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Abstract 30 
Background: We proposed a population graph with Transformer-generated and clinical features for the purpose of 31 
predicting overall survival and recurrence-free survival for patients with early-stage NSCLC and to compare this 32 
model with traditional models. 33 
Methods: The study included 1705 patients with lung cancer (stage I and II), and a public dataset for external 34 
validation (n=127). We proposed a graph with edges representing non-imaging patient characteristics and nodes 35 
representing imaging tumour region characteristics generated by a pretrained Vision Transformer. The model was 36 
compared with a TNM model and a ResNet-Graph model. To evaluate the models' performance, the area under the 37 
receiver operator characteristic curve (ROC-AUC) was calculated for both overall survival (OS) and recurrence-free 38 
survival (RFS) prediction. The Kaplan–Meier method was used to generate prognostic and survival estimates for 39 
low- and high-risk groups, along with net reclassification improvement (NRI), integrated discrimination 40 
improvement (IDI), and decision curve analysis (DCA). An additional subanalysis was conducted to examine the 41 
relationship between clinical data and imaging features associated with risk prediction. 42 
Results: Our model achieved AUC values of 0·785 (95 % CI:0·716 - 0·855) and 0·695 (95 % CI:0·603 - 0·787) on 43 
the testing and external datasets for OS prediction, and 0·726 (95 % CI:0·653 - 0·800) and 0·700 (95 % CI:0·615 - 44 
0·785) for RFS prediction. Additional survival analyses indicated that our model outperformed the present TNM and 45 
ResNet-Graph models in terms of net benefit for survival prediction. 46 
Conclusion: Our Transformer-Graph model was effective at predicting survival in patients with early-stage lung 47 
cancer, which was constructed using both imaging and non-imaging clinical features. Some high-risk patients were 48 
distinguishable by using a similarity score function defined by non-imaging characteristics such as age, gender, 49 
histology type, and tumour location, while Transformer-generated features demonstrated additional benefits for 50 
patients whose non-imaging characteristics were non-discriminatory for survival outcomes. 51 
Funding: There was no funding source for this study. 52 
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 54 
 55 
  56 

remix, or adapt this material for any purpose without crediting the original authors.
preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, 

The copyright holder has placed thisthis version posted June 16, 2022. ; https://doi.org/10.1101/2022.06.14.22276385doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.14.22276385


