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ABSTRACT  
Objectives 
To disarticulate the associations of race (whiteness), class (socioeconomic status), and place 
(county) with risk of cause-specific death in the US.  
Methods 
We studied mortality in US counties for 11 causes of death (1999-2019) and COVID-19 (2020-
2021). We adjusted for race and age using the American Community Survey and 
socioeconomic status using the Area Deprivation Index. Bayesian regressions with spatial 
county effects were estimated for inference. 
Results 
County whiteness and socioeconomic status modified death rates; geospatial effects differed by 
cause of death. Other factors equal, a 20% increase in county whiteness was associated with 5-
8% increase in death from three causes and 4-15% reduction in death from others, including 
COVID-19. Other factors equal, advantaged counties had significantly lower death rates, even 
when juxtaposed with disadvantaged ones. Geospatial patterns of residual risk varied by cause 
of death. For example, cancer and heart disease death rates were better explained by age, 
socioeconomic status, and county whiteness than were COVID-19 and suicide deaths. 
Conclusions 
There are important independent contributions from race, class, and geography to risk of death 
in the US.     
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INTRODUCTION 
Disparity and inequity in healthcare are legion in the United States (US). The National Institutes 
of Health considers population-based levels of analysis in health disparities to be environmental, 
sociocultural, behavioral, and/or biological. Among these categories of disparity, typical areas of 
focus in public health literature include geographical and socio-economic factors 
(environmental), racial and ethnic factors (sociocultural), health behaviors (behavioral), and 
physiological factors, such as the prevalence and type of disabilities (biological). Furthermore, 
the US Department of Health and Human Services formally recognized priority populations for 
disparities research include, but are not limited to: racial, ethnic, sexual orientation and gender 
minorities, socio-economically disadvantaged populations, rural populations, and disabled 
populations. Unfortunately, validated public data - with an appropriate level of geographic detail 
- that contain measurement of these factors and populations are limited. However, racial and 
ethnic composition (race), socio-economic status (class), and geographic location (place) have 
better established measures and validated data sources, and thus best lend themselves to 
further study and will be the focus of this article.  
 
These three variables - self-reported race and ethnicity, class, and place - are risk factors for 
death, alongside, of course, age. To date, efforts focused on health disparity often look at one factor 
at a time rather than looking simultaneously at multiple factors. But we can expect interaction among 
them - for example, racial minorities, who have been historically marginalized in the US, tend to 
live communities with greater levels of disadvantage in the US. Less is known, however, how 
these variables will contribute to risk of death jointly in the presence of the others, nor how these 
effects will differ by cause of death. Moreover, the joint and independent contributions are not 
expected to be identical for all causes of death. For example, it is not intuitive that the the 
variables associated with health disparity and geospatial landscape are the same for suicide as 
they are for influenza. Here, we use a county-level regression framework to investigate how 
socioeconomic status, county racial make-up, and geography contribute to risk of age-adjusted 
mortality for the top-12 causes of death in 2020. This approach allows us to analyze the 
contribution of each factor adjusted for the others.  
 
Race and ethnicity, that are social and cultural constructs and are not biologically based, are 
nevertheless known to impact death rates. Our focus is on the racial make-up of US counties, 
and our measure is the proportion of residents that identify as non-Hispanic white in the 5-year 
American Community Survey. We call this metric the “whiteness” of the county. Our research 
objective is to determine the association of whiteness, as a racial rather than ethnic identity, with 
rates of the top-12 causes of death in 2020, a list that prominently includes COVID-19. In the 
US, white raciality provides structural and systemic advantages that affect health outcomes, 
even as socio-cultural definitions of whiteness have shifted over time3. As a consequence of 
white racial dominance and structural racism, non-Hispanic whiteness is often regarded as 
normative and unmarked in relation to all other “marked” racial identities, in particular Black or 
African American. Thus, by focusing on non-Hispanic whiteness, our analysis aims to measure 
the effects of these associated systemic advantages on health outcomes. 
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Class, by which we here mean socioeconomic status (SES), also affects health outcomes but 
can be harder to measure. We used the 2018 Area Deprivation Index (ADI) percentiles for US 
block-groups that were aggregated to the level of county5. The ADI is a factor-based index 
composed of 17 census indicators that measure neighborhood levels of education, employment, 
income, poverty, and housing6. By spatializing these factors, the ADI has been an effective 
predictor for mortality6,7 and life expectancy7,8. Falling ADI9 and rising food insecurity10 are 
associated with cardiovascular mortality, and that high ADI is a risk factor for hospital 
readmission of the same magnitude as Chronic Obstructive Pulmonary Disease (COPD) and 
more than diabetes11. This is especially true for sepsis12 and after surgery13–16. Importantly, we 
note that the ADI omits race as one of its factors but may well encode it through a combination 
of the included variables. 
 
