for variables that are highly correlated.
The choice of the sparsity parameters is based on a BIC criterion.

Sparse Component Analysis (SCA): SCA8 is motivated by the relative inadequacy of the classic approaches in promot-
ing significant sparsity. The authors present a solution of the variance maximisation problem in which the eigenvectors
are rotated in a way that approximate sparsity is achieved. This is prompted by the fact that the potential loadings for the
problem of variance maximisation in sPCA form an entire space if the orthogonality constraint does not hold and, thereby,
a loadings solution can be rotated so that it’s (approximately) sparse and explains the same proportion of variance. Then, a
soft-thresholding approach is applied on the loadings matrix through constraint with a sparsity parameter. The simulation
studies support the increased sparsity in a dataset of gene expression, among other examples8.

Choice of Components
In all dimensionality reduction approaches, there is no upper limit to how many transformed factors can be estimated. However,
only some of them are informative in the sense of explaining a meaningful proportion of variance in the original dataset. For this
purpose, a permutation-based approach was implemented22. The γ matrix was randomly reshuffled (permuted) and the sparse
PCA method of interest was applied in the permuted set. In this case, the eigenvalue that is computed reflects the eigenvalue
obtained under the null of a non-informative component. This process is repeated multiple times (perm = 1000) and the mean
eigenvalue for all components is stored. Finally, the sparse PCA method is performed in the original γ matrix and whichever
component has an eigenvalue larger than the mean of the permuted sets is considered informative.

Due to the computational complexity of the permutation method, particularly for SFPCA, an alternate method - the Karlis-
Saporta-Spinakis (KSS) criterion9 - was also used. This is based on a simple correction on the minimum non-trivial eigenvalue
(CutoffKSS = 1+2

√
K−1
p−1 ). The authors show that the method is not sensitive to non-normal distributions9. Although KSS was

not compared with the above described permutation approach, it performed better than simpler approaches, such as choosing
those PCs whose eigenvalue is larger than 1 (Kaiser criterion), the broken stick method23 and the Velicer method24.

Instrument Strength of PCs
In MVMR, the IV 1 assumption requires a set of genetic variants that robustly associate with at least one of the exposures X
(MR Assumptions). This is quantified by the F-statistic and CFS4. As a rule of thumb, if the F-statistic surpasses the cutoff of
10, the transformed exposure is strongly instrumented. With summary statistics of the SNP-X associations γp,k (p: SNP, k:
exposure), the mean F−statistic for the exposure k is estimated as

Fk =
∑

p
j=1(

γ̂ j,k
SEγ̂ j,k

)2

p
(3)

Since we transform γ and obtain a matrix of lower dimensionality, formula 3 can’t be used as there is no longer a one-to-one
correspondence of the SEs with the PCs. Likewise, a conditional F−statistic for the PCs also cannot be computed for this
reason. We aim to arrive at a modified formula that bypasses this issue. For this purpose, we take advantage of two concepts,
first an expression of the F−statistic for an exposure k (Fk) in matrix notation and, second, the use of this expression to estimate
F−statistics for the PCs (FPC) from γ decomposition.

We make the assumption that the uncertainty in the γG,XK estimates is similar in all K exposures, i.e. γG,X uncertainty
estimates do not substantially differ among exposures. This is not implausible as the uncertainty is predominantly driven by
sample size and minor allele frequency25. In specific, the authors of25 show that

Var(γXk) =
1

nkVar(Xk)MAF(1−MAF)
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, where MAF is the minor allele frequency, nk is the sample size in exposure k and Var(Xk) is the phenotypic variance. What
this means is that, in experiments such as6 where nk is the same across all exposures and Var(Xk) can be standardised to 1,
the main driver of differences in Var(γXK ) is differences in MAF. As MAF is the same for each SNP across all exposures, the
collation of SEs across exposures per SNP is well motivated.

We can then define a matrix Σ as follows.

Σ =


¯SE2

1 0 0 . . . 0
0 ¯SE2

2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . ¯SE2
p

 , ¯SE2
j =

∑
K
k=1 SE2

j,k

K

The elements in the diagonal represent the mean variance of γ for each SNP and all off-diagonal elements are zero. What is
achieved through this is a summary of the uncertainty in the SNP-X associations that is not sensitive on the dimensions of the
exposures. Instead of Eq. 3, we can then express the vector of the mean F-statistics for each exposure F1−K = [F1,F2, ...,FK ] as

F1−K
K×1

=
1
p
×diag[ γ

T

K×p
×Σ

−1
p×p

× γ
p×K

] (4)

where γ is the matrix of the SNP-exposure associations. In a simulation study, we generate data under the mechanism in
Figure 3a. The strength of association is different in the three exposures. It is observed that the estimates with both methods
(Eq. 4 and Eq. 3) align well (Figure 3b), supporting the equivalence of the two formulae.
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Figure 3. a. Data generating mechanism. Three exposures with different degrees of strength of association with G are
generated γ1 = 1,γ2 = 0.5,γ3 = 0.1. b. F-statistic for the three exposures X1,X2,X3 as estimated by the formulae in Eq. 4
(horizontal axis) and Eq. 3 (vertical axis).