 3 

Introduction 57 

Lung cancer is expected to account for more than 1·80 million deaths worldwide in 2021, making it the top cause of 58 
cancer-related mortality 1. In early-stage (stage I and II) non-small cell lung carcinomas (NSCLC), surgical resection 59 
remains the therapy of choice. However, almost 40% to 55% of these tumours recur following surgery 2. The clinical 60 
care of lung cancer patients would substantially benefit from accurate prognostic evaluation. Currently, TNM staging 61 
system of lung cancer based on the anatomic extent of disease is well recognised and widely adopted, which allows 62 
tumours of comparable anatomic extent to be grouped together 3. Staging guides treatment and provides a broad 63 
prediction of prognosis, however individual characteristics, histology, and/or therapy characteristics may impact 64 
survival results, as seen by variation within stage groups. In the refinement of the staging system, non-anatomical 65 
predictors such as gene mutations and biomarker profiles were proposed to be incorporated 4. However, the gene 66 
profiling approach relies on tissue sampling, and in addition, may not fully explain the intratumoural heterogeneity 67 
seen in NSCLC. Besides, such tests have barriers in deploying to routine oncology workflows due to high turnaround 68 
time, complexity, and cost 5.  69 
To predict the patient's prognosis and to optimise individual clinical management, prognostic predictors such as TNM 70 
system and imaging-based high throughput quantitative biomarkers, radiomics, have been widely used to describe 71 
tumours 6-12. Artificial Intelligence (AI) methods, especially some deep learning (DL) models, have recently been 72 
regarded as potentially valuable tools 13-15. DL models generated multiple quantitative assessments for tumour 73 
characteristics, which have the potential to describe tumour phenotypes with more predictive power than the clinical 74 
model 15. While the anatomical structures in a medical image are functionally and mechanically related, most AI-75 
based methods do not take these interdependencies and relationships into account. This leads to instability and poor 76 
generalisation of performance 16. With recent advancements in AI technology, several novel models have been 77 
proposed. Notably, the Transformer 17 model permits exceptional capabilities in natural language processing fields 78 
such as language translation and was later applied to the computer vision field and outperformed all state-of-the-art 79 
models given large amounts of training data 18. This provides an intuitive reason to apply the Transformer model to 80 
the medical image to generate additional meaning for tumour features, as images were processed in sequence with 81 
inherent interdependencies 19. 82 
The majority of current prognostic prediction methods have focused mainly either specific to their own domains, such 83 
as focusing solely on imaging data, whereas in clinical practice non-imaging clinical data such as sex, age, and disease 84 
history all play critical roles in disease prognosis prediction 20. Although some researchers have used multi-modal 85 
techniques 21 to combine that information, it is not easy to explain how the various types of data interacted and how 86 
they contributed to the final prediction. Due to their lack of explanatory power, those models may not be easily applied 87 
in clinical practice 22. Another type of neural network, called a graph neural network (GNN) 23, which deals with data 88 
that has a graph structure, enables researchers to create more flexible ways to embed various types of data. For example, 89 
nodes and edges in a graph might represent a variety of different types of data (imaging and clinical demographics 90 
information), and analysing these entities reveals the role of various data sources. 91 
In this study, we proposed a GNN-based model that leverages imaging and non-imaging data for the prediction of the 92 
survival of patients with early-stage NSCLC. Patients were represented as a population graph, whereby each patient 93 
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corresponded to a graph node and was associated with a tumour feature vector that was learnt from the Transformer 94 
model, and graph edge weights between patients were derived from a similarity score that was derived from 95 
phenotypic data, such as demographics, tumour location, cancer type and TNM staging. This population graph was 96 
used to train a GraphSAGE 24 model for classifying individual patient’s risk of overall survival and recurrence. 97 
Additionally, we attempted to determine the relative importance of imaging and non-imaging features within this 98 
model. The proposed model was trained and tested on a large dataset, followed by external validation using a publicly 99 
available dataset. 100 

Methods 101 

Participants 102 

The study included consecutive patients who received surgery for early-stage NSCLC between January 2011 and 103 
December 2013 who matched the criteria. Inclusion criteria included: (1) pathologically proven stage I or stage II 104 
NSCLC; (2) preoperative thin-section CT image data; and (3) complete follow-up survival data. Patients undergoing 105 
neoadjuvant therapy were excluded from the study. The study protocol was approved by the Shanghai Pulmonary 106 
Hospital's Institutional Review Board and informed consent was waived owing to retrospective nature. Additionally, 107 
patients who met our criteria were retrieved from the NSCLC Radiogenomics 25 dataset as an external validation set 108 
(see Supplementary Figure 1 for the internal and external inclusion criteria flowchart). 109 
We only used patients’ initial CT scans in this study. For the main cohort, all CT scans were acquired using Somatom 110 
Definition AS+ (Siemens Medical Systems, Germany) and iCT256 (Siemens Medical Systems, Germany) (Philips 111 
Medical Systems, Netherlands). All image data were rebuilt using a 1 mm slice thickness and a 512×512 mm matrix. 112 
Intravenous contrast was administered in accordance with institutional clinical practice. Clinical data in this study 113 
were manually collected from medical records and were anonymised. Outpatient records and telephone interviews 114 
were used to collect follow-up data. The period between the date of surgery and the date of death or the final follow-115 
up was defined as overall survival (OS). Recurrence-free survival (RFS) was calculated from the date of surgery to 116 
the date of recurrence, death, or last follow-up. (More details about internal scan parameters and follow-up strategies 117 
can be found in Supplementary II). 118 

