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Abstract  

Objectives: To provide Mendelian randomisation evidence of the effect of having children on 

parental wellbeing.  

Design: Two sample Mendelian randomisation.  

Setting: Non-clinical European ancestry participants.  

Participants: We used the UK Biobank (460,654 male and female European ancestry participants) as 

a source of genotype-exposure associations, and the Social Science Genetics Consortia (SSGAC) 

(298,420 male and female European ancestry participants) and Within-Family Consortia (effective 

sample of 22,656 male and female European ancestry participants) as sources of genotype-outcome 

associations.  

Interventions: The lifetime effect of an increase in the genetic liability to having children.  

Primary and secondary outcome measures: The primary analysis was an inverse variance weighed 

analyses of subjective wellbeing measured in the 2016 SSGAC GWAS. Secondary outcomes included 

pleiotropy robust estimators applied in the SSGAC and an analysis using the Within-Family consortia 

GWAS. 

Results: The primary IVW estimate found evidence of a 0.153 standard deviation increase for every 

child a parent has (95% CI: -0.210 to 0.516). Secondary outcomes were generally slightly deflated 

(e.g. -0.049 [95% CI: -0.533 to 0.435] for the WFC and 0.090 [95% CI: -0.167 to 0.347] for weighted 

median) implying the presence of some residual confounding and pleiotropy.  

Conclusions: Contrary to the existing literature, our results are not compatible with a measurable 

negative effect of number of children on the average wellbeing of a parent over their life course. 

However, we were unable to explore non-linearities, interactions, or time varying effects.  
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Strengths and limitations of this study 

- Mendelian randomisation (MR) is a natural experiment which is theoretically robust to 

confounding and reverse causation.  

- We were able to use two negative control analyses to explore the robustness of our study to 

two potential sources of residual confounding (populations structure and passive gene-

environment correlation).  

- We additionally use pleiotropy robust estimates (like MR-PRESSO, MR-Egger, weighted 

median, and weighed mode) to explore if our result was affected by direct effects of the 

genetic variants on the outcome, not mediated by the exposure.  

- Because we use summary data, we were unable to explore interactions, non-linear and time-

varying, or time sensitive, effects. 

- Our study is a proof of concept for using MR to explore the causal effect of the heritable 

environment.  
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Introduction 

 

A well-replicated (1–8), but contested (9–14), finding in the observational quantitative social science 

literature is a negative association between having children and subjective wellbeing in English 

speaking countries. Although many studies have failed to replicate the finding in non-English 

speaking countries (15–17), others have (18,19). For example, Novoa and colleagues found a 

negative association between having children and subjective wellbeing in Chile (20). Matters are 

further complicated by non-linearities depending on the age at which wellbeing is assessed in the 

parents. According to some of the studies having children is not negatively associated with wellbeing 

when measured in geriatric populations, especially for those with a lower socioeconomic position 

(SEP), despite a negative association when measured in younger age groups (18,20–23). This is 

possibly because of increased social support that children can provide to their parents in old age 

(2,14,21,22). 

 

Because these findings come from mostly cross-sectional, observational studies they should be 

treated with some caution. For example, most of the studies cited above adjusted for only a few 

potential confounding variables (e.g., age, sex, and socio-economic position) – if any at all – raising a 

question of residual confounding. Indeed, Deaton and Stone found that the choice of covariates 

adjusted for could produce radically different conclusions (15). There will also likely be underlying 

psychological differences between adults who choose to have children, and those who choose not to 

have children. Since the examined studies did not adjust for these variables, if these psychological 

differences also directly influence wellbeing, then they would be an additional source of 

unmeasured confounding. Relatedly, because most of the literature is derived from correlational 

surveys, these studies cannot ascertain the direction of effect (6). Finally, cross-sectional studies 

cannot determine if the apparent change in effect with age is a cohort effect instead, although the 

corroboration of this finding by some prospective studies makes this less plausible. 