Place, like race and SES, has an impact on health outcomes. The integral role of place in health 
disparities is formally recognized by the US Department of Health and Human Services17,18 via 
its Social Determinants of Health (SDH). As such, counties reflect the essential variability in 
socio-demographics and the built environment, and thereby serve as effective proxies for the 
SDH domains of Health Care Access and Quality, Neighborhood and Built Environment, and 
Social and Community Context. In addition, risk factors for common diseases cluster: for 
example, hypertension is more common in the southern US, and thus we can expect higher 
rates of death from heart and kidney disease.  Most recently, the pandemic has thrown into 
especially sharp relief the differences in death rates across the country. Likewise, COVID 
vaccination 1 uptake varies regionally, as do local pandemic-related community prevention 
efforts, leading to strong geospatial patterns of pandemic mortality2.  
 
Our analysis of place-based risk bears elaboration. Here, we consider the patterns of ADI 
formed by adjacent counties in addition to the risk associated with residence in each county. To 
do so, we partition US counties into one of several geographic profiles: clusters of advantage 
and disadvantage, outliers of advantage and disadvantage, and neither clustered nor outlying 
counties. As such, our analysis formally reflects the (dis)advantage of each county relative to its 
neighbors, which could reflect large-scale structural hurdles otherwise not accounted for by 
analyzing each county individually.      
 
In this work we bring race, class, and place into the same analytic frame to measure their 
interactions21 in determining health care outcomes. Our statistical models also reveal the impact 
of latent variables - we call them geographic risk modifiers - that capture the joint impact of all 
factors not explicitly given by our measures of race, class, and place.  We expect these factors 
to be complex and nuanced, and plausible mechanisms must draw on concepts of syndemics 
and intersectionality.  
 
METHODS 
We obtained US county level mortality counts and person-years at risk for the top 11 causes of 
death 1999-2019 from the CDC Wonder database19, and for COVID-19 over 2020-2021 from 
the Johns Hopkins Center for Systems Science and Engineering20. COVID-19 mortality data 
included spanned January 1, 2020 through October 17, 2021. Due to missing ADI values, we 
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were able to analyze all but 7 counties, 4 of which were in the State of Hawaii. We show the 
unadjusted and unsmoothed mortality rates as cause-specific Z-scores in Supplementary Figure 
1. Mapped in this manner, a county with a value of 2 for heart disease, for example, has an 
unadjusted and unsmoothed rate that is two standard deviations above the US average heart 
disease mortality.  
 
ADI Clustering using Local Moran’s I 
To concentrate the effects of areal deprivation and reduce confounding with the smooth spatial 
county effects, we employed Local Moran’s I22 computed using GeoDa open-source software23. 
This analysis effectively assigns each county to either a deprivation cluster or outlier based on 
its Area Deprivation Index (ADI) and the ADI of its immediate neighbors. The resultant 
disadvantaged clusters were disadvantaged counties surrounded by disadvantage, whereas 
advantaged clusters were advantaged counties surrounded by advantage. Disadvantaged 
outliers and advantaged outliers were spatial outliers that are statistically significantly different 
from their neighbors. We used alpha=0.05 to detect clusters and outliers. Together with the non-
cluster-non-outlier grouping - where Local Moran’s I yielded p-values > 0.05 - we created a 5-
level categorical variable that jointly reflects the levels of deprivation of each county, as well as 
that of its first-order neighbors.  
    