Image Annotation and Pre-processing 119 

Patients’ tumour region was manually labelled by experienced radiologists using 3D Slicer 26, with a centre seed point 120 
defining a bounding box. The regions of interest (ROIs) were first annotated by two junior thoracic surgeons (Y.S. 121 
and J.D. with 5 and 3 years of experience, respectively), then the consensus on ROI was obtained by a discussion with 122 
a senior radiologist (with more than 25 years of experience).  123 
For image pre-processing, we first normalised all CT images and removed the surrounding noises such as bones by 124 
manual thresholding. The size of all tumour segments was fixed to 128mm × 128mm × 64mm. Small tumours were 125 
zero-padded. To reduce the computational cost, we resized the padded segments into 64mm × 64mm × 36mm and 126 
subsequently resized them as 2D square images (each row contained 6 tumour slices) with the size of 384mm × 384mm 127 
as shown in Figure 1A. 128 
  129 
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 130 
 131 
Figure 1. Tumour image processing and feature generation. (A) Tumour images normalization, reshaping and padding 132 
to standard sizes, then re-arranged into 2D images, (B) Generating 1D Transformer survival features from pretrained 133 
Transformer model. 134 
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Tumour Transformer Feature Generator 136 
When pretrained on a large dataset and transferred to image recognition benchmarks, it has been shown that Vision 137 
Transformer (ViT) can achieve excellent results while requiring significantly less computational resources to train 138 
than state-of-the-art convolutional models 18. To this end, we reasoned that by replacing the traditional CNN feature 139 
generator architecture with a Transformer structure could be an approach to produce meaningful survival-relevant 140 
features. In this study, we used a ViT pretrained on a large-scale dataset (ImageNet-21k 27) as the feature generator, 141 
which takes 2D tumour segments as inputs. To meet the standard requirements of the sequence model, the input images 142 
were divided into 36 ordered patches and position embedding in the first step, followed by a linear projection function 143 
before entering the Transformer Encoder. We replaced the original classification layer with a fully connected layer to 144 
generate a 1D feature vector. The detailed implementation is illustrated in Figure 1B. The 1D feature vector was then 145 
assigned as the node feature for the individual patient in the graph network. 146 
 147 

Patient survival graph network 148 
A population graph method was used to leverage imaging and non-imaging data. Each patient was regarded as a node 149 
in a graph and its edge with neighbour was derived from a similarity score which was determined by the product 150 
between 4 component scores, namely demographics (gender and age), tumour location, cancer type (histology) and 151 
TNM staging (For more detail, refer to the supplementary for a detailed explanation of similarity scores). Two patients 152 
would be connected to each other if they shared similar component scores. The features of an individual patient (node 153 
feature) were obtained from the Transformer Encoder trained on the tumour images mentioned above.  154 

 155 

Graph-based Neural Network Structure 156 

We applied a graph-based deep neural network structure called GraphSAGE in this study. The proposed network took 157 
the whole population graph, along with the edge and node features as the input and generated a risk score in the last 158 
layer for each patient node as the output (see Figure 2). Within the network, every node feature was updated by an 159 
aggregation of information from its neighbours and itself, while the importance of different neighbours varied by the 160 
corresponding edges’ weight.  161 
We applied a two-layer GraphSAGE and global meaning pooling structure, aiming to allow each patient’s information 162 
to be updated, first from its second neighbours and then its neighbours and itself consequentially. In order to emphasise 163 
the target of survival prediction, we specifically replaced the cross-entropy loss with Cox proportional hazards loss 164 
function 28 which both considered the survival time and events when training the network. The proposed network was 165 
implemented in Python, using the Deep Graph Library (DGL) with Pytorch backend. 166 
  167 
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 168 
Figure 2. Population graph building and model prediction pipeline. (A) Each patient was regarded as a node and the 169 
Transformer-generated feature was regarded as node features. (B) Graph edges and the relevant weights were defined 170 
by their Similarity scores. (C) We then put the whole population graph to train the GraphSAGE network in order to 171 
make a prediction for each patient (pink indicates high risk and blue indicates low risk). (D) Node updating inside the 172 
GraphSAGE network. 173 
  174 
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Statistics Analysis  175 
All patients from the main dataset were randomly separated into training, validation and testing sets with the 176 
proportion of 75%, 12·5% and 12·5% separately. We also tested the model on the external validation dataset. The 177 
proposed model was compared with the TNM staging system which was generally used in clinical practice and a 178 
ResNet-Graph model which has the same graph structure as our proposed model while the node feature was generated 179 
by a pretrained ResNet-18 model 29,30. Some code  180 
To evaluate whether there were statistically significant variations in survival between positive and negative groups, 181 
the area under the receiver operator characteristic curve (AUC) was determined for OS and RFS prediction to compare 182 
the models' performance. The Kaplan–Meier (KM) method was used to generate prognostic and survival estimates for 183 
groups with low and high risk (both for OS and RFS), which were stratified according to the training set's median 184 
prediction probability, with the log-rank test employed to establish statistical significance. To quantify the net benefits 185 
of survival prediction, we quantified the net reclassification improvement (NRI) and integrated discrimination 186 
improvement (IDI), as well as performed a decision curve analysis. All of the analyses above were performed in 187 
Python using the Lifelines package. 188 
An additional subanalysis was performed on the test dataset to explore the relationship between patients’ clinical 189 
information and imaging features contributing to risk prediction. We generated a sub-graph visualisation using PyVis 190 
and a KM analysis was used for several subgraphs to evaluate our model’s ability to separate high-risk patients. Finally, 191 
as a proof of concept, we plotted one patient’s node feature changes before and after 1 layer processing using a 192 
correlation heatmap, along with its neighbours’ edge weights analysis to try to understand the inner workings of our 193 
model. 194 
 195 