 

Because of the higher risk of bias in traditional observational studies, it is becoming increasingly 

common in social epidemiology and econometrics to triangulate evidence from conventional 

observational studies with quasi-experimental designs (24). One such design is Mendelian 

randomisation (MR) (25–27). In a randomised controlled trial, participants are randomised to an 

intervention or control arm and followed-up for a certain period. Because genetic variants are 

inherited at random, comparing outcome status of an individuals with and without a causal variant 

for the exposure is essentially analogous to a clinical trial (28). In addition, because our genotype is 

fixed at conception, MR estimates are robust to reverse causation. This also means that any effect 

estimate derived from MR studies should be interpreted as the lifetime effect of the exposure. 

Applications of MR have traditionally focused on biomedical exposures where the analogy between 

MR and randomised controlled trials for a pharmacological intervention is strong because most 

drugs target proteins, which are the proximal product of genes (29). 

 

MR has been gaining popularity as a method for answering causal questions in psychology and the 

social sciences in recent years (30,31). Psychiatric genetics and evolutionary theory both suggest that 

elements of our environment will be genetically influenced, through ‘active gene-environment 

correlation’ and ‘the extended phenotype respectively’ (32,33). MR has not been used to explore the 

causal effect of environmental exposures. This is, in part, because it is conceptually less clear how 

the potential effect of a genetic variant to robustly increase the probability of an environmental 

exposure – like a traffic accident – by a very small amount is genuinely equivalent to an exposure like 

being hit by a lorry. Number of children, on the other hand, is a theoretically plausible 

environmental phenotype for studying with a genetic design like MR because it is the primary 

endpoint through which evolution by natural selection occurs, and hence should be influenced by 

genetics (34,35).  
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Exploring the effect of having children on wellbeing therefore not only answers a question of societal 

importance, but can also act as a proof of concept for leveraging active gene-environmental 

correlation within an MR study design to study the causal effect of environmental exposures. We 

therefore used two-sample MR to explore the lifetime effect of having children on wellbeing.  

 

Methods 

 

Study design  

 

We performed a two-sample MR analysis to explore the lifetime effect of having children on 

wellbeing. Specifically, we used the UK Biobank (UKB) as a source of genetic instruments (36,37), and 

their weights, for the number of children an individual has, and the 2016 Social Science Genetics 

Consortium (SSGAC) GWAS meta-analysis of subjective wellbeing as a source of instrument-outcome 

associations (38).  

 

 

Data sources  

 

UKB. The UKB is a large (~500,000 participants) population cohort study in the UK. Members of the 

public between the ages of 38 and 73, and who lived within 22 miles of an assessment centre, were 

invited to participate from 2006 to 2010. Approximately 9.2 million individuals were invited to take 

part, with around 6% participating in the baseline assessment. The sample is 55% female, and 

predominantly of European ancestry (96%). The full protocol is available online 

(http://www.ukbiobank.ac.uk/wp-content/uploads/2011/11/UK-Biobank-Protocol.pdf). The study 

design, participants and quality control (QC) methods have been described in full elsewhere (36). 

UKB received ethics approval from the North West Multi-Centre Research Ethics Committee (REC 

reference 11/NW/0382). All participants provided written informed consent to participate in the 

study. Data from the UKB are fully anonymised. 

 

SSGAC. Data on subjective wellbeing was extracted from the 2016 SSGAC subjective wellbeing GWAS 

(OpenGWAS ID: ieu-a-1009) (38). This was a meta-analysis of 298,420 individuals from 59 studies. 

Samples included men and women, mostly of European descent living in Europe, North America, or 

Australia.  