Statistical Analysis 
We estimated 12 Bayesian regression models - one per cause of death - each with a person-
years-at-risk “offset term” (��) and explanatory variables consisting of: county age demographics 
(% aged under 18, % aged over 65) and the percentage of non-Hispanic white residents from 
the 5-year American Community Survey24, as well as the 5-level ADI cluster type (reference = 
non-cluster-non-outliers). Each regression model also included a cause-specific spatial county 
effect (��) to account for spatial correlation, which was specified using the recent BYM2 
formulation25. We used negative-binomial models that account for overdispersion in the data. 
The analysis was implemented using standard code within the brms package version 2.15 in 
R26. 
 
The expected count of cause-specific deaths for the ith county was specified as: 
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where * is the county adjacency matrix. Counties were deemed adjacent using the “queen” 
rule, that is, if their borders shared at least one vertex. The BYM2 formulation also estimates the 
standard deviation of the spatial effects (&) and a spatial smoothing parameter (() that reflects 
the strength of spatial correlation.  
 
All quantitative explanatory variables were centered and scaled prior to analysis. We adjusted 
the prior distributions and the MCMC sampling parameters in each model to balance model 
execution times, which are typically long in spatial analysis, with convergence metrics. The 
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sampling strategy was adjusted until convergence was deemed acceptable for each cause of 
death. The details of our sampling parameters, as well as the prior distributions used, are shown 
as part of Supplementary Table 2. 
 
As a sensitivity analysis, we used standard 5-year categorical age groups instead of continuous 
age percentages, as well as a more parsimonious spatial correlation structure (Intrinsic 
Conditional Autoregressive). Using categorical age groups resulted in lower uncertainty due to 
pseudo-replication across the age groups, but neither the direction nor the statistical 
significance of the coefficients were changed. Similarly, using a more parsimonious spatial 
correlation structure did not qualitatively alter our main findings. Thus, we report the results from 
analyses with the simplified age structure, as shown in the equation above.    
 
RESULTS 
Race: County whiteness predicted mortality rates 
Greater county whiteness was associated with lower risk of death for 9 of 12 leading 
causes, after adjusting for age, class, and place (Figure 1). Counties with a higher proportion 
of white residents had at least 4% lower rates of 8 of the top 12 causes of death. The greatest 
disadvantages occurred in kidney disease, septicemia, diabetes and COVID-19, where death 
rates were 12 to 15% lower in counties with a higher proportion of white residents.  Deaths due 
to suicide, chronic lower respiratory disease, and Alzheimer’s disease were higher in whiter 
counties.  The adjusted risk of death due to cancer, on the other hand, was less affected by 
county whiteness with Relative Risk (RR)=0.99 (95% Credible Interval 0.98, 0.99) per 20% 
increase in county whiteness. 
 
Class: Area Deprivation Index clusters predicted mortality rates 
We found that 696 (22.2%) counties were in a disadvantaged cluster, 504 counties (16.1%) 
were in an advantaged cluster, 21 counties (0.7%) were disadvantaged outliers, and 28 
counties (0.9%) were advantaged outliers. The remaining counties (60.1%) were neither 
outliers nor members of a cluster. Advantaged-cluster counties were generally situated in 
states along the Pacific coast, in the Northeast metropolitan corridor and New England, and 
in portions of the Mountain West states (Colorado, Wyoming, Montana, and Utah). 
Disadvantaged-cluster counties were concentrated in non-coastal counties in the South, 
portions of the Midwest, and also in portions of Appalachia. An interactive online map of the 
computed clusters and outliers can be accessed here. 
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Figure 1. Race and cause of death. The data points are the cause-specific adjusted relative risks (RR) per 20% (1
SD) increase of county whiteness (percentage of non-Hispanic white residents) sorted according to the RR estimate.
The bars are  95% equal-tail Credible Intervals. The RRs are adjusted for age, class (Area Deprivation Index
clusters), and place (cause-specific spatial county effect); RR = 1 indicates that the risk is independent of race
(county whiteness).    