Our second aim is to use this matrix notation formula for the F−statistic to quantify the instrument strength of each PC with
the respective F−statistic (FPC). As presented above, we are not limited by the dimensions of point estimates and uncertainty
matching exactly and we can use the formula in Eq. 4 and substitute γγγ with the PCs. For the PCA approach, where we
decompose γγγ as γγγ =UDV T and carry forward M << K non-trivial PCs, we use the matrix UD in place of γγγ . Then, the mean
FPC can be estimated as follows.

FPC1−M
M×1

=
1
p
×diag[UDT

M×p
×Σ

−1
p×p

×UD
p×M

] (5)
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The vector FPC1−M = [FPC1 ,FPC2 , ...,FPCM ] contains the FPC statistics for the M PCs. In a similar manner, we estimate FPC
for the sparse PCA methods but, instead of the scores matrix UD, we use the scores of the sparse methods. We illustrate the
performance of this approach in a simulation study with an identical configuration for exposure generation as the one presented
in Figure 8. In a configuration with b = 6 blocks of p = 30 genetically correlated exposures (Figure 7), we vary the strength of
association γ per block. This way, the first block has the highest strength of association and the last block the lowest, quantified
by a lower mean F−statistic in the exposures of this block (red, Figure 4). The instrument strength of the PCs and the sPCs
follow closely the corresponding F−statistics of the individual exposures; in other word, in a PC of five exposures, FPC1 , FSCA1
and F1−5 align well (Figure 4).

1

2

3

4

PC1 PC2 PC3 PC4 PC5 PC6
PC

lo
g 

F
 s

ta
tis

tic

F

FSCA

FPCA

FsPCA

Figure 4. Distributions of the F−statistics in PCA methods and individual (not transformed) exposures. Exposure data in
different blocks are simulated with a decreasing strength of association and the correlated blocks map to PCs. Each distribution
represents the F−statistics for each PC. In the case of the individual exposures (red), the distributions represent the
F−statistics for the corresponding exposures. Individual: individual exposures without any transformation; PCA: F−statistics
for PCA; SCA: sparse component analysis8; sPCA: sparse PCA as described by Zou et al.16

Results
Univariable MR (UVMR) & Multivariable MR (MVMR). A total of 67 traits were associated with CHD at or below
the Bonferroni-corrected level (p = 0.05/118, Table 2). Two genetically-predicted lipid exposures (M.HDL.C, M.HDL.CE)
were negatively associated with CHD and 65 were positively associated (Table 1). In a MVMR model including only the
67 Bonferroni-significant traits, fitted with the purpose of illustrating the instability of IVW-MVMR in conditions of high
collinearity, the conditional F-statistic (CFS)4 was lower than 2.2 for all exposures (with a mean CFS of 0.81), highlighting
the weak instrument problem. The causal estimates for two traits (ApoB, M.LDL.PL) reached significance (OR (95% CI):
1.031(1.012,1.37) and 0.904(0.881,0.923) (Fig. 9). For M.LDL.PL, its UVMR estimate (1.52(1.35,1.71), p < 10−10)) was of
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opposite sign to the MVMR estimate. Since these traits are correlated (r2 = 0.89), we interpret this change of effect direction
as an artefact of multicollinearity. Additionally, the ability to detect any further causal effects is likely masked by variance
inflation. To see if the application of a weak-instrument robust MVMR method could improve the analysis, we applied MR
GRAPPLE5). Although the method did not identify any of the exposures as significant at Bonferroni-adjusted significance
level, the estimate for M.LDL.PL is still negative but closer to zero and not statistically significant. The only trait that retains
statistical significance is ApoB.