 

WFC. Data on wellbeing was also taken from the 2022 WFC sibling estimate GWAS (OpenGWAS ID: 

ieu-b-4851) (39). This GWAS used the genetic overlap of relatives to adjust for which SNPs were 

inherited and therefore fully removes most plausible sources of confounding, including ancestry and 

genetic nurture (40). The consortium combines data on almost 160,000 siblings from 17 cohorts. The 

GWAS itself had an effective sample size of 22,656 (male and female) individuals of European 

ancestry. A more detailed description of the individual cohorts included can be found in the paper’s 

Supplementary Material (39). 

 

Phenotyping  

 

UKB. Information on the number of children (OpenGWAS ID: ieu-b-4760) a participant had, number 

of full sisters (UKB ID: 1883, OpenGWAS ID: ukb-b-5593), number of full brothers (UKB ID: 1873, 

OpenGWAS ID: ukb-b-4263), general happiness (UKB ID: 20458, OpenGWAS ID: ukb-b-4062), number 

of older siblings (UKB ID: 5057,  OpenGWAS ID: ukb-b-1997), and hair colour (UKB ID: 1747, Open 

GWAS IDs: ukb-d-1747_5, ukb-d-1747_4, ukb-d-1747_3, ukb-d-1747_1, ukb-d-1747_2, ukb-d-

1747_6) were collected through a questionnaire asked either during the initial visit to an assessment 
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centre or, in the case of general happiness, in an online follow-up. The exact questions asked are 

provided in the Supplementary Material.   

 

SSGAC. This study included measures of life satisfaction, positive affect, or both in the GWAS. The 

specific questionnaires used to phenotype subjective wellbeing in each sample are described the 

Supplementary Material (38). These were standardised for the meta-analysis.  

 

WFC. All participating cohorts measured wellbeing using a questionnaire. Wellbeing measures were 

standardised prior to the meta-analysis. More details on phenotyping are provided in the 

Supplementary Material of the original paper (39).  

 

Statistical Analysis  

 

Overview of the analysis: The primary analysis was an inverse variance weighted meta-analysis of the 

Wald ratio using independent genome-wide significant SNPs for number of children identified in UKB 

(37). We additionally used a number of sensitivity analyses, including: a) five pleiotropy robust 

estimators (MR-Egger, MR-RAPS, MR-PRESSO, weighted median, and weighted mode), b) two sets of 

negative controls (hair colour, and number of parental siblings) as a falsification test for the 

presence of residual confounders of the instrument-outcome association, c) using the Within family 

Consortium (WFC) as a more robust (but less well powered) outcome GWAS, and d) using a less 

stringent p-value threshold (p<5x10-6) for selecting SNPs to increase power. More details can be 

found in the Supplementary Methods.  

 

Assumptions of the analysis: Two-sample MR is an extension of MR to a summary data setting. MR is 

itself an extension of Instrumental Variables (IV) analysis to genetics. IV makes three assumptions: 1) 

Relevance: that the variant is robustly associated with the exposure, 2) independence: that there are 

no variant-outcome confounders. 3) Exclusion restriction: that the variant causes the outcome only 

through the exposure. For the point estimate to be interpretable, IV analysis additionally has to 

assume that the instrument-exposure association is monotonic (i.e., if the average causal effect of a 

genetic variant on number of children is negative, then it is negative for everyone). Finally, two-

sample MR makes two additional assumptions: 1) that the GWASs come from the same population. 

This is required for the MR estimate to be meaningful. 2) That there is no sample overlap. The effect 

of the second assumption is to make weak instrument bias deflationary (41–43). 

 

Because two-sample MR uses summary data from previously conducted GWASs, if these studies 

assume, as they typically do, a linear effect, then it is not possible to explore non-linearity using 

summary data. Traditional IV estimators, such as the Wald ratio used in two-sample MR, can still 

provide a valid estimate of the average causal effect in the presence of non-linearities (44).  

 

Sensitivity and additional analyses 

 

Negative controls. We used two sets of negative controls to explore two potential sources of 

confounding. Firstly, hair colour is known to vary by ancestry in the UK/European population, but 

prima facie should not have a direct causal relationship to the number of children we have (45). It 

can therefore be used as a negative control outcome for population structure (see Figure 1 for a 

visual representation). Secondly, wellbeing may be affected by our developmental environment. 