 
Residence in an advantaged cluster was associated with significantly lower risk for 9 of 12
causes of death. Relative to non-cluster-non-outlier counties, these Relative Risks (RR)
ranged from 0.89 (95% CrI: 0.80, 0.99) for COVID-19 to 0.98 (0.96, 1.00) for cancer (Figure
2; bottom panel). Conversely, residence in a disadvantaged cluster was associated with
significantly higher risk for 8 of 12 causes of death, with RRs ranging from 1.02 (1.01, 1.04)
for cancer to 1.11 (1.07, 1.15) for influenza and pneumonia (Figure 2; top panel).  
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Figure 2. Class and cause of death. The data points are the cause-specific adjusted relative risk (RR) for counties
belonging to a disadvantaged cluster, advantaged outlier, disadvantaged outlier, or advantaged cluster vs. non-
cluster-non-outlier. All RR are adjusted for age, race, and class; RR within each panel are ranked by the total number
of deaths. Open circles indicate that RR=1 was included in a 95% equal-tail Credible Interval; RR=1 indicates risk of
death is independent of cluster type. 

 
Residence in an outlier county was often associated with more extreme RR compared to
residence in a cluster. For example, the RR for chronic lower respiratory disease in a
disadvantaged outlier was 19.4% higher than a disadvantaged cluster.  On the other hand,
the RR for Alzheimer’s disease in an advantaged outlier was 4.7% lower than in an
advantaged cluster.  
 
Surprisingly, Alzheimer's disease mortality was unlike all other causes of death with an RR
substantially below 1 in disadvantaged outlier counties and not significantly different
elsewhere. 
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Place: latent geographic risk differed markedly by cause of death 
Latent spatial effects reflect patterns of risk attributable to geographic location, after 
accounting for county age, race, and class. In other words, these effects reflect the 
aggregate contribution to risk of unmeasured factors unique to each county. We present 
estimates on a common Relative Risk (RR) scale, motivating their interpretation as a latent 
geographic risk modifier, where RR = 1 reflects no modification beyond what is explained by 
the other variables.  
 
Figure 3 shows that latent geographic risks for kidney disease, septicemia, and COVID-19 
were generally elevated in the Southeast and Northeast, and in clusters for COVID-19 
across parts of the South, Midwest, and the Mountain-West states. On the other hand, 
latent geographic risks for accidental deaths and suicides tended to be higher across the 
West, including Alaska. Latent geographic risks for Alzheimer’s further differed and were 
localized in several counties within South Dakota, North Dakota, and Washington. Finally, 
latent geographic risks for chronic lower respiratory disease were localized in Colorado and 
Kentucky. To our surprise, the top two causes of death - heart disease and cancer - had the 
least variable spatial effects, with little modification of risk due to place after accounting for 
other risk factors in the model. 
 
Latent geographic risks for heart disease, cancer, kidney disease, and septicemia were 
inter-correlated (Spearman ( � 0.65), and thus co-located in a similar set of counties 
(Supplementary Figure 2). Similarly, latent geographic risks for stroke and heart disease (( 
= 0.61), and accidental injuries and sucide (( = 0.56) co-located. Conversely, latent 
geographic risks for suicide were statistically significantly anti-correlated with heart disease 
(( = -0.15), stroke (( = -0.18), and COVID-19 (( = -0.37), indicating those occur in different 
sets of counties.   
 
The high correlation between cause-specific latent geographic risks and the observed mortality 
rates indicates important non-race, non-class risk factors. The Spearman correlations ranged 
from 0.88 (COVID-19) to 0.39 (cancer) (Supplementary Table 1). At the extremes, these 
correlations indicate cancer mortality patterns were much better explained by age, race, and 
class than patterns of COVID-19 mortality.  
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Figure 3. Place and cause of death. The US maps reflect spatially-structured risk estimated via the BYM2 model to
adjust for age, race/ethnicity, and class. The color scale on the right reports the Relative Risk scale and can be
interpreted as place-based multipliers of cause-specific risks of death.  
 
DISCUSSION 
 
For the top 12 causes of death in 2020, we jointly evaluated the impacts of self-reported race
and ethnicity, class, and place at the county level. Our major finding is that race, class, and
place each contribute to mortality risk independently of the others; that is, one cannot
understand the effect of race by knowing class or place, and so forth. This suggests there are at
least three mechanisms responsible for structural inequalities present in US healthcare today.   
 