Results  196 

Data Description  197 
In the main cohort, we initially enrolled 2309 patients and after exclusion based on our criteria, a total of 1705 NSCLC 198 
patients were included in the study. The median age was 61 (interquartile range, 55-66 years). There were 1010 males 199 
(59·2%) and 695 women (40·8%). Tumours were more frequently located in the upper lobes (1018, 59·7%). A total 200 
of 1235 patients (72·4%) had adenocarcinoma, while 391 patients (22·9%) had squamous cell carcinoma. The 201 
distribution of pathologic stages was as follows: stage IA was present in 791 patients (46·4%), stage IB was present 202 
in 607 patients (35·6%), stage IIA was present in 133 patients (7·8%), and stage IIB was present in 174 patients 203 
(10·2%). The OS and RFS rates were 78·2 % (95% CI: 76·2% - 80·2%) and 74·2 % (70·8% -77·6%), respectively. 204 
The external validation dataset included a total of 127 patients of which 32 (25·2%) were females and 95 (74·8%) 205 
males, with a median age of 69 (interquartile range, 46-87 years). Upper lobe tumours were also more prevalent (76 206 
patients, 59·8%). Among them were 95 patients diagnosed with adenocarcinoma and 30 with squamous cell 207 
carcinoma. The OS and RFS rates were 68·5 % (95% CI: 60·4 % - 77·7 %) and 59·1 % (95% CI: 50·4 % -67·8 %), 208 
respectively. Please refer to Table 1 for more detailed information. 209 

210 
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Table 1: Feature distribution in the total patient cohorts, training and validation cohorts and the test cohorts 211 

 212 
  213 

 TRAIN and VAL 

(n = 1492) 

TEST 

(n = 213) 

 EXTERNAL 

(n= 127) 

 

Feature Content Mean, SD, 95% CI /  

Count, % 

P Mean, SD, 95% 

CI / Count, % 

P 

Age Age 60·6, 8·7, (CI: 

60·1, 61·0) 

60·7, 9·5, (CI: 

59·4, 62·0) 

> 0·05 68·7, 9·1, (CI: 

67·2, 70·1) 

< 0·01** 

Sex Female No. (%); 

 Male No. (%) 

602 (33·3); 890 

(66·7) 

93 (33·3); 120 

(66·7) 

>0 ·05 32 (25·2); 95 

(74·8) 

< 0·01** 

Resection Sublobar Resection No.  

(%);  

Lobectomy No. (%);  

Bilobectomy No. (%); 

Pneumonectomy No. (%) 

123 (8·2); 

1292 (86·6); 

59 (3·95); 

18 (1·2) 

23 (10·8); 

180 (84·5); 

7 (3·3); 

3 (1·4) 

> 0·05 / / 

Histology Adenocarcinoma No.  