However, the number of children we have is affected by our parental genotype (through 

inheritance), but this will also influence our developmental environment (through genetic nurture, 

see Figure 2 for a visual representation). To test if genetic nurture is a residual confounder we used 

the number of siblings as a negative control outcome, because the number of siblings an individual 

has is caused by parental genotype, but is unlikely to be caused by the number of children that the 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 16, 2022. ; https://doi.org/10.1101/2022.06.15.22276383doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.15.22276383
http://creativecommons.org/licenses/by/4.0/


individual has.  We ran the negative controls only using an IVW estimator because it is the most 

efficient estimator, so the most likely to detect an association if there is one. In addition, we want an 

estimator which is not robust to pleiotropy because a pleiotropic association between the genetic 

instrument and the negative control outcomes (i.e., which is not mediated by number of children) is 

still evidence of an association between the instrument and a confounder of the instrument-

outcome association, and hence a violation of the independence assumption. 

 

WFC GWAS. Family data has been proposed as a way of eliminating the risk of confounding in MR 

studies (40). Potential violations of the independence assumption, like population structure and 

genetic nurture, occur because the distribution of SNPs in a population GWAS is only approximately 

random. By conditioning on the parental genotype, however, the back door path used by these 

biases is blocked. Although these GWASs are less biased, the use of non-independent observations 

means that they need much larger samples than a population GWAS to achieve the same level of 

power. We, therefore, used the WFC GWAS of well-being as an additional sensitivity analysis to 

explore the robustness to potential confounders.    

 

Less stringent SNP selection. Power in two-sample MR studies is a function of instrument strength, 

the precision of the outcome GWAS, and the number of instruments. Since we are limited to using 

pre-collected data, the outcome GWAS’s precision cannot be varied. However, a p-value threshold of 

5 x 10-6 equates to an F-statistic of approximately 10, and should therefore not lead to weak 

instruments, but because it is 100-fold larger, should increase the number of SNPs used in the 

analysis. We therefore also used SNPs with an indicative association (p < 5 x 10-6) with the exposure 

to explore how sensitive the primary analysis was to a potentially better-powered set of 

instruments.  

 

Leave-one-out analysis. We additionally used a ‘leave-one-out’ analysis and the MR-PRESSO outlier 

test , as part of our MR-PRESSO analysis, to explore if any of the variants were outliers and had a 

disproportional effect on the overall IVW estimate. This sensitivity analysis works by excluding each 

SNP in turn and running the IVW analysis without the excluded SNP.  

 

Additional information, including details on genotyping, instrument construction, and MR estimators 

can be found in the supplementary methods.  

 

Results  

 

Descriptive data 

 

Number of participants and SNPs in each sage: The UKB exposure GWAS had information from over 

460,00 participants on almost 10 million SNPs. The primary outcome analysis used information on six 

of these SNPs which were genome-wide significant for number of children from 298,420 participants 

from the SSGAC. This was increased to 50 SNPs by using a 5 x 10-6 p-value threshold. The WFC 

outcome data used information on 8 genome-wide significant SNPs with an effective sample size of 

22,656 participants (Figure 3). 

 

Two-sample MR specific assumptions:  Both outcome samples had some overlap with the UKB. The 

SSGAC does not state how many UKB participants were included, however around 157,000 UKB 

participants provided information on the measure of general happiness used by the SSGAC, which 

entails a maximum sample overlap of around 53% for the SSGAC and 34% for the UKB. The UKB also 

contributed around 4,250 sibships to the WFC wellbeing GWAS, which equates to around 19% of the 

WFC sample and 2% of the UKB sample.   
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Because of all GWASs were drawn from European populations of both males and females, with some 

overlapping participants, it seems likely that the samples can all be treated as coming from the same 

population. We also found no evidence of a difference in SNP effect estimates for the SNP-outcome 

associations in the UKB and the WFC or the SSGAC consortium using either a 5x10-6 p-value or 5x10-8 

p-value threshold which further supports this conclusion (Supplementary Figures 1-3). 