Race and ethnicity, measured here by county whiteness, was protective for 9 causes and not
protective for 3 causes of death. We chose to analyze county whiteness (% of non-Hispanic
white residents from the American Community Survey) for several reasons. First, while
whiteness affords no physiological benefits, it historically affords social advantages that allow
access to healthcare and other mechanisms for improved outcomes. For example, treatments
for heart disease - the number one cause of death in the US - have long been known to be
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administered to fewer Black patients than white27. Second, working with county whiteness 
affords us sufficient range to maximize statistical power to detect differences when they are 
present. In fact, from a quantitative perspective, county-level data on every possible racial and 
ethnic subgroup are sparse and estimates will lead to imprecise estimates.  
 
Class/SES, measured by the ADI, was associated with risk of death from all of the top 12 
causes of death. As expected, we found that disadvantaged counties had worse outcomes and 
advantaged counties had better outcomes. To our surprise, we found that juxtaposition of 
counties with different levels of advantage did not have intermediate effects. That is, 
disadvantaged outlier counties did not benefit from the proximity of advantaged neighbors, nor 
did advantaged outlier counties suffer from disadvantaged neighbors. It is plausible that 
counties are geographically too large for these kinds of intermediate effects to arise; our work 
should be reproduced on smaller geographic units (e.g., census tracts) to determine if the 
patterns we observed persist. Additionally, there were relatively few ADI outlier counties (49 
across both types of outliers), and we found no consistent features of these counties. We note, 
however, that 5 of the 28 advantaged outlier counties housed large research universities in the 
southern US, 4 of them in Mississippi alone. Within these counties, outcomes were much better 
than for their immediate neighbors. The mechanisms are not known but might include the 
presence of a stable workforce with healthcare benefits, as well as superior health and 
community infrastructure, for example: access to specialist physicians, community investment in 
greenspaces, and access to healthy foods.  
 
Place, after adjusting for race and class, had a strong effect on mortality through geographic 
modifiers that differed substantially by cause of death. We observed broad patterns consistent 
with known geographic clusters, such as the “Heart Failure belt” and “Stroke belt” in the 
Southeast28,29, the “Suicide belt” in the West30, and to a lesser degree, “Cancer alley” in counties 
along the Mississippi River in the South31,32. Our analysis indicates clusters of COPD in 
Colorado and Kentucky, perhaps explained by the history of mining, evidenced by the presence 
of federal Black Lung clinics33. Additionally, our results highlight previously unreported regional 
patterns, such as the clustering of high-risk geographic modifiers for kidney disease and 
septicemia in the Eastern United States, notably excluding counties in Tennessee and Florida.  
 
We note especially the effects of race, class, and place on COVID-19 deaths. Race had a 
profound effect: county whiteness protected against COVID deaths in this analysis, consistent 
with other reports. The effect was one of the strongest that we found and was matched only by 
diabetes mortality. Likewise, class had a strong effect: residents of advantaged clusters were 
most protected from COVID deaths among the twelve causes under study.  Finally, with respect 
to place, we found complex nation-wide patterns of COVID-19 deaths. For example, several 
Native American nations in Arizona, New Mexico, Wyoming, and Montana have mortality risk in 
excess of what can be attributed to race and class, highlighting the local challenges of 
healthcare delivery in those locales. In stark contrast, large portions of the US West, and 
especially California, Oregon, Washington, Utah, and Nevada, were relatively protected from 
COVID-19 mortality, after adjusting for race and class. To our surprise, the state of Florida was 
not singled out as a risky locale for COVID-19 deaths. We speculate that the addition of age as 
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a predictor in the multivariable model did much to explain the death rate there, as it harbors a 
large proportion of residents over age 65.  
 
While our analysis statistically isolates each variable from the others, we note the potential 
intersections of race, class, and place for some of the causes of death. For example, in areas 
that benefit from sustained economic growth (e.g., “Silicon Valley”), which may form advantaged 
clusters and outliers, we find favorable mortality for diabetes and chronic lower respiratory 
disease. Likewise, we find that class and race may intersect for Alzheimer’s disease, which is 
not only of higher prevalence among African American/Black populations and underdiagnosed 
as well34. Finally, we find that place and race intersect in the western US, with higher county 
whiteness as well as rates of suicide35 and other “deaths of despair”36. 
 