(%); 

Squamous Cell 

Carcinoma No. (%); 

Others No. (%) 

1072 (71·4); 

 351 (23·5); 

69 (4·6) 

163 (76·5);  

40 (18·8); 

10 (4·7) 

> 0·05 95 (74·8); 

30 (23·6); 

2 (1·6) 

> 0·05 

Tumour 

Location 

LUL No. (%); 

LLL No. (%);  

RUL No. (%); 

RML No. (%); 

RLL No. (%) 

384 (25·7); 

211 (14·1); 

504 (33·8); 

146 (9·8); 

247 (16·6) 

51 (23·9); 

37 (17·4); 

79 (37·1); 

15 (7·0) 

31 (14·6) 

>0 ·05 30 (23·6); 

22 (17·3); 

46 (36·2); 

15 (11·8); 

14 (11·0). 

>0·05 

Tumour 

Size 

Tumour Size 2·68, 1·38,  

(CI: 2·61, 2·75) 

2·55, 1·25,  

(CI: 2·38,2·71) 

> 0·05 / / 

pTNM 

stage 

Stage I No. (%); 

Stage II No. (%); 

1219 (81·7); 

273 (18·3) 

179 (84·0); 

34 (16·0) 

> 0·05 97 (76·3); 

30 (23·7) 

< 0·01** 

RFS Status RFS No. (%) 1089 (73·0) 154 (72·3) > 0·05 75 (59·1) > 0·05 

RFS 

Month 

RFS Month 57·5, 24·5,  

(CI: 56·2, 58·7) 

58·4, 23·4,  

(CI: 55·2, 61·5) 

> 0·05 39·5, 26·9, 

(CI: 34·8, 44·2) 

< 0·01** 

OS Status OS No. (survival %) 1166 (78·2) 167 (78·4) > 0·05 87 (68·5) >0·05 

OS Month OS Month 62·4, 19·9, 

(CI: 61·4, 63·4) 

63·4, 18·4, 

(CI: 60·9, 65·9) 

> 0·05 44·8, 27·8, 

(CI:40·9, 50·0) 

< 0·01** 
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Model performance 214 
To develop deep transformer graph learning–based biomarkers for overall survival prediction, we trained on the main 215 
cohorts, separated into training and validation datasets and then evaluated them separately on the testing set (213 216 
patients) and the external set (127 patients). For OS prediction, our model achieved AUC values of 0·785 (95 % 217 
CI:0·716 - 0·855) and 0·695 (95 % CI:0·603 - 0·787) on the testing and external datasets, respectively, compared to 218 
0·690 (95 % CI:0·600 - 0·780) and 0·634 (95 % CI: 0·544 - 0·724) for the TNM model, and 0·730 (95 % CI:0·640 - 219 
0·820) and 0·626 (95 % CI:0·530 – 0·722) for ResNet-Graph model. For RFS prediction, our model achieved AUC 220 
values of 0·726 (95 % CI:0·653 - 0·800) and 0·700 (95 % CI:0·615 - 0·785) on the testing and external datasets, 221 
respectively, compared to 0·628 (95 % CI:0·542 - 0·713) and 0·650 (95 % CI: 0·561 - 0·732) for the TNM model, 222 
and 0·681 (95 % CI:0·598 - 0·764) and 0·595 (95 % CI:0·615 – 0·785) for ResNet-Graph model (Figure 3A and 3B). 223 
Additional survival analyses were performed using KM estimates for groups with low and high risk of mortality and 224 
recurrence, respectively, based on the median stratification of patient prediction scores (Figure 3C and 3D). All three 225 
models showed statistically significant differences in 5-year overall survival. For RFS prediction, the ResNet-Graph 226 
model was unable to distinguish between individuals at low and high risk (p > 0·05), while both Transformer-Graph 227 
and TNM models were able to separate high and low risk of recurrence-free survival groups (p<0·05). Additionally, 228 
the decision curve analysis (Figure 3E) and net benefit analysis (IDI, NRI) indicated that the Transformer-Graph 229 
model significantly outperformed the present TNM and ResNet-Graph models in terms of net benefit for both OS and 230 
RFS survival prediction. 231 
As for detailed net benefit analysis, Transformer-Graph model outperformed the present TNM and ResNet-Graph 232 
models in terms of IDI and NRI. Our proposed model improved the survival prediction significantly compared with 233 
TNM regarding NRI (OS: 0·284, 95% CI: -0·112-0·519, p<0·0001; RFS:0·175, 95% CI:-0·115 - 0·486, p<0·0001) 234 
and IDI (OS:0·159, 95% CI: 0·103-0·214, p=0·00032; RFS:0·137, 95% CI: 0·086-0·189, p=0·00074). The results 235 
comparing with ResNet-Graph were reported in Supplementary IV. 236 