Positive Negative

VLDL

M.VLDL.C, M.VLDL.CE, M.VLDL.FC, M.VLDL.L,
M.VLDL.P, M.VLDL.PL, M.VLDL.TG, XL.VLDL.L,

XL.VLDL.PL, XL.VLDL.TG, XS.VLDL.L, XS.VLDL.P, XS.VLDL.PL,
XS.VLDL.TG, XXL.VLDL.L, XXL.VLDL.PL,

L.VLDL.C, L.VLDL.CE, L.VLDL.FC, L.VLDL.L, L.VLDL.P,
L.VLDL.PL, L.VLDL.TG, S.VLDL.C, S.VLDL.FC,

S.VLDL.L, S.VLDL.P, S.VLDL.PL, S.VLDL.TG

None

LDL
LDL.C, L.LDL.C, L.LDL.CE, L.LDL.FC, L.LDL.L, L.LDL.P, L.LDL.PL,

M.LDL.C, M.LDL.CE, M.LDL.L, M.LDL.P,
M.LDL.PL, S.LDL.C, S.LDL.L, S.LDL.P

None

HDL S.HDL.TG, XL.HDL.TG M.HDL.C, M.HDL.CE

Table 2. Univariable MR results for the Kettunen dataset with CHD as the outcome. Positive: positive causal effect on CHD
risk; Negative: negative causal effect on CHD risk.

PCA. Standard PCA with no sparsity constraints was used as a benchmark. PCA estimates a square loadings matrix
of coefficients with dimension equal to the number of exposures K. The coefficients in the first column define the linear
combination of exposures with the largest variability (PC1). Column 2 defines PC2, the linear combination of exposures with
the largest variability that is also independent of PC1, and so on. This way, the resulting factors seek to reduce redundant
information and project highly correlated SNP-exposure associations to the same PC.
In PC1, VLDL- and LDL-related traits were the major contributors (Figure 5a). ApoB received the 8th largest loading
(0.1343, maximum was 0.137 for cholesterol content in small VLDL) and LDL.C received the 49th largest (0.1122). In PC2,
HDL-related traits were predominant. The first 18 largest positive loadings are HDL-related and 12 describe either large or
extra-large HDL traits. PC3 receives its scores mainly from VLDL traits.
Seven components were deemed significant through the permutation-based approach (Fig. 1, Methods). This method randomly
permutes γ and performs the PCA decomposition on each rearranged dataset. Eigenvalues are calculated for each PC based
on the permuted matrix. The PCs with an eigenvalue higher than the mean of the permuted sets are deemed informative/
non-trivial and are retained for further analyses. In the second-step IVW regression (Fig. 1), a modest yet significant (OR =
1.002(1.0014,1.0024), p < 10−10) association of PC1 with CHD was observed. Conversely, PC3 was marginally significantly
associated with CHD (OR = 0.998 (0.998, 0.999), p = 0.049). Since γ has been transformed with linear coefficients (visualized
in loadings matrix, Fig. 5), estimation of the magnitude of an association is not straightforward; however, significance and
orientation of effects can be interpreted. Specifically, when positive loadings are applied to a block of correlated exposures
that positively associate with the outcome, the MR estimate is positive; conversely, if negative loadings are applied, the MR
estimate is negative.

Sparse PCA methods. We next employed multiple sparse PCA methods (Table 3) that each shrink a proportion of loadings
to zero. The way this is achieved differs in each method. Their underlying assumptions and details on differences in optimisation
are presented in Table 3 and further described in Methods.
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Figure 5. Heatmaps for the loadings matrices in the Kettunen dataset for all methods (one with no sparsity constraints (a), four
with sparsity constraints under different assumptions (b-e)). Blue: positive loading; Red: negative loading; Yellow: zero.
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Package Authors Features Choice PCs

elasticnet Hui Zou, Trevor Hastie16 Formulation of sPCA
as a regression problem

KSS 7

pcaPP
Peter Filzmoser, Heinrich Fritz,

Klaudius Kalcher26
Robust sPCA (RSPCA) with a different

measure of dispersion (Qn)
Permutation

KSS
7

Sparse Fused PCA
Jian Guo, Gareth James,

Elizaveta Levina, George Michailidis,
Gi Zhu

Fused penalties for block correlation KSS 14

SCA Fan Chen, Karl Rohe8 Rotation of eigenvectors
for approximate sparsity

Permutation
KSS

7

Table 3. Overview of sPCA methods used. KSS: Karlis-Saporta-Spinaki criterion.
The loadings for all methods (Figures 5a-e) are presented for LDL.c, a previously prioritised trait27. We do not expect the

loadings for the same component to be numerically identical across methods, eg. an HDL-dominant component may be ranking
second (in variance explained) in one method and fourth in another. Ideally, we would like to see metabolites contributing to a a
small number or only one component. Using a visualisation technique proposed by Kim et al.28, this is indeed observed in
Fig. 12. This visualisation was also repeated for urea, a metabolite that was assumed to be of little contribution in the overall
variance of the (mainly lipid trait-focused) NMR dataset. Urea receives loadings of exactly zero or near zero in all methods (Fig.
12), thus serving as a successful negative control. In the second-step IVW meta-analysis, it appears that the PCs that comprise
of predominantly VLDL/LDL and HDL traits robustly associate with CHD, with differences among methods (Table 4).