Taken together, we regard these intersections of race, place, and class as empirical evidence 
that support syndemics theory. As a conceptual framework, syndemics treats health inequities 
as a confluence of biosocial factors, in particular the structural, historical, and cultural systems 
that inform individual decision-making. Syndemics analyses have been done for each cause of 
death we identify in this paper, including COVID-19; however, there is little evidence that 
supports syndemics theories in practice. Here, we present an empirical basis for syndemics that 
shows where spatially-structured risk accentuates socially-structured risk. Specifically, we are 
able to demonstrate: (1) how whiteness affects mortality for the top 12 causes of death; (2) how 
socioeconomic advantage and disadvantage is mediated by racial and geographic proximity; 
and (3) that morbidities cluster in specific biosocial patterns independent of race and class. We 
argue that these conclusions cannot be reached without simultaneously attending to the 
intersection of race, class, and place as syndemic risk modifiers.  
 
This work represents the first known evidence for syndemics theory that does not rely on 
behavioral data; however, we acknowledge several limitations. Using registry data carries an 
inherent risk of committing ecological bias. To this end, we emphasize that our smallest unit of 
analysis is the county and take care to limit our scope of inference no further. Counts of deaths 
due to COVID have been subject to underreporting37, especially for racial and ethnic minorities. 
Thus, we are limited by the quality of the data publicly available through the CDC. Because we 
focus our article on race, class, and place, several potential risk factors were excluded from 
analysis, perhaps most prominently, biological sex. Indeed, there are known sex differences for 
several leading causes of deaths, including heart disease38, cancer39, and suicide40. Likewise, 
we do not consider other factors that contribute to health disparities, such as the prevalence and 
type of disabilities 41,42 in the population, or the prevalence of individuals who identify as 
something other than cisgender and heterosexual43. However, investigating the interaction of 
these factors with race, class, and place falls outside the scope of the current work, and 
presents a fecund direction for future research. Finally, we note that county whiteness is a 
function of self-reported race and ethnicity, ascertained at the county level through the American 
Community Survey. And, while we report non-Hispanic white as the reference standard, we note 
that the reality of racial makeup in the US is far more complex than a simple “white/non-white” 
binary.  
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PUBLIC HEALTH IMPLICATIONS  
We offer three perspectives on public health implications. First, we offer evidence that race, 
class, and place should be avoided as proxies for one another in population health. For 
example, place-based phrases and statistical model formulations, such as “the South”, only 
account for place and do not accurately inform on class and race. Second, our article supports 
syndemics theory, in that we offer empirical evidence for race, class, and place as 
intersectional, rather than independent operators affecting differential outcomes in mortality for 
the top 12 causes of death. Finally, we highlight important independent contributions to 
mortality, modified by race, class, and place, and challenge public health researchers to target 
all three when developing interventions. In fact, we posit that an intervention that explicitly 
addresses all three is expected to have the greatest impact. 
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SUPPLEMENTARY MATERIALS 

Supplementary Figure 1. Unadjusted and unsmoothed mortality rates shown as Z-scores, standardized to
the cause-specific mean mortality rate. The color scale corresponds to the number of standard deviations
each county lies above/below the cause-specific mean mortality. By design, these data are not
geographically smoothed; thus, readers are urged to apply care in interpreting extreme Z-scores in
sparsely populated counties.   
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Supplementary Figure 2. Correlation among geographic risk modifiers (i.e., latent spatial effects) for each 
cause of death, adjusted for age, race, and class. Spearman correlations were used to capture possible 
non-linear relationships. Empty squares indicate correlation was not statistically significant at 95% 
confidence level. A clustering algorithm was applied to visually group like correlations together, as is 
apparent for kidney disease, cancer, heart disease, and septicemia, for example. 
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Cause of death with 
ranking by total deaths 

Spearman correlation of 
spatial latent effects with 
observed mortality 

Standard Deviation of log-spatial 
latent effects (95% Credible 
Interval)  

1. Heart disease 0.592 0.75 (0.68, 0.82) 

2. Cancer 0.399 0.47 (0.53, 0.51) 

3. COVID-19 0.884 2.17 (2.07, 2.26) 

4. Accidental injuries 0.757 0.98 (0.93, 1.04) 

5. Chronic Lower 
Respiratory disease 

0.675 1.01 (0.93, 1.10) 