Patients’ clinical-based graph analysis 237 

We visualised the whole internal set (Figure 4A) along with the testing cohorts subplot (Figure 4B) and analysed two 238 
challenging cases to better understand the population-based graph structure and how clinical data was integrated with 239 
node attributes (i.e. patients' tumour images). The testing subplot showed that while the graph structure (specified by 240 
the similarity score) was capable of broadly separating at-risk patients, several clusters had both high- and low-risk 241 
patients intermingled together, making them difficult to separate using traditional clinical information (see Figure 4C 242 
and 4D). The subsequent KM analysis indicated that by using Transformer-generated tumour attributes, high- and 243 
low-risk patients could be significantly discriminated. 244 
Additionally, we analysed specifically as an example, patient No 44, and surrounding neighbours’ edge weights 245 
distribution, as well as the initial and subsequent 1 layer node features. This patient was a high-risk patient who died 246 
after 38 months, with 42 neighbours. Initially, we analysed the correlation coefficient between neighbours' node 247 
features in order to determine the role that transformer-generated image features played prior to graph training. As  248 
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 250 

 251 
 252 
Figure 3. Model Performance: (A) ROC-AUC curve on test data and external set for OS and (B) RFS prediction and 253 
(C) KM curve on test data set for OS and (D) RFS prediction. (E) Decision curve on test data set for OS and RFS 254 
prediction. 255 
  256 
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illustrated in Figure 4E, the correlation matrix of Transformer-generated features revealed that almost all of patient 257 
No. 44's high-risk (dashed box nodes) and low-risk neighbours were highly correlated, implying that image features 258 
did not contain directly discriminative survival information before learning. We next then examined the distribution 259 
of neighbours' edge weights. As illustrated in Figure 4E, despite the fact that there were only five high-risk 260 
neighbours, the median value of similarity scores was slightly higher than that of low-risk neighbours (2·50 vs 261 
2·00), indicating that the high-risk neighbour group was more closely connected to the target nodes from non-262 
imaging information aspects. 263 

After one layer of GraphSAGE updating, we discovered that the high-risk neighbours were more correlated with 264 
patient No. 44 (see Figure 4E GraphSAGE Layer 1, nodes in the dash boxes showed higher coefficient values), 265 
revealing that within our model, both neighbours’ nodes and edge features contained survival-related information, 266 
and they contributed together to efficiently provide information for the target node learning.  267 