PCA sPCA Zou RSPCA SFPCA SCA
Overlap 100 52.54 74.58 100.00 28.81

Overlap in PC1, PC2 100 80.51 78.81 97.46 46.61
% Sparse 0 25.79 4.72 0.18 20.94

VLDL, LDL significance in MR Yes Yes Yes No† Yes
HDL significance in MR Yes No No No Yes‡

Table 4. Results for dimensionality reduction approaches. Overlap: Percentage of metabolites receiving non-zero loadings in
≥ 1 component. Overlap in PC1, PC2: overlap as above but exclusively for the first two components which by definition
explain the largest proportion of variance. VLDL, LDL and HDL significance: results of the IVW regression model with CHD
as the outcome for the respective sPC’s (the sPC’s that mostly received loadings from these groups). The terms VLDL and LDL
refer to the respective transformed blocks of correlated exposures; for instance, VLDL refers to the weighted sum of the
correlated VLDL-related γ associations, such as VLDL phospholipid content and VLDL triglyceride content. †: RSPCA
projected VLDL- and LDL-related traits to the same PC (sPC1). ‡: SCA discriminated HDL molecules in 2 sPC’s, one for
traits of small- and medium-sized molecules and one for large- and extra-large-sized. †: significance is not directly reported in
this model.

Sparse PCA (Zou et al., 2006). This method adapts the PCA decomposition to a ridge regression and adds an L1 norm to
introduce sparsity16. In order to get an estimate for the degree of sparsity to be induced, a grid search was performed. Multiple
sPCA models with different numbers of sparse traits per component were generated and the lowest Bayesian Information
Criterion (BIC) was achieved for a total of six metabolites not regularised to 0 per each sPC. While the minimum BIC is
achieved when one metabolite is not regularised to 0, 6 non-zero loadings were preferred as this appears to be an inflection
point (Figure 11). Under this level of sparsity, the permutation-based approach suggests that seven sPC’s are to be retained.
Seventy-one exposures received a zero loading across all components. The first sPC is comprised of VLDL traits, ApoB and
triglycerides (Fig. 5b) and is estimated to exert a significant causal effect on CHD (OR (95% CI): 1.003(1.0003,1.005)). The
sPCs 2 to 7 were not associated with CHD (range: 0.999(0.998,1.001), 1.003(1.000,1.062), all p values > 0.05).
RSPCA. This approach is due to Croux et al.26. Apart from sparsity, the authors also use an alternative measure of dispersion,
the Qn estimator18, that is robust to outliers in γ . Optimisation and the Karlis-Saporta-Spinakis (KSS) criterion pick seven
components to be informative9. KSS is a less computationally expensive method (compared to the permutation method) for
defining an eigenvalue threshold for PC inclusion9. The overlap of the PCs is visualised in Figure 5c. Large positive loadings
are observed for VLDL- and LDL-related traits in sPC1 and five HDL-related traits are regularised to 0. LDL.C and ApoB
received the 9th and 12th largest positive loadings. In the second sPC, HDL traits are mainly represented. None of the sPCs are
robustly associated with CHD.
Sparse Fused PCA (SFPCA). SFPCA works by assigning highly correlated variables the exact same loadings as opposed to
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numerically similar ones (Figure 5d). This is achieved with two norms in the objective function: λ1 which regulates the L1
norm that induces sparsity and λ2 for the L2 regularisation (squared magnitude of γ) to guard against singular solutions. A
grid search is used to identify appropriate parameters for λ1 and λ2. Applying the KSS criterion indicated that 6 sPCs should
be retained. The loadings matrix is presented in Figure 5d and the identical coloring visualises the unique loadings in sPCs
1, 3 and 4, with only one metabolite (M.HDL.P) received a zero loading in sPC 1. Two large clusters are apparent; one with
HDL-related molecules and one with VLDL-, LDL-, IDL-related and other molecules. Both ApoB and LDL.C received the
largest negative loading (−0.11). This was also received by 43 other metabolites (26 VLDL-related, 9 LDL-related, 6 IDL
related, Serum TG, S.HDL.TG). The first 2 sPC’s were significantly negatively associated with CHD (0.998(0.997,0.999),
p value = 6.63x10−7 and 0.9989(0.9980,9998), p value = 0.016). Our results show that we generally retain the expected
direction of effects by examining the factor loadings. Here, the component that consists of the weighted sum of VLDL and
LDL related traits (sPC1) is negatively associated with CHD because of the negative loadings (Fig. 5d, in red).
Sparse Component Analysis (SCA). SCA performs an initial rotation of the obtained loadings in order to achieve approximate
sparsity8. Seven components were retained after a permutation test. In the final model, more than 60 metabolites were
regularised to zero in all components. In the heatmap, little overlap is noted among the metabolites (Figure 5e). The first
sPC mainly receives loadings from LDL and IDL, sPC2 from VLDL and sPC3 from large and extra-large HDL traits. sPC6
gathers the largest loadings for LDL, the fifth for VLDL and the contribution of HDL is split in sPC’s 3 (large and extra-large
HDL traits) and 4 (small and medium HDL traits). sPC1 was positively associated with CHD (OR (95% CI), p value:
1.013(1.009,1.017),< 10−8). sPC4, receiving loadings mainly from medium-sized HDL molecules, was negatively associated
with CHD (0.997(0.995,0.999),0.02), while sPC3 (large and extra-large HDL traits), was positively associated.
Comparison with Univariable MR. In principle, all PC methods derive independent components. This is strictly the case in
PCA, where subsequent PCs are orthogonal, and is relaxed to some degree in sparse implementations. We hypothesised that
UVMR and MVMR could provide similar causal estimates of the associations of metabolite PCs with CHD. The results are
presented in Figure 6 and concordance between UVMR and MVMR is quantified with the R2. The largest agreement of the
causal estimates is observed in PCA. In the sparse methods, SCA8 and sPCA16 provide similarly consistent estimtates, whereas
some disagreement is observed in the estimates of PC4 and PC5 derived by RSPCA26 on CHD.