 

Main results  

 

The primary IVW estimate indicates a 0.153 (95% CI -0.209 to 0.515) standard deviation change in 

wellbeing for every additional child an individual has (Figure 4 and Supplementary Figure 4).  In most 

of the samples used in the SSGAC GWAS a 1 to 2 standard deviation change is equivalent to a 1 unit 

increase on a 5-level psychometric question. For example, the 23andMe study asked participants to 

rate from very dissatisfied with their life (score = 0) to very satisfied with it (score = 5) and had a 

standard deviation of 1. This means that a one standard deviation increase would be the same as 

going from very dissatisfied to somewhat dissatisfied. Supplementary Tables 1 to 3 provide the gene-

exposure and gene-outcome associations used in this study. 

 

Assessment of assumptions  

 

Weak instrument bias and NOME: For the primary analysis, the F statistic was 49, and the I2 for the 

instrument-exposure association was 98%. These both imply that there would be around a 2% error 

in the MR estimates due to weak instrument bias. For the analysis using the WFC, the F statistic was 

44, and the I2 98%. For the analysis using a less stringent p-value, the F statistic was 25, and the I2 

96%.  

 

Heterogeneity and exclusion restriction violations: The Cochrane Q statistic for the Wald ratios of the 

primary analysis was 24.59 (p < 0.001) and the I2 for the Wald ratio was 80%. Together with the 

asymmetric funnel plot (Supplementary Figure 5), and the MR-PRESSO global test for outliers (p = 

0.006) this implies the presence of some pleiotropic SNPs. However, the Egger intercept was -0.004 

(SE = 0.017, p = 0.815). Similar results were found for the secondary analyses (Supplementary Table 

4).  

 

Sensitivity and additional analyses  

 

Pleiotropy robust estimators: The pleiotropy robust estimates were mostly similar to the IVW 

estimate, although generally slightly deflated (Figure 4 & Supplementary Table 4). The exception to 

this was the MR-Egger estimate, although the wide 95% confidence interval (which overlaps with the 

IVW estimate) implies that this could be due to a lack of precision. In addition, the MR-RAPS 

estimate was slightly inflated, probably because RAPS is robust to both moderate amounts of weak 

instrument bias and pleiotropy.  

 

Negative controls: The negative control outcome analysis did not find any evidence of an association 

of the instruments with hair colour, however, there was evidence of an association with two out of 

three of the sibling questions (p < 0.001 for number of full brothers and p = 0.005 for number of full 

sisters) implying the possibility of some residual confounding (Supplementary Table 5).  

 

WFC outcome: Consistent with the negative control analysis, the WFC secondary analysis showed 

deflated point estimates compared to when using the SSGAC outcome GWAS (Supplementary Table 

3). For example, the IVW estimate is -0.049 (95% CI: -0.533 to 0.0436). 
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Less stringent SNP selection: The standard error of the IVW estimate when using a 5x10-6 threshold 

was more than three times smaller than when using the more traditional 5x10-8 threshold 

(Supplementary Table 4).  
 

Leave one out analysis and MR-PRESSO outlier test: The MR-PRESSO outlier test for the primary 

analysis identified rs10270358 and rs72687493 as outliers. An exploratory search of Phenoscanner 

showed no phenotypes associated with rs72687493 but found that rs10270358 is associated with 

seeing a doctor for anxiety or depression as well as chronic disability/infirmity both of which could 

reduce wellbeing (46). However, these SNPs did not seem to be introducing a bias in the leave-one-

out analysis (Supplementary Figure 6) and the outlier test did not detect any outliers in the 

secondary analyses.  