6. Stroke 0.635 0.78 (0.70, 0.86) 

7. Alzheimer’s disease 0.782 1.43 (1.28, 1.59) 

8. Diabetes 0.709 1.23 (1.12, 1.36) 

9. Kidney disease  0.709 1.33 (1.25, 1.41) 

10. Influenza and 
pneumonia 

0.756 1.23 (1.12, 1.35) 

11. Suicide 0.798 0.94 (0.89, 0.99) 

12. Septicemia 0.734 1.42 (1.34, 1.50) 

 
Supplementary Table 1. Summary metrics of geographic risk modifiers (i.e. spatial latent effects) for each 
cause of death, estimated via the BYM2 model after adjusting for race, class, and place. High correlation 
between risk modifiers and observed mortality indicates that the latent effects reflect an important spatial 
process and the explanatory variables in the model are relatively poor predictors of cause-specific 
mortality. Spatial smoothing parameters close to 1 indicate strong spatial correlation among the latent 
effects; spatial smoothing parameters close to 0 indicate latent effects are spatially independent.    
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Cause of death 
with ranking 
by total deaths 

Largest 
R-hat  

Smallest 
Effective 
Sample Size  

Divergent 
transitions (% 
of post-
warmup) 

Warm-up 
samples 
(total 
samples) 
per chain 

Adapt 
delta 
parameter 
(Max 
treedepth) 

Prior distributions used 

1. Heart 
disease 

1.01 449 0 (0) 500 
(3500) 

0.99 (15) � + 1; &~�
�
�0,2.5�; 

(~��1,1�; ,~�
�
�0,40�  

2. Cancer 1.01 586 0 (0) 500 
(3500) 

0.99 (15) � + 1; &~�
�
�0,2.5�; 

(~��1,1�; ,~�
�
�0,40�  

3. COVID-19 1.10 12 0 (0) 300 
(1500) 

0.90 (10) �~��0, 2.5�; 

&~�
�
�0,1.5�; 

(~��0.5,0.5�; 

,~��0.01,0.01�  

4. Accidental 
injuries 

1.01 363 0 (0) 500 
(3500) 

0.99 (15) � + 1; &~���0,2.5�; 

(~��1,1�; ,~���0,40�  

5. Chronic 
Lower 
Respiratory 
disease 

1.01 316 0 (0) 500 
(3500) 

0.99 (15) � + 1; &~���0,2.5�; 

(~��1,1�; ,~���0,40�  

6. Stroke 1.01 179 0 (0) 500 
(3500) 

0.99 (15) � + 1; &~���0,2.5�; 

(~��1,1�; ,~���0,40�  

7. Alzheimer’s 
disease 

1.16 19 13 (0.11) 500 
(3500) 

0.99 (15) � + 1; &~���0,2.5�; 

(~��1,1�; ,~���0,40�  

8. Diabetes 1.06 67 0 (0) 500 
(3500) 

0.99 (15) � + 1; &~���0,2.5�; 

(~��1,1�; ,~���0,40�  

9. Kidney 
disease  

1.02 293 0 (0) 500 
(3500) 

0.99 (15) � + 1; &~���0,2.5�; 

(~��1,1�; ,~���0,40� 

10. Influenza 
and pneumonia 

1.05 97 0 (0) 500 
(3500) 

0.99 (15) � + 1; &~���0,2.5�; 

(~��1,1�; ,~���0,40� 

11. Suicide 1.00 680 0 (0) 500 
(3500) 

0.99 (15) � + 1; &~���0,2.5�; 

(~��1,1�; ,~���0,40� 

12. Septicemia 1.00 298 0 (0) 500 
(3500) 

0.99 (15) � + 1; &~���0,2.5�; 

(~��1,1�; ,~���0,40� 

 
Supplementary Table 2. Bayesian Markov Chain Monte Carlo (MCMC) implementation details for the 
top 12 causes of deaths. No-U-Turn Hamiltonian Monte Carlo via the brms package with 4 parallel chains 
was used for all estimation. All models underwent visual inspection of MCMC chains and parameter 
space to ensure satisfactory convergence occurred. 
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