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One of the key features of any infectious disease is whether infection generates long-lasting immunity
or whether repeated reinfection is common. In the former, the long-term dynamics are driven by the
birth of susceptible individuals while in the latter the dynamics are governed by the speed of waning
immunity. Between these two extremes a range of scenarios is possible. During the early waves of
SARS-CoV-2, the underlying paradigm was for long-lasting immunity, but more recent data and in
particular the 2022 Omicron waves have shown that reinfection can be relatively common. Here we
investigate reported SARS-CoV-2 cases in England, partitioning the data into four main waves, and
consider the temporal distribution of first and second reports of infection. We show that a simple
low-dimensional statistical model of random (but scaled) reinfection captures much of the observed
dynamics, with the value of this scaling, k, providing information of underlying epidemiological
patterns. We conclude that there is considerable heterogeneity in risk of reporting reinfection by
wave, age-group and location. The high levels of reinfection in the Omicron wave (we estimate
that 18% of all Omicron cases had been previously infected, although not necessarily previously
reported infection) point to reinfection events dominating future COVID-19 dynamics.

1 Introduction

The pattern of SARS-CoV-2 cases in England and elsewhere can be conceptualised as a series of waves,
often associated with the emergence of a new variant. In England, there have been four main waves:
the first from January to July 2020 was due to the Wildtype variant, the second from August 2020
to May 2021 was due to the Wildtype variant followed by the Alpha variant, the third from May to
December 2021 was attributable to the Delta variant, while the fourth wave has been driven by the
Omicron variant (with two sub-waves due to sub-types BA.1 from December 2021 to March 2022,
and BA.2 from March 2022 onwards). The scale of these waves is dependent on the characteristics
of each variant [1] (with each variant having a higher transmission potential than the last and by
immune escape for the Omicron variant), population mixing [2] (impacted by control measures and
precautionary behaviour driven by perceived risk) and population immunity [3], with the latter being
the most relevant for the long-term dynamics.

From the start of the epidemic in January 2020 until 14th April 2022 (our chosen end date due to
changes in national testing policy in England [4]), there were 18.3 million reported infections, equivalent
to 33% of the English population. This is likely to be a considerable underestimate of the true number
of infections, especially in the early waves when testing was far more limited. During the first wave
(from the first reported cases in England in late January 2020 until 15th July 2020) there were around
250,000 reported cases - whereas the first REACT study estimated around 3.4 million people had been
infected by this time [5]. In the second wave, testing became more wide-spread with national testing
centres and postal tests available. From April 2021 to April 2022, covering much of the third and
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fourth waves, free Lateral Flow Device (LFD) tests were freely available in England, and many groups
were encouraged to perform regular tests, hence during these later times we may expect the ratio of
reported cases to infection to increase. Despite the under-reporting, the study of identified cases and
in particular individuals who test positive on two (or more) occasions is extremely valuable.

During the first three waves (associated with Wildtype, Alpha and Delta variants) reported reinfections
were rare; less that 1% of cases before December 2021 were in individuals that had previously reported
infection. Reinfections increased dramatically during the Omicron waves, with around 10% of cases
from January to April 2022 having previously reported infection.

2 Methods

England has had multiple methods of testing for SARS-CoV-2 infection operating in parallel. These
can be split into: Pillar 1 testing - generally PCR-based in hospitals and care homes; and Pillar 2
testing - generally at home or in testing centres [6]. The nature of Pillar 2 testing has changed over the
course of the pandemic, with such testing largely absent during the first wave. Subsequently, during
the second and third waves of the pandemic PCR testing was advised for all symptomatic infections
and as a follow-up to positive LFD tests, with PCR comprising 95% of all positive Pillar 2 tests in 2020
and 2021. From early 2022 onward LFD tests dominate. Here, we do not distinguish between the type
of test, but use episode number and an anonymised unique identifier to link first and second infections
- we combine reported cases from both Pillar 1 and Pillar 2 test, LFD and PCR positive tests without
discriminating. In particular, we label Ct,T to be the number of individual reported cases that first
test positive on day t and then subsequently on day T (T > t + 90); we also define Pt as the total
number of all positive tests on day t, irrespective of whether they are a first or subsequent infection.
We note that there is a 90-day threshold imposed on the data we receive, such that a new episode is
only defined if it is more the 90 days since the last positive test. This 90-day threshold ensures that
long-duration infections with multiple positive tests are not counted as repeat infections [7]; however
this threshold could hide some rapid reinfection or might not exclude all long-duration infections - we
will see that secondary episodes at 90 days are relative common.