 

Pre-specified interpretation  

 

Pleiotropy: Because the indicators for the presence of pleiotropy (like the I2 and Cochrane Q 

statistics for the Wald ratio, funnel plot and MR-RAPS) all indicated the presence of pleiotropy, and 

because the ‘pleiotropy robust’ estimators generally had deflated estimates compared to the IVW 

estimate, it seems likely that the IVW estimates are being inflated by some residual pleiotropy.   

Residual confounding: The association of the instruments with two out of three of the sibling 

negative controls combined with the change in estimate from the WFC GWAS implies that there was 

some inflation due to residual confounding from genetic nurture in the primary IVW estimate.  

Low Power: The number of SNPs increased almost nine-fold in this secondary analysis when 

compared to the primary one. This resulted in a three-fold decrease in the size of the standard error 

(0.185 to 0.053) for the IVW estimate, and implies that there is also a large amount of residual 

random error in the estimates. However, the point estimates in this analysis were generally deflated 

when compared to the primary analysis. This should be in part explained by the approximate halving 

of the F statistic.  

 

Discussion  

The existing observational literature implies that having children is detrimental to parental 

wellbeing. However, our primary analysis found a positive 0.153 (95% CI -0.209 to 0.515) standard 

deviation change in wellbeing for every additional child an individual has. If we assume the measures 

are on a ratio scale, that people score the nearest category to what they feel, and that a one SD 

increase welling is a unit increase in on a 5-level psychometric question, then our results would be 

compatible with a one-unit increase on this scale for each child someone has (e.g., from neither 

satisfied nor dissatisfied to somewhat satisfied), but incompatible with a measurable negative 

change in subjective wellbeing.  

However, our additional and sensitivity analyses imply that this may overestimate the true effect. 

Our negative control analysis found that our instrument was associated with the number of siblings, 

and that the point estimate was deflated when using the WFC outcome GWAS, implying the 

presence of residual confounding due to genetic nurture. Likewise, the heterogeneity statistics 

implied the presence of residual confounding, while most pleiotropy robust estimators were again 

deflated. It is therefore likely that the true effect will be smaller than a measurable increase (i.e. a 

one unit increase in on a 5-level psychometric question) in well-being for every child a parent has.  
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Generalisability  

One possible explanation for the discrepancy between the observational and MR estimates is that 

the target estimands are not directly comparable. If we assume that age does not modify the 

variant-exposure association, then MR estimates should be interpreted as the average effect of the 

exposure on an outcome over the entire lifetime (47). This means that transient effects of having 

children on wellbeing, such as the stress of looking after a newborn baby, will not be detectable in a 

typical MR design. Some studies found that having children was beneficial to parental wellbeing in 

old age (18,20–23). One possible explanation for the discrepancy between our, and the existing 

literature’s, results would therefore be that the transient negative effect is counterbalanced by the 

latter positive ones –resulting in an average effect close to zero. Although methods for addressing 

time-varying exposures are currently being developed (48), there is still no consensus on how to best 

deal with transient effects within an MR framework.  We are therefore unable to empirically explore 

this interpretation further.  

Additionally, our estimates were all drawn from European samples. Because some of the existing 

literature had found different effects in, predominantly non-European, non-English speaking 

populations to those observed in English speaking populations (15–17), our results may not 

generalise to other populations.  

Strengths and limitations  

This study has several methodological strengths. Firstly, we believe it is the first study to apply MR to 

explore the effects of the heritable environment in a setting in which gene-environment equivalence 

is plausible. By doing so, we have been able to leverage the methodological strengths of MR, such as 

improved robustness to confounding and reverse causation to explore the effect of having children 

on wellbeing. Secondly, we believe that this is the first study to have explored the ‘same-population’ 

two-sample MR specific assumption by testing for a difference in the SNP effects. This test is 

motivated by the intuition that effects drawn from the same population should only differ because 

of chance. We are unaware of any existing quantitate tests of this assumption, and therefore hope 

that it will be useful in further applied MR studies.  