Discussion 268 

We demonstrated the feasibility of using Vision Transformer on CT images of the lung tumours to generate features 269 
for cancer survival analysis in this study. Additionally, we used a graph structure to embed patients' imaging and non-270 
imaging clinical data separately in the graph neural network and attempted to explain how clinical data communicates 271 
with Transformer-generated imaging features for survival analysis. While Transformer and GNN models have been 272 
widely used in computer vision, their application in the medical field, particularly for survival prediction, is still 273 
evolving due to the complexity and unbalanced nature of medical data (high dimension, multiple data formats, 274 
including non-imaging data). In our study, we combined these two methods and created a specially designed graph 275 
structure to handle a variety of data formats, demonstrating the utility of Transformer-generated features in survival 276 
analysis and emphasizing the extent to which clinical data and imaging features contribute to the prediction. To our 277 
knowledge, this is the first work to demonstrate the feasibility of using Transformer in survival prediction using a 278 
graph data structure and exploratory analysis of the models’ intuitions in an attempt to explain these state-of-the-art 279 
methods. 280 
Our experiments indicated that the proposed model outperformed the commonly used TNM model in predicting 281 
survival not only on the testing dataset but also on the external dataset, despite the fact that the data distributions were 282 
significantly different (refer to Table 1, the survival distribution on the external dataset is significantly different from 283 
the internal dataset), demonstrating the model's generalisability for unseen data. The model's good performance 284 
indicated that both the Transformer-generated imaging features and the structure of our population graph (i.e., using 285 
graph edges and nodes to combine non-imaging clinical data and imaging data) contained useful information for 286 
survival. Additionally, the subplot graph on the testing dataset (Figure 4B) indicated that our graph structure was 287 
capable of approximate clustering high- and low-risk groups and segregating the majority of the high-risk patients. 288 
Meanwhile, when patients were similar in terms of demographic information and it was hard to determine the risk 289 
patients by traditional clinical methods (refer to Figures 4C and 4D the dense graphs containing both pink and blue 290 
nodes), the Transformer-generated image features and edge weights had more roles to play in determining the  291 
  292 

remix, or adapt this material for any purpose without crediting the original authors.
preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, 

The copyright holder has placed thisthis version posted June 16, 2022. ; https://doi.org/10.1101/2022.06.14.22276385doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.14.22276385


 13 

 293 
 294 
Figure 4. Testing set graph analysis. (A) A visual representation of the whole cohort population graph of 1705 295 
patients. (B) A visual representation of the testing sub-graph of 213 patients. (C) and (D) Two subgraphs containing 296 
challenging cases where the graphs contained both high- and low-risk patients. (E) Node features’ correlation 297 
heatmaps and edge weights distribution of patient No. 44: Each square represents a neighbour’s node features’ 298 
correlation coefficient, higher values (red colour) reveal closer relation with the target node; The box plot of 42 299 
neighbours indicates that the high-risk neighbours (blue box) have higher edge weights median.  300 
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differences between neighbours. More specifically, the Transformer-generated features did not contain directly 302 
discriminative survival information before learning, while with edge weights together, effective information from with 303 
neighbours’ node features could be passed. In this case, all patient’s node features could be effectively updated, and 304 
high-risk patients could be better discriminated as in Figure 4E.  305 
 306 
Our study contains several strengths. First, our dataset is relatively large, encompassing both contrast and non-contrast 307 
CT. This not only aided in the model's generalisation learning but also allows for flexibility in the imaging standards 308 
in clinical settings. Second, our graph model demonstrated the ability to combine non-imaging clinical features with 309 
imaging features in an understandable manner, implying a new direction of embedding multi-data with deep learning 310 
models. Finally, we sought to understand the roles of imaging and non-imaging features in determining high-risk 311 
nodes within the graph neural network, which could aid clinicians in comprehending the internal workings of the 312 
neural networks. 313 
 314 
There are some limitations worth noting. First, whilst the proposed model significantly outperformed the TNM model 315 
on the external dataset (OS prediction AUC 0·693 vs 0·633, RFS prediction RFS 0·700 vs 0·650), the model’s 316 
performance on the external set was below that of the testing set (AUC 0·783 and 0·726 for OS and RFS). One reason 317 
could be that the patients' demographics were different, particularly in terms of age (the external group's average age 318 
was ten years older than the main cohort), cancer staging (84·0 % stage I in the main cohort while 76·3 % in the 319 
external testing set), and gender (male percentage 66·7 % vs 78·3 %). Given the fact that the two datasets originate 320 
from distinct countries, as well as the differences in ethnicity, treatment and follow-up strategies (see Table 1, 321 
especially the mean follow-up time) may also have an impact on the prediction performance. Second, the initial step 322 
requires the human observer to identify the tumour and draw a bounding box which in our study was still a manual 323 
procedure. As the pipeline for automatic tumour detection and segmentation becomes more mature, this step can 324 
potentially be automated allowing for ease of translation into the clinics.   325 
 326 
In conclusion, the population graph deep learning model constructed using Transformer-generated imaging and non-327 
imaging clinical features was proven to be effective at predicting survival in patients with early-stage lung cancer. The 328 
subanalysis concluded that by developing a meaningful similarity score function and comparing patients' non-imaging 329 
characteristics such as age, gender, histology type, and tumour location, the majority of high-risk patients can already 330 
be separated. Additionally, when high- and low-risk patients shared very similar demographic information, TNM 331 
information provided additional information for survival prediction when combined with tumour imaging features.  332 
 333 
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Supplementary I 419 