As such Ci,j is a matrix of values, where i and j convey information on the likely variants while the
value of C informs on the time-varying testing behaviour and the level of cross-protection. Examining
all the positive tests in England from late January 2020 to 14 April 2022, we find that approximately
95% are first reports, 5% are second reports and only 0.064% (approximately 12,000 cases) are third
or subsequent reports of infection. For this reason we restrict our attention to first and second
reports only, which simplifies the interaction between variants and reporting interval that needs to be
considered.

We partition the period January 2020 to April 2022 into four distinct waves and note the dominant
variant(s): Wave 1, Wildtype (from the first case on 30th January - 15th July 2020); Wave 2, Wildtype
and Alpha (16th July 2020 - 30th April 2021); Wave 3, Delta (1st May - 12th December 2021); and
Wave 4, Omicron, both BA.1 and BA.2 (from 12th December 2021 onwards). We compare the data on
first and second reported cases (Ct,T ) at times t and T , to a simple model (Mt,T ) in which reinfection
is a random process, that could have wave-specific scaling:

Ct,T ∼ Mt,T = kwt,wT

PtPT

N
,

where N is the population size (approximately 56 million for England), Pt is the number of cases
at time t (we note that Pt ≫

∑
T Ct,T as P refers to all cases, whereas C are only individuals that

report two or more infections) and wt refers to the wave number at a particular time point. Under this
formulation, k would be 1 for a homogeneous infection obeying the SIS paradigm with no immunity
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and equal risk of reporting all cases, so that a proportion Pt/N of the PT reported cases are expected
to have reported previous infection at time t. Immunity will act to reduce k; we expect k ∝ (1 − ρ)
where ρ informs about degree of cross-protection afforded by previous infection (or alternatively 1− ρ
is the the relative risk of reinfection); however, heterogeneity in the risk of infection and reporting
within the population will act to increase k - as the effective population size experiencing and reporting
infection will be smaller.

We consider two particular forms of k, estimated such that Mt,T is a good fit to Ct,T , in terms of
minimising the root-mean square difference. Firstly, a homogeneous model where just two values of
k are used, an initial value for the first three waves when reinfection was rare, and a second higher
value during the fourth Omicron wave when the degree of protection was lower and reinfection was
more common:

kw,W =

{
K1 W = 4 (Omicron wave)
K0 otherwise

Alternatively, we can compute a different kw,W for every pair of waves (noting that w ≤ W ).

To delve into the interactions within and between waves in more detail, we consider the different pairs
of waves and the delay, d, between first and second infections in waves w and W as captured by

Dw,W
d =

∑
t

Ct,t+dI(t = w)I(t+ d = W ),

where I is used to identify if a time period is associated with a particular wave. The simple model,
Mt,T (making either the homogeneous and variant-specific assumptions for k) can also be used to
generate a similar function:

Sw,W
d =

∑
t

Mt,t+dI(t = w)I(t+ d = W ),

capturing the expected pattern of reported reinfection events over time.

We therefore use the estimated values of k to understand the general patterns of reinfection between
waves, noting that both greater risk of re-infection or greater heterogeneity can lead to an increased
value of k, such that we cannot uniquely attribute every change in k to a direct epidemiological cause -
although the relative level of reported cases provides some guidance. We use the comparison between
D and S to explore the finer structure within each wave, and to assess longer-term trends.

3 Results

Figures 1 and S1 graphically compare the data (Ct,T ) to the simple models of reinfection (Mt,T ).
Focusing on the homogeneous assumption for k (Fig. 1) we estimate that K0 = 0.184 (CI 0.183−0.185)
and K1 = 0.648 (CI 0.646 − 0.649) which taken together explain 51% and 85% of the variance in
reinfection data in the pre-Omicron (waves 1-3) and Omicron periods (wave 4) respectively. (That is,
var(Ct,T − Mt,T )/var(Ct,T ) is 0.51 for T in the first three waves and 0.85 for T in the fourth wave;
with much of the remaining variance due to the relatively small and integer nature of C, whereas M
is represents a continuous expectation.) The top panel of Figure 1 is simply the number of reported
cases over time (Pt), with reinfections in dark grey; the bottom panel is the number of first cases of
individuals who report a secondary infection (