There are also methodological limitations to this application of two-sample MR. As already noted, 

we were unable to explore time-sensitive effects. Relatedly, we were forced to assume a linear dose-

response for the effect of the number of children on wellbeing. We considered a sensitivity analysis 

using individual-level data, but ultimately decided against doing so due to a lack of sufficiently good 

individual-level data: Of the two available data sources, ALSPAC had detailed phenotyping, but on a 

relatively small number of participants (~2,000). Because non-linear MR is less well powered than a 

linear MR, this sample would therefore be underpowered for this analysis. On the other hand, the 

UKB, only had a five-level minimal phenotype for happiness. Since poor phenotyping can mask non-

linearities, and because happiness may not be the same as wellbeing, the interpretation of any 

analysis in the UKB would be unclear (49). MR is generally more robust as a test of the causal null 

hypothesis than as a method of effect estimation because of many of the complications, like those 

described above, of interpreting MR effect estimates. However, this approach to interpreting MR 

results may be less robust here because our sensitivity analyses implied that our study may be 

underpowered.   

Summary and conclusions 

We conducted a two-sample Mendelian randomisation study to explore the causal effect of having 

children on wellbeing. Contrary to the previous literature, our results imply the presence of a small-
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but-meaningful positive lifetime effect of having children, although this may be due to violations of 

the exclusion restriction and independence assumptions. Comparing our results to the existing 

observational studies is complicated by the temporal insensitivity of MR estimates. Future  studies 

could therefore consider using other quasi-experimental methods, such as Interrupted Time Series 

(50), to explore if the discrepancy between our findings and the observational literature are due to 

transient effects of having children which MR is either unable to detect or which average out over 

the life course.  
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Figure 1: Directed Acyclic Graph for the hair colour negative control outcome. Hair colour is 

hypothesised to associated with population structure, but to not have a direct causal link to either 

the genetic instruments or wellbeing. Therefore, any association between the genetic instruments 

and  hair colour will be due to a residual confounding effect of population structure.  
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Figure 2: Directed Acyclic Graph for the number of siblings negative control outcome. The parental 

genotype determines not only their children’s genotype but also, via the parental phenotype, the 

environment in which the children grow up. If someone’s childhood environment influences their 

wellbeing latter in life, then the parental genotype would confound any association between an 

individual’s genetic instruments and wellbeing. Because, in the UK, parents typically stop having new 

children before their children start having children, it unlikely that a child having children will 

influence his or her parents to have more children. Hence, the number of siblings an individual has 

should not be caused by an individual’s genetic liability to having children, but will be influenced by 

the parental liability to having children. Therefore, any association between an individual’s genetic 

liability to having children and the number of siblings they have would be an indicator of residual 

confounding due to the parental genotype.  
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Figure 3: Flow chart of SNPs and participants.  

 

UKB nubmer of childern 
GWAS, n = 460,654 and 

9,631,490 SNPs.

6 SNPs after clumping(r2

= 0.001 and KB = 
10000), Steiger filtering, 

and a p < 5 x 10-8 p-
value threshold. 

SSGAC Wellbeing 

GWAS, n =  298,420  
(primary anlsyis)

50 SNPs after 
clumping(r2 = 0.001 and 

KB = 10000), Steiger 
filtering, and a p < 5 x 
10-6 p-value threshold. 

SSGAC Wellbeing 
GWAS, n =  298,420  
(Secondary analysis)

8 SNPs after clumping(r2

= 0.001 and KB = 
10000), Steiger filtering, 

and a p < 5 x 10-8 p-
value threshold. 

WFC Wellbeing 

GWAS, N = 22,656  
(Secondary analysis)

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 16, 2022. ; https://doi.org/10.1101/2022.06.15.22276383doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.15.22276383
http://creativecommons.org/licenses/by/4.0/


 

Figure 4: Forest plot of the primary and sensitivity analyses 
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