 420 

 421 

Supplementary Figure 1: Overall flow of the study in both internal and external dataset 422 

 423 
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Supplementary II Scanner parameter and follow-up strategies 425 

CT scans ranged from thoracic inlet to subcostal plane and were obtained before surgical resection from 2 CT 426 
machines: Brilliance (Philips Medical Systems Inc, Cleveland, OH) and SOMATOM Definition AS (Siemens 427 
Aktiengesell-schaft, Munich, Germany).  428 

CT parameters of Brilliance (Philips Medical Systems Inc) were as follows: 64 x 1 mm acquisition; 0.75-second 429 
rotation time; slice width 1 mm; tube voltage, 120 kVp; tube current, 150 to 200 mA; lung window center: -700 430 
Hounsfield units (HU), and window width:1200 HU; mediastinal window center: 60 HU and window width: 450 431 
HU level; pitch: 0.906; and field of view (FOV): 350 mm.  432 

CT parameters of the SOMATOM Definition AS (Siemens Aktiengesell-schaft) were as follows: 128 x 1 mm 433 
acquisition; 0.5-second rotation time; slice width: 1 mm; tube voltage: 120 kVp; tube current: 150 to 200 mA; lung 434 
window center: -700 HU and window width 1200 HU; and mediastinal window center: 60 HU and window width: 435 
450 HU level; FOV: 300 mm; pitch: 1.2; and FOV: 350 mm. CT images were reconstructed into 0.67- to 1.25-mm 436 
section thicknesses according to a high-resolution algorithm.  437 

Follow-up was conducted through outpatient examinations or telephone calls.  438 

Chest CT scan and abdominal ultrasound/CT were performed on follow-up visits within a duration of 3, 6, and 12 439 
months after operation and annually thereafter for 5 years. Magnetic resonance imaging for brain and bone scan 440 
were annually performed for 5 years or when the patient had signs or symptoms of recurrence. 441 
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Supplementary III Similarity Score Definition 443 

Similarity score for patient 𝑥 and patient 𝑦: 444 

𝑆𝑖𝑚(𝑥, 𝑦) = 	𝐶!" ∗ 	𝐿!" ∗ 𝐻!" ∗ 𝑇!" 445 

𝐶!": if 𝑥 and 𝑦 have same gender, get 1 point; if 𝑥 and 𝑦’s age difference is within 5 year, get another 1 point. 446 

𝐿!": if 𝑥 and 𝑦’s tumours locate at the same lung lobes, get 1 point. 447 

𝐻!": if 𝑥 and 𝑦’s histology of tumours is the same type, get 1 point. 448 

𝑇!": if 𝑥 and 𝑦 have the same T stage, get 1 point; if 𝑥 and 𝑦 have the same N stage, get another point; if 𝑥 and𝑦 449 
have the same M stage, get another 1 point. 450 

 451 

When 𝑆𝑖𝑚(𝑥, 𝑦)>0, patient 𝑥 and𝑦 can be connected. 452 
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Supplementary IV: ResNet-Graph NRI and IDI results 454 

Transformer-Graph comparing with ResNet-Graph, regarding NRI (OS:0.240, 95% CI: -0.325-0.600, P< .001; RFS: 455 
0.104, 95% CI: -0.41-0.389, P< .001) and IDI (OS:0.075 , 95% CI: 0.068 – 0.082 , P< .05; RFS: 0.063, 95% CI: 456 
0.027 -0.098, P< .05).  457 
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