∑
T Ct,T , plotted against t), while the right-hand panel

is the number of secondary reported infections (
∑

sCs,t, plotted against t). We note that due to the
much larger number of reinfection events for Omicron (presumably caused by a lower ρ value and
less cross-protection from previous infection, reflected in K1 > K0), we have been forced to use two
different scales for the pre-Omicron and Omicron periods, as captured by the top and bottom axes.
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Finally, the middle panel shows the data on reinfections (Ct,T upper-left triangle) and the simple model
(Mt,T lower-right triangular) - we note that the bottom and right panels are therefore the appropriate
projections of the sum of the matrix of data (Ct,T ). From inspection, it is clear that reinfection is far
more common in the Omicron waves (as exemplified by K1 being at least three times larger than K0),
and that the simple model captures the bulk patterns of reinfection, even with this homogeneous set
of assumptions for k.

Fig. 1: A comparison of reported first and second infections in England to the simple homogeneous
assumption model. The central panel shows reinfection data (Ct,T upper-left triangle) and the corresponding
model fit (in particular we show a Poisson sample of Mt,T in the lower-right triangle, to allow a better visual
comparison when Mt,T is low), brighter colours correspond to more reported reinfections, while grey is zero
reinfections in the data or model. The upper panel shows the total number of reported cases (pale grey) and
the number of second reported cases (dark grey); the lower panel shows the number of reported first cases for
those that report twice, while the right-hand panel shows the second reports - note that second reported cases
during the Omicron wave (after 12th December 2021) are plotted on a different scale for clarity.
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Figure S1 shows similar results for the model in which k is wave specific, with the four main UK
waves (associated with Wildtype, Wildtype/Alpha, Delta and Omicron). This greater heterogeneity
in k explains more of the variance in Ct,T : 56% and 90% for the pre-Omicron and Omicron periods
respectively. The relatively small improvement in the pre-Omicron results (compared to a single k
value) is because Ct,T is dominated by the single combination of reinfections in wave 3 (Delta variant)
after an initial infection in wave 2.

We now consider the data transformed to examine the separation between first and second cases for
each wave (Dw,W

d , Fig. 2), which in plotted in the same upper triangular form as the data in Figure

1. To this data we add lines as produced from the simple model (Sw,W
d ) with both the homogeneous

(dashed line) and wave-specific (solid line) assumptions for k.

For Wildtype-Wildtype reinfections in wave 1 (Fig. 2, bottom left), the value of k for the variant-
specific model is large (approximately 3.86), suggesting that reinfection with wildtype is much more
common than expected from case numbers; we attribute this to the extreme heterogeneity in reporting
leading to a much smaller effective population size, as only a small fraction of the population was likely
to be tested (in general only those severely ill and requiring hospital treatment). (All values of k for the
variant-specific assumption together with 95% confidence intervals, are given in Table 1.) Reinfections
in wave 2 show a similar pattern to our observations for wave 1 (Fig. 2, row 3), where the wave-specific
model k is larger (0.335 and 0.356) than in the homogeneous model (0.184), but far smaller than for
wave 1 due to increased population-level testing. The model generally captures the timing of wave 2
reinfections but substantially underestimates rapid reinfection (days 90-150) in the transition between
wave 1 and wave 2 (which would correspond to Wildtype-Wildtype reinfections), although the total
number of such reinfections is relatively small.

Wave Wave, first case
second case 1 2 3 4

4 0.766 (0.757 - 0.775) 0.735 (0.733 - 0.737) 0.591 (0.589 - 0.593) 0.235 (0.231 - 0.240)

3 0.129 (0.124 - 0.132) 0.179 (0.177 - 0.180) 0.120 (0.117 - 0.122) -

2 0.356 (0.347 - 0.365) 0.335 (0.327 - 0.342) - -

1 3.86 (3.50 - 4.22) - - -

Table 1: The scaling parameter kw1,w2
that generates the best fit between the simple model and the data; 95%

confidence intervals are also given assuming that the data represent a Poisson sample with the model as the
mean. We maintain the same upper-triangular structure as seen in Fig. 1 and Fig. 2.