R2 =0.81

R2 =0.705

R2 =0.092

R2 =0.723

SCA sPCA

PCA RSPCA
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Figure 6. Extrapolated ROC curves for all methods. SCA: Sparse Component Analysis8; sPCA: sparse PCA (Zou et al.)16;
RSPCA: robust sparse PCA26; PCA: principal component analysis; MVMR: multivariable MR; MVMR_B: MVMR with
Bonferroni correction.
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Instrument Strength. Instrument strength for the chosen PCs was assessed via an F-statistic, calculated using a bespoke
formula that accounts for the PC process (see Methods and Appendix). The F-statistics for all transformed exposures cross the
cutoff of 10. There was a trend for the first components being more strongly instrumented in all methods (see Figure 10). In the
individual exposures, the conditional F-statistic for all exposures is lower than three for all exposures. Thus it appears that,
while individual exposures are weakly jointly instrumented with the current instrument, PCs in contrast exhibit an improved
instrument strength.
Simulation Study. We investigated the efficiency and reliability of various PCA methods compared to standard MVMR
and Bonferroni-corrected MVMR in a simulation setting. K = 30− 60 exposures within b = 4− 6 blocks were generated.
Exposures within blocks were genetically correlated and all exposures were correlated due to shared environmental confounding.
A simplified causal diagram consistent with the data generating mechanism is presented in Fig. 7 for the case of only K = 6
exposures and b = 2 blocks. Only some of the exposures exert a true causal effect on the outcome. (e.g. X1 and X2 in Fig. 7).

G1 X1

X2

X3

X4G2

X5

X6

Y

U

Figure 7. Data generating mechanism for the simulation study. For the sake of clarity, only six exposures are presented. In red
boxes, the exposures that are correlated due to a shared genetic component are highlighted. The aim of dimension reduction is
to collate X1,X2,X3 to a single component and X4,X5,X6 to a second independent component.

In order to compare the results of a PC regression with the results from an MVMR with all exposures, we interpret the
dimensionality reduction methods as tests. We then define true positive, true negative, false positive and false negative results.
For the MVMR method, a true positive (T P) is an exposure that is causal in the underlying model (i.e X1 and X2 in Fig. 7) and
is identified as statistically significant by MVMR. Likewise, a true negative (TN) would be a non causal exposure (e.g. X4) that
is not statistically significant in the MVMR model.

In the PCA and sparse PCA methods, this classification is determined with respect to the causal estimate of a specific
PC. If a PC is determined by the correlated exposures X1, X2 and X3 and it has a statistically significant causal estimate, then
X1 and X2 are true positives and X3 is false positive. Similarly, if the PC constructed by X4, X5 and X6 is not significant in an
MVMR analysis, all three would count as true negatives as they do not causally affect Y .

