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Abstract 
 
PURPOSE 
Cancer registries are important sources of real-world data (RWD) that reveal insights into 
practice patterns and cancer patient outcomes, but the prevalence of missing data can be high. 
Machine learning (ML) imputation methods can be applied to large RWD sets, but the 
performance of these approaches within cancer registries is unclear. 
 
METHODS 
We identified non-small cell lung cancer (NSCLC) patients within the National Cancer Database 
diagnosed in 2014 with complete data in 19 variables of known clinical and prognostic 
significance. We generated synthetic missing data for each variable, then performed imputation 
using substitution (control) and five different ML approaches. Imputation efficacy was measured 
by normalized root-mean-square error (RMSE) for continuous variables and proportion of falsely 
classified entries (PFC) for categorical variables. We also measured algorithm runtimes and the 
impact of incorporating imputed values on survival modeling. 
 
RESULTS 
50,790 NSCLC patients were included for this study, with 81 features for each patient after data 
preprocessing. Among the tested ML methods, SoftImpute had the lowest RMSE (best 
performance) for continuous variables ranging from 0.071 to 0.080 for 10% to 50% missing data, 
and MissForest had the lowest PFC (best performance) for categorical variables ranging from 
0.251 to 0.311 for 10 to 50% missing data. SoftImpute had a runtime of 3.28x10-4 seconds per 
patient record, and MissForest averaged 2.96x10-3 seconds per patient record. Deep learning 
imputation using a denoising autoencoder did not achieve improved performance despite higher 
algorithm runtimes. Cox models incorporating ML imputed data achieved similar C-index 
ranging from 0.787 to 0.801 for all ML methods tested. 
 
CONCLUSION 
ML imputation achieved promising performance for NSCLC patients within a large national 
cancer registry. 
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Introduction 
 
Cancer registries are important sources of real-world data (RWD) that have generated insights 
spanning cancer epidemiology, practice patterns, and patient outcomes.1,2 Missing data 
represents one of the more significant limitations when comparing registry data to data collected 
in protocoled clinical studies. Missing data may occur only in part due to random chance and can 
be a surrogate for missing clinical information that was not documented in the medical record. 
Among non-small cell lung cancer (NSCLC) patients within a national cancer database, patients 
with missing data were more likely have advanced stage.3 Importantly, when compared to 
patients of the same stage, those with missing registry data demonstrated worse outcomes 
suggesting that excluding such patients in registry analysis may lead to biased findings. 
 
Data imputation is one possible solution to increase the representation of patients with missing 
data within registry analyses. Traditional imputation methods have demonstrated mixed results in 
terms of accuracy and reducing potential bias, and the selection of appropriate imputation models 
remains challenging for clinical researchers.4,5 Recently, there is increasing interest in using 
machine learning (ML) based imputation methods which have demonstrated promising results on 
diverse types of datasets.6,7 However, the efficacy of these imputation techniques has not been 
well studied in cancer registry data, and ML imputation approaches are rarely incorporated into 
observational studies within oncology. 
 
In this study, we compare the efficacy of ML methods to impute missing data on a national 
registry of NSCLC patients. Specifically, we evaluate the performance of ML approaches for 
missing data imputation and how cancer patient survival models are affected when incorporating 
imputed clinical information.    
 
 
Methods 
 
Data Source 
 
We identified non-small cell lung cancer (NSCLC) patients with complete data in 19 variables 
(Supplemental Table 1) with known clinical and prognostic significance within the National 
Cancer Database (NCDB).8–14 In this study, we focused on NSCLC given our previous work 
suggesting missing data may be used to identify patients with worse associated survival 
outcomes. We chose patients diagnosed in 2014 to allow sufficient follow up to examine 
downstream overall survival, and patient records with complete data were chosen given a 
reference value is