Delta variant reinfections during wave 3 (Fig. 2, row 2) show far more agreement between the simple
model and the data. Secondary cases with Delta after a primary case in wave 2 (Fig. 2, row 2 column
2) numerically dominate, and for such reports the wave-specific and homogeneous models generate
similar k values (k2,3 = 0.179 compared to K0 = 0.184). The fact that k is less than one is a reflection
of the protection afforded by the primary case; however, it does not suggest that the degree of cross-
protection, ρ, is around 82% (1 − k2,3), as due to heterogeneity in infection and reporting risk, the
effective population size is likely to be far smaller than the true population size. We note a slightly
reduced level of reinfection (for Delta reinfection after wave 1 cases, although the numbers are again
small, and for Delta after Delta) in the data and variant-specific model compared to the homogeneous
model, which may be a signal of greater cross-protection.
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Lastly, for reinfections in the Omicron (fourth) wave, (Fig. 2, top row) the data and models are in
relatively good agreement, with both models generating similar fits. The estimated values of k are all
relatively large (0.591 to 0.766) which we attribute to high rates of reinfections due to limited cross
protection. The exception to this pattern is Omicron-Omicron pairs where the variant-specific k is
0.235, suggesting that there is a higher degree of protection against the same variant. Considering the
temporal pattern in more detail, we note that k decreases from initial cases during wave 1 through
to initial cases with Delta in wave 3, hinting a decline in cross-protection over time. In addition,
within each subplot there is a tendency for the model to slightly overestimate the number of most
recent reinfections or underestimate the number of longer duration reinfections - which again suggests
a slight decline in cross-protection over time.

To explore this temporal aspect in more detail, we compare the data, Dw,W
d , with the model, Sw,W

d

(by plotting Dd/Sd against d). We contrast when the second infection, W , occurs during any of the
first three waves, with when reinfection occurs in the fourth Omicron wave (Fig. 2, bottom right). We
perform this comparison using the homogeneous model (k = K0 pre-Omicron or k = K1 for Omicron)
as this removes the temporal component that is inherent within the wave-specific assumptions. In the
pre-Omicron period we observe a slight but statistically significant (p < 10−7) decline in Dd/Sd with
the separation between cases, d; whereas during Omicron the trend is stronger and in the opposite
direction (p < 10−100). Therefore during the Omicron wave, the model (with homogeneous assumption
for k) tends to underestimate the number of recent reported reinfections, and consequently overesti-
mate the number of longer separation reinfections; the trend of more infections at longer separations
may be a signal of waning immunity.

We can use the analysis of these reported reinfection patterns to generate estimates of the total level
of reinfection. For the four waves considered here, we estimate a reporting rate of 7.3% (6.6-8.0%)
in wave 1, 32% (28-38%) in wave 2, 56% (46-65%) in wave 3 and 31% (25-40%) in wave 4, using the
fitted Warwick model [8–10]. This agrees with primary measurements: estimates from the REACT-2
study [11] lead to a 7.5% (7.2-7.9%) reporting rate in wave 1 (based on measurements that 6.0% (5.8-
6.1%) were infected in the first wave [5]), while cumulative incidence estimates from the ONS study [12]
lead to a 38% (36-41%) and 42% (39-46%) reporting rate for waves 2 and 3 respectively (Fig. S3).
Using this level of reporting through time, and assuming that reported cases are representative of
all infections, we can estimate the true level of reinfection (after 90-days) over the course of the
pandemic. For wave 1, the amount of reinfection is low at around 0.6% (0.5-0.7%), for waves 2 and
3 this increases to 2.5% (2.2-2.8%) and 2.3% (2.0-2.5%) respectively, but for wave 4 and the Omicron
variant this increases to 18% (16-20%). This is strongly suggestive that the future dynamics of SARS-
CoV-2 will be contingent on reinfections within the population, although the extent to which these
are mild or severe infections will be driven by the characteristics of new variants that emerge.

Finally, we perform the same analysis but on subsets of the population; in particular we partition
the population by age and location (Fig. 3). We calculate k in the pre-omicron waves (Fig. 3, blue)
and Omicron wave (Fig. 3, red). Both show distinct deviation from the population average values
(K0 = 0.184 and K1 = 0.648), with patterns that differ between pre-Omicron and Omicron waves.
Pre-Omicron (January 2020 to December 2021, Fig. 3 left) the scaling parameter k is large for those
over 60, those between 20 and 30, and those under 5 (there are more reported reinfections than expected
from population averages); for the Omicron wave, it is only the 7-11 year olds and 20-22 year olds
that are appreciably greater than K1, with the 70-80 year olds showing a substantially reduced level of
reported reinfection compared to population-level expectations. Spatially, in the pre-Omicron waves,
there is greater reporting reinfection than expected in Cornwall, Devon and East Anglia; whereas
during the Omicron wave, we observe that it is predominantly Southern Central England that has
lower than expected reinfection.
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Fig. 3: The values of the scaling k when partitioning the data by age or spatial location, in
comparison to the homogeneous assumption k = K0 or K1. Top row shows the mean value of k in
one-year age groups (from 0 to 90+), together with 95% confidence intervals, the left-hand figure (blue) is for
waves 1-3 pre-Omicron, while the right-hand figure (red) is for Omicron wave 4. The grey bars (and right-hand
y-axis) show the percentage of all reported cases that are reinfections (

∑
t,T Ct,T /

∑
T PT ). The lower panels are

when the data is partitioned by Lower Tier Local Authority (LTLA) of which there are 317 in England; darker
colours refer to higher k values, with K0 (pre-Omicron waves national average value for k) and K1 (Omicron
wave national average value for k) shown on the colorbar.
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4 Discussion

We have passed the point in the pandemic where the overwhelming majority of people in England have
already been infected, with estimates of 70.7% (90% credible interval: 66.0-75.6%) infected by 11th
February 2022 [12] - although many of these will have been mild or asymptomatic infections and not
reported. The ability of SARS-CoV-2 to reinfect individuals is a key factor in both its persistence and
control in the longer-term and the transition to endemicity [13, 14]. Here, using detailed individual-
level case reports for England from the start of the pandemic (January 2020) to 14th April 2022, we
consider the pattern of reported cases and the number of reported reinfection events. By far the most
striking patterns are the massive increase in reported reinfection during the Omicron waves, and the
general agreement between the data and a simple model of random reinfection.

The fact that the random model fits the data so well, even using the homogeneous assumption for k
(which involves the fitting of just two scaling quantities), strongly suggests that there are at most sparse
immunological signals in this data. The data are well captured by a model in which reinfections occur
randomly in a subset of the population (accounting for protection from past infection, heterogeneous
risk of infection and heterogeneous likelihood of testing in a single parameter, k), with only a minimal
impact of the temporal separation between infections. For second reported infections with Omicron
during wave 4, there is a slight signal of waning immunity - reporting reinfection when the initial
infection was over 18 months ago is 35% more likely than reporting reinfection when the initial infection
was less than 6 months ago given the relative abundance of reported cases over these periods (Fig. 2,
bottom-right). However, before Omicron this trend was reversed (although weaker) with shorter
separations being relatively more likely (Fig. 2, bottom column 3).

The scaling parameter k is seen to vary substantially between waves, and between ages and spatial
locations. k is a combination of two factors - the degree of protection offered by past infection (which
reduces k) and the degree of population heterogeneity (which increases k); in general it is impossible to
disentangle these two elements, from k alone; however combining changes in k with changes in reported
cases and reinfections offers some insights. The large jump in the number of reported reinfections in
the Omicron wave suggests that the associated increase in k is primarily associated with a reduction
in cross protection. In contrast, we believe that the high value in the first wave (k1,1 = 3.86) reflects
the narrow subset of the population that would be tested for SARS-CoV-2 infection, thereby reducing
the effective population size. In particular, given the same pattern of infection, the value of k will
double if only half the population would report an infection, as the effective population size is halved.
This basic concept can be extended, with heterogeneity in risk of infection or the chance of reporting
leading to a increase in k. Moreover, vaccination is likely to increase k if both first and second case
are post vaccination roll-out, as this changes the heterogeneity in risk across the population (those
unvaccinated have a higher chance of infection).

The age and spatial data require more care to interpret. In the Omicron wave (Fig. 3, top-right), the
shape of k closely follows the pattern of reported reinfections, suggesting that the low in 70-80 years
old is due to increased cross protection (or behavioural changes) following previous infection; whereas
the high k value and low reinfection probability in 7-11 year olds hints at highly heterogeneous levels of
infection and reporting - potentially due to a subset of this age-group regularly self-testing. Similarly,
the patterns pre-Omicron (Fig. 3, top-left), where the elderly population have high k and relatively
low reported reinfections, are suggestive of dynamics driven by population heterogeneity, especially in
the elderly.