Across a range of simulation scenarios we collated summary data on T P, FP, T N and FN rates for each method, by averaging
over the individual results for each exposure. This included varying the sample sizes (n = 1000−40000, which in turn corre-
sponded to a mean instrument strength in γ of between F̄ = 221−1109 and mean conditional F statistic ¯CFS = 0.34−12.81.
We then derived the sensitivity (SNS), specificity (SPC) and false positive rate (FPR) as

SNS =
T P

T P+FN
SPC =

T N
T N +FP

FPR = 1−SPC, (6)

and compared all methods by their area under the receiver-operating characteristic (ROC) curve (AUC) and the Youden’s index
J (J = SNS+SPC−1). Specifically, the AUC was derived from the extrapolated ROC curve using the method of Reitsma et
al.29, which jointly meta-analyses SNS and SPC.
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Two sparse PCA methods (SCA8, sPCA16) consistently achieve the highest AUC (Fig. 8). This advantage is mainly driven by
an increase in sensitivity for both these methods compared with MVMR. A closer look at the individual simulation results
corroborates the discriminatory ability of these two methods, as they consistently achieve high sensitivities and most 14. Both
standard and Bonferroni-corrected MVMR performed poorly in terms of AUC (AUC 0.660 and 0.885 respectively), due to
poor sensitivity. While there was a modest improvement with PCA (AUC 0.755), it appears that PCA and RSPCA do not
accurately identify negative results (median specificity 0 and 0.28 respectively). This extreme result can be understood by
looking at the individual simulation results in Figure 14; both PCA and RSPCA cluster to the upper right end of the plot,
suggesting a consistently low performance in identifying true negative exposures. In specific, the estimates with both these
methods were very precise across simulations and this resulted in many false positive results and low specificity. We note a
differing performance among the top ranking methods (SCA, sPCA); while both methods are on average similar, the results of
SCA are more variable in both sensitivity and specificity (Table 5). The Youden indexes for these methods are also the highest
(Fig. 8a).
Even with large sample sizes (F̄ = 1109.78, ¯CFS = 12.82 for a sample size n = 6000), MVMR can still not discriminate
between positive and negative exposures as robustly as the sparse PCA methods. A major determinant of the accuracy of these
methods appears to be the number of truly causal exposures, as in a repeat simulations with only four of the exposures being
causal there was a drop in sensitivity and specificity across all methods. Sparse PCA methods still outperformed other methods
in this case, however (Table 6).
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Figure 8. Extrapolated ROC curves for all methods. SCA: Sparse Component Analysis8; sPCA: sparse PCA (Zou et al.)16;
RSPCA: robust sparse PCA26; PCA: principal component analysis; MVMR: multivariable MR; MVMR_B: MVMR with
Bonferroni correction.
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PCA SCA sPCA RSPCA MVMR MVMR_B
AUC 0.755 0.925 0.947 0.611 0.660 0.854

Sensitivity 1,0.1 1,0.21 1, 0.047 0.667, 0.251 0.222, 0.2 0, 0.076
Specificity 0,0.02 0.925,0.772 0.925, 0.041 0.278, 0.111 0.960, 0.048 1,0
Youden’s J 0 0.584 0.778 -0.061 0.192 0.044

Table 5. Sensitivity & Specificity presented as median and interquartile range across all simulations. Presented as median
sensitivity/specificity and interquartile range across all simulations; AUC: area under the ROC curve.

Discussion
We propose the use of sparse PCA methods in MVMR in order to reduce high-dimensional exposure data to a low number
of PCs and infer the latter’s causal contribution. As the dimensionality of available data sets for MR investigations increases
(e.g. in NMR experiments30 and imaging studies), such approaches are becoming ever more useful. Our results support the
notion that sparse PCA methods retain the information of the initial exposures. Specifically, the SCA8 and sPCA16 methods,
performed best in simulation studies, whereas the SCA approach performed best in the positive control example of lipids and
CHD.

By employing sparse PCA methods in a real dataset6, we show that the resulting PCs group VLDL, LDL and HDL traits
together, whilst metabolites acting via alternative pathways receive zero loadings. This is a desirable property and indicates that
the second-step MR enacted on the PCs obtains causal estimates for intervening on biologically meaningful pathways.31. This
is in contrast with unconstrained PCA, in which all metabolites contribute to all PCs. Previously, Sulc et al. used PCA in MR to
summarise highly correlated anthropometric variables32. To our knowledge, this is the first investigation of different sparse
PCA modalities in the context of MR. We additionally provide a number of ways to choose the number of components in a
data-driven manner. Our proposed approach of a sparse PCA method could potentially reduce overlap across components; for
instance, in the paper by Sulc et al., there are PCs that are driven in common by trunk, arm and leg lean mass, basal metabolic
rate and BMI. This is an important topic for further research.

This approach is conceptually different from the robust methods that have been developed for standard multivariable MR
in the presence of weak instruments, such as MR GRAPPLE5. Our method reduces the need for a pre-selection of which
exposures to include in a MVMR model. We present a complementary workflow through which we can include all available
exposures with no prior selection, collate them in uncorrelated and interpretable components and then investigate the causal
contribution of these groups of exposures and avoids the risk of generating spurious results in such an extreme setting of high
collinearity compared with MVMR IVW and MR GRAPPLE formulations. For example, a 2019 three-sample MR study
that assessed 82 lipoprotein subfraction risk factors’ effects on CHD used a UVMR and a robust extension of MVMR. A
positive effect of VLDL- and LDL-related subfractions on CHD was reported, consistent in magnitude across the sizes of
the subfractions33. Results were less definitive on the effect of HDL subfractions of varying size on CHD. Both positive and
negative effects were observed. In our study, the HDL subfractions were uniformly projected to similar subspaces, yielding
a single component that was mainly HDL populated in all models, except for the SCA model 15 which projected the small/
medium and large/ extra-large HDL traits in two different components. In all cases, the association of the sPCs with CHD was
very low in magnitude. Nevertheless, the direction of effects was in line with the established knowledge on the relationship
between lipid classes and CHD.

In the sparse PCA methods, there were differences in the results. The sPCA method16 favoured a sparser model in which
less than 10 metabolites per PC were used. This observation is also made by Guo et al21. The SCA method8 achieved good
separation of the traits and very little overlap was observed. A separation of HDL-related traits according to size, not captured
by the other methods, was noted. Clinical relevance of a more high-resolution HDL profiling, with larger HDL molecules
mainly associated with worse outcomes, has been previously reported34.

Limitations
In the present study, many tuning parameters needed to be set in order to calibrate the PCA methods. We therefore caution
against extending our conclusions on the best method outside the confines of our simulation. Not all available sparse dimen-
sionality reduction approaches were assessed in our investigation and other techniques could have provided better results.

The sparse PCA approach outlined in this paper enables the user to perform a MVMR analysis with a large number of
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highly correlated exposures, but one downside is that the effect sizes are not as interpretable. Of course, if a proven pharma-
ceutical or lifestyle intervention exists which simultaneously affects a number of lipid fractions, and those fractions are also
combined within a single principle component, then arguably the PC approach’s causal estimate is more relevant than that of
a single lipid fraction in a multivariable model. Further foundational work on lipid metabolism pathways could shed light on this.

Conclusion
In the present study, we underline the utility of sparse dimensionality reduction approaches for highly correlated exposures
in MR. We present a comprehensive review of methods available to perform dimensionality reduction and describe their
performance in a real data application and a simulation.

Data Availability
The GWAS summary statistics for the metabolites (http://www.computationalmedicine.fi/data/NMR_GWAS/) and CHD
(http://www.cardiogramplusc4d.org/) are publicly available. We provide code for the SCA function, the simulation study and
related documentation on github (https://github.com/vaskarageorg/SCA_MR/).
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Appendix

MVMR with IVW and GRAPPLE

A small negative effect for M.LDL.PL is noted as nominally significant in Fig. 9. This is not concordant with the UVMR
direction of effect. In GRAPPLE, no traits surpass the nominal significance threshold.
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Figure 9. MVMR with IVW (left) and MVMR with GRAPPLE33 (right). Only the 67 exposures that are significant in UVMR
are put forward in these models. In IVW (left), M.LDL.PL shows nominal significance. In MR GRAPPLE (right),
apolipoprotein B has the lowest p-value but no trait reaches nominal significance.
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Figure 10. : F-statistics for PCs and sparse PCs. The formula derived in Eq. 4 is used. Black: PCA (no sparsity constraints);
Yellow: SCA; Red: sparse PCA (Zou); Blue: Sparse robust PCA; Green: Sparse fused PCA. The dashed line represents the
cutoff of 10 that is considered the minimum desired F-statistic for an exposure to be considered well instrumented. The green
line diverges from the pattern of decreasing instrument strength but, when referring to the loadings heatmap (Figure 5), it can
be observed that the 4th sparse PC in the fused sPCA receives negative loadings from multiple VLDL and LDL related traits.
This may in turn cause the large F-statistic.