There are some important caveats to this work. Firstly, we are only dealing with reported cases; this
either requires symptomatic illness followed by testing (and reporting) or periodic testing to detect
mild or asymptomatic infection. This is important for four main reasons. The pattern of testing has
changed throughout the pandemic as different forms of testing have become available, in the first wave
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testing was of severely ill patients only and using PCR, whereas from April 2021 to April 2022 free
lateral flow device (LFD) tests were available nationally. There is also a strong age-bias in testing with
younger individuals more likely to test regularly and therefore detect asymptomatic infections. We note
that there is evidence that for individuals that are infected more than once, the most common pattern
is for just one severe episode with other infections being mild or asymptomatic [15, 16] - this means that
reporting of multiple infections is likely to be an underestimate unless there is regular asymptomatic
testing. Only positive tests separated by 90 days are recorded as a new reported episode, meaning that
shorter separations between reinfection events are not included and long-duration persistent infections,
although rare, may be recorded as multiple episodes.

Secondly, we have subdivided the timeline into four periods, roughly corresponding to the four main
waves; while waves 1, 3 and 4 are dominated by Wildtype, Delta and Omicron variants respectively,
wave 2 is a mixture of Wildtype and Alpha. An alternative characterisation, splitting wave 2 into
Wildtype and Alpha dominated periods (Fig. S2), does not greatly improve the fit; in particular there
are problems capturing reported reinfections with Wildtype variants in wave 2 after initial infection in
wave 1. Our definition of waves is not rigorous, but we generally transition at the point of minimum
reported infections, such that the precise timing of the transition does not affect the bulk proprieties
reported; the only exception to this rule is the transition between waves 3 and 4, which is aligned
with the dominance of the Omicron variant. In addition, we do not split the two Omicron waves
attributable to BA.1 (during December 2021, January and February 2022) and BA.2 (mainly during
March and April 2022), this is due to the short time-scales involved - the 90 day minimum separation
between reported infections means that we are left with relatively little discriminatory power and
certainly no prospect of have recorded two infections within the BA.2 time period.

Finally, the pattern of reported reinfection events as a function of the time between them (Fig. 2) is
largely driven by the timing of the infection waves. Thus while it is intuitively tempting to seek a
immunological explanation of the observed pattern of declining reinfection events with separation for
cases within the same wave (diagonal subplots in Fig. 2), the decline in reinfection events is a facet of
the waves of infection and is echoed in the behaviour of the simple model. When infection has largely
peaked in a single wave, the most common separation between any two infection events is short with
long separations corresponding to rarer infection events at the start and end of the wave.

These results indicate that reported reinfection events are very much driven by the contemporary
and historic pattern of reported cases, with factors such as waning immunity playing a limited role.
Heterogeneity is most profound in the difference between pre-Omicron (before December 2021) and
Omicron (after December 2021) waves, and the differences between age-groups. Taken together, our
results suggest that periodic reinfection is highly likely especially in an environment where new variants
are constantly emerging. We predict that the Omicron wave (15th December 2021 to April 2022) was
associated with 18% (16-20%) of cases being reinfections. This pattern of reinfections aligns most
closely with an SIRS-paradigm, such that we may expect seasonal waves of infection driven by waning
immunity and virus evolution.
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5 Supplementary Figures

Fig. S1: A comparison of reported first and second infections in England to the model where k
is wave specific. The central panel shows reinfection data (Ct,T upper-left triangle) and the corresponding
model fit (in particular we show a Poisson sample of Mt,T in the lower-right triangle, to allow a better visual
comparison when Mt,T is low), brighter colours correspond to more reported reinfections, while grey is zero
reinfections in the data or model. The upper panel shows the total number of reported cases (pale grey) and
the number of second reported cases (dark grey); the lower panel shows the number of reported first cases for
those that report twice, while the right-hand panel shows the second reports - note that second reported cases
during the Omicron wave (after 12th December 2021) are plotted on a different scale for clarity.
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Fig. S3: Comparison between different methods of capturing the number of infections Top: The
total cumulative percentage of the population infected over time, showing three different results: (1) total
number of infections from the Warwick model [8–10] which has been continually fitted to epidemiological data
since the beginning of the epidemic and accounts for regional differences, age-structure and vaccination (red
showing, 100 trajectories); the proportion of the population that has been infected from the ONS survey [12]
(with the first point on 27th April 2020 increased to match model replicates, blue with 95% credible intervals);
and the number of antibody positive individuals in June/July 2020 from the REACT-2 survey [5] (black point
and error bars). Bottom: Estimated number of daily infections, from: reported daily cases including reinfection
events (black) which forms a lower bound; model replicates including reinfection events (red) and an ONS
estimate computed as the rate of change in the total number ever infected from the top graph (blue). The ONS
estimate should be a reliable estimate of daily infections for the first three waves when reinfection is uncommon.
For each wave (where possible) we display the fraction of infections (from either the Warwick model or the ONS
estimate) that are reported as cases.

13

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 13, 2022. ; https://doi.org/10.1101/2022.06.13.22276316doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.13.22276316
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgements

I would like to thank Ed Hill, Louise Dyson and Mike Tildesley for their extremely helpful comments
on the early versions of this work.

Ethical Considerations

Data from the CHESS and SARI databases were supplied after anonymisation under strict data
protection protocols agreed between the University of Warwick and Public Health England. The
ethics of the use of these data for these purposes was agreed by Public Health England with the
Government’s SPI-M(O) / SAGE committees.

Data Availability

Data on cases were obtained from the COVID-19 Hospitalisation in England Surveillance System
(CHESS) data set that collects detailed data on patients infected with COVID-19. These data contain
confidential information, with public data deposition non-permissible for socioeconomic reasons. The
CHESS data resides with the National Health Service (www.nhs.gov.uk). The ethics of the use of
these data for these purposes was agreed by Public Health England with the Governments SPI-M(O)
/ SAGE committees. More aggregate data is freely available from the UK Coronavirus dashboard:
https://coronavirus.data.gov.uk/

Funding

MJK was supported through the JUNIPER modelling consortium [grant number MR/V038613/1]
and the National Institute for Health Research (NIHR) [Policy Research Programme, Mathematical
and Economic Modelling for Vaccination and Immunisation Evaluation, and Emergency Response;
NIHR200411]. MJK is affiliated to the National Institute for Health Research Health Protection
Research Unit (NIHR HPRU) in Gastrointestinal Infections at University of Liverpool in partnership
with UK Health Security Agency (UKHSA), in collaboration with University of Warwick. MJK is also
affiliated to the National Institute for Health Research Health Protection Research Unit (NIHR HPRU)
in Genomics and Enabling Data at University of Warwick in partnership with UK Health Security
Agency (UKHSA). The views expressed are those of the author(s) and not necessarily those of the
NHS, the NIHR, the Department of Health and Social Care or UK Health Security Agency.

Competing interests

All authors declare that they have no competing interests.

14

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 13, 2022. ; https://doi.org/10.1101/2022.06.13.22276316doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.13.22276316
http://creativecommons.org/licenses/by-nc-nd/4.0/


References

[1] Dyson L, Hill EM, Moore S, Curran-Sebastian J, Tildesley MJ, et al. Possible future waves of
SARS-CoV-2 infection generated by variants of concern with a range of characteristics. Nature
Communications 12:5730 (2021). doi:10.1038/s41467-021-25915-7.

[2] Gimma A, Munday JD, Wong KL, Coletti P, van Zandvoort K, et al. Changes in social contacts
in England during the COVID-19 pandemic between March 2020 and March 2021 as measured
by the CoMix survey: A repeated cross-sectional study. PLoS medicine 19(3):e1003907 (2022).

[3] Anderson RM, Vegvari C, Truscott J, Collyer BS. Challenges in creating herd immunity to
sars-cov-2 infection by mass vaccination. The Lancet 396(10263):1614–1616 (2020).

[4] UK Health Security Agency. Changes to COVID-19 testing in England from 1 April (2022). URL
https://www.gov.uk/government/news/changes-to-covid-19-testing-in-england-from-1-april.

[5] Ward H, Atchison C, Whitaker M, Ainslie KE, Elliott J, et al. Sars-cov-2 antibody prevalence in
england following the first peak of the pandemic. Nature communications 12(1):1–8 (2021).

[6] Department of Health and Social Care. Coronavirus (COVID-19): scaling up
testing programmes (2020). URL https://www.gov.uk/government/publications/
coronavirus-covid-19-scaling-up-testing-programmes. [Online] (Accessed: 04 May 2022).

[7] Harvey RA, Rassen JA, Kabelac CA, Turenne W, Leonard S, et al. Association of sars-cov-2
seropositive antibody test with risk of future infection. JAMA internal medicine 181(5):672–679
(2021).

[8] Keeling MJ, Hill EM, Gorsich EE, Penman B, Guyver-Fletcher G, et al. Predictions of COVID-
19 dynamics in the UK: Short-term forecasting and analysis of potential exit strategies. PLOS
Comput. Biol. 17(1):e1008619 (2021). doi:10.1371/journal.pcbi.1008619.

[9] Keeling MJ, Dyson L, Guyver-Fletcher G, Holmes A, Semple MG, et al. Fitting to the UK
COVID-19 outbreak, short-term forecasts and estimating the reproductive number. Statistical
Methods in Medical Research (Special Issue: Pandemics):09622802211070257 (2022). doi:10.1177/
09622802211070257.

[10] Keeling MJ, Dyson LJ, Tildesley M, Hill EM, Moore SM. Comparison of the 2021 COVID-19
’Roadmap’ Projections against Public Health Data. medRxiv (2022). doi:10.1101/2022.03.17.
22272535.

[11] Ward H, Cooke GS, Atchison C, Whitaker M, Elliott J, et al. Prevalence of antibody positivity
to SARS-CoV-2 following the first peak of infection in England: Serial cross-sectional studies of
365,000 adults. The Lancet Regional Health-Europe 4:100098 (2021).

[12] Office for National Statistics. Coronavirus (COVID-19) Infection Survey techni-
cal article: Cumulative incidence of the number of people who have tested pos-
itive for COVID-19, UK: 22 April 2022 (2022). URL https://www.ons.gov.uk/
peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/
coronaviruscovid19infectionsurveytechnicalarticlecumulativeincidenceofthenumberofpeoplewhohavetestedpositiveforcovid19uk/
22april2022.

[13] Keeling MJ, Thomas A, Hill EM, Thompson RN, Dyson L, et al. Waning, Boosting and a Path
to Endemicity for SARS-CoV-2. medRxiv (2021). doi:10.1101/2021.11.05.21265977.

15

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 13, 2022. ; https://doi.org/10.1101/2022.06.13.22276316doi: medRxiv preprint 

https://www.gov.uk/government/news/changes-to-covid-19-testing-in-england-from-1-april
https://www.gov.uk/government/publications/coronavirus-covid-19-scaling-up-testing-programmes
https://www.gov.uk/government/publications/coronavirus-covid-19-scaling-up-testing-programmes
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/ coronaviruscovid19infectionsurveytechnicalarticlecumulativeincidenceofthenumberofpeoplewhohavetestedpositive forcovid19uk/22april2022
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/ coronaviruscovid19infectionsurveytechnicalarticlecumulativeincidenceofthenumberofpeoplewhohavetestedpositive forcovid19uk/22april2022
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/ coronaviruscovid19infectionsurveytechnicalarticlecumulativeincidenceofthenumberofpeoplewhohavetestedpositive forcovid19uk/22april2022
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/ coronaviruscovid19infectionsurveytechnicalarticlecumulativeincidenceofthenumberofpeoplewhohavetestedpositive forcovid19uk/22april2022
https://doi.org/10.1101/2022.06.13.22276316
http://creativecommons.org/licenses/by-nc-nd/4.0/


[14] Antia R, Halloran ME. Transition to endemicity: Understanding COVID-19. Immunity
54(10):2172–2176 (2021). doi:https://doi.org/10.1016/j.immuni.2021.09.019.

[15] Mensah AA, Lacy J, Stowe J, Seghezzo G, Sachdeva R, et al. Disease severity during SARS-
COV-2 reinfection: a nationwide study. Journal of Infection 84(4):542–550 (2022). doi:https:
//doi.org/10.1016/j.jinf.2022.01.012.

[16] Office for National Statistics. Coronavirus (COVID-19) Infection Survey technical arti-
cle: analysis of reinfections of COVID-19: June 2021 (2021). URL https://www.ons.
gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/
coronaviruscovid19infectionsurveytechnicalarticleanalysisofreinfectionsofcovid19/june2021.

16

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 13, 2022. ; https://doi.org/10.1101/2022.06.13.22276316doi: medRxiv preprint 

https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/ coronaviruscovid19infectionsurveytechnicalarticleanalysisofreinfectionsofcovid19/june2021
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/ coronaviruscovid19infectionsurveytechnicalarticleanalysisofreinfectionsofcovid19/june2021
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/ coronaviruscovid19infectionsurveytechnicalarticleanalysisofreinfectionsofcovid19/june2021
https://doi.org/10.1101/2022.06.13.22276316
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Methods
	Results
	Discussion
	Supplementary Figures