Figure 11. : Bayesian Information Criterion (BIC) for different numbers of metabolites regularized to 0. The lowest value is
achieved for one non-zero exposure per component. However, six non-zero exposures per component also achieved a similar
low BIC and this was selected.
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Figure 12. Trajectories for the loadings of total cholesterol in LDL and urea in all methods. In LDL.C, PCA . In the urea plot,
in SCA and sPCA this metabolite is regularised to 0 throughout all sPC’s. It appears that the RSPCA loadings (green) are the
only ones larger in magnitude than in unconstrained PCA, although in the first 2 sPC’s they are equal to 0. Black solid:
Unconstrained PCA, red: sPCA (Zou et al., 2006), green: RSPCA, grey: sparse fused PCA, purple: SCA.

Simulation Study Design
We generate a minor allele frequency MAF ∼U(0.01,0.5) and an unmeasured confounder U ∼ N(0,5). Conditionally on the
MAF, we generate the genes G ∼ Bin(2,MAF). We define Q blocks and divide the P genes of G to q blocks, each containing
P/Q genes. This approach aims to model the biological phenomenon of multiple traits being influenced by a common set of
variants. For instance, the traits of LDL cholesterol content and LDL phospholipid content appear to be associated with the
variants in a largely similar manner6.
For each block q = 1,2, ...,Q, we define a matrix γq whose elements γ1 − γP/Q are non-zero and ∼ N(4,1). This matrix is what
will direct only certain variants to influence certain exposures, leading to multicollinearity. We then generate the K exposures
sequentially per block, following the parametric equation Xq = γqGq +U + εX . This way, specific genetic variants generate
blocks of exposures as shown in Fig. 7 and the exposures X1 −XK/Q are highly correlated. We derive the SNP-exposure
associations from this dataset as X ∼ γ̂G. We set K=50-100 and P=100-150 and the blocks 5-8. We let these values vary across
simulations in order to generate more varying values in diagnostic accuracy. For a given sample size, s = 1000 simulation
studies were performed.
To retain the workflow of a two-sample MR, we generate a second exposure set identically as above but independent. This
step is important as it guarantees the no sample overlap assumption of two-sample MR35. Based on this second X ′ matrix, we
generate the outcome Y = βX ′+U + εY . The vector of causal estimates β is generated based on any number of exposures
being causal in the two blocks. This includes the null. We obtain the SNP-outcome associations as Y ∼ Γ̂G.
The effect of the data generating mechanism in a single dataset is visualised in Fig. 13. The methods employed are

• MVMR IVW with γ̂ and Γ̂36.

• MVMR IVW with Bonferroni correction.

• PCA with the scores from γ̂ =UDV T .

• sparse PCA as implemented in the elasticnet package16.

• RSPCA26.

• SCA8.

Due to computational complexity, sparse PCA in the elasticnet package (spca_en in Fig. 8) was implemented with a
simplification regarding the sparsity parameter. In specific, it was assumed that the number of non-zero exposures per
component was P/Q. For SCA, we use the cross-validation method in PMA R package37.
To generate the summary ROC curves presented in Fig. 8, we treated simulation results as individual studies and meta-analysed
them with the bivariate method of Reitsma et al.29 in the R package. The logit sensitivity and specificity (which are correlated)
are jointly meta analysed by modelling them as a bivariate normal distribution and employing a random-effects model for
accomodating this correlation and framing it as heterogeneity.
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The results for a set simulations in N = 3000 individuals are presented in Figure 14. We observe that MVMR and MVMR with
Bonferroni correction estimates cluster to the bottom left of the plot, suggesting a low sensitivity. The estimates from SCA and
sPCA_EN are spread in the upper left half of the plot and often achieve a sensitivity of 1.00. The PCA and RSPCA mainly
provide highly sensitive estimates but perform relatively worse in specificity.

PCA SCA sPCA RSPCA MVMR MVMR_B
AUC 0.863 0.714 0.859 0.492 0.511 0.675
SNS 1,0.03 0.75,0.25 1,0.17 0.5,0.25 0.25,0.25 0,0
SPC 0,0.2 0.76,0.46 0.66,0.18 0.37,0.15 0.94,0.07 1,0

Youdens J 0 0.428 0.625 -0.029 0.105 0.032

Table 6. Simulation study on only four exposures (out of the total K = 50) contributing to the outcome Y . A drop in sensitivity
and specificity is observed for SCA and sPCA compared with the simulation configuration in Table 5.
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Figure 13. Example for the block correlation in γ (n = 5000, K = 77) induced by the data generating mechanism in Fig. 7. In
this example, the mean F-statistic is 231.2 and the mean CFS is 3.21.
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Figure 14. Individual Results from s = 1000 simulations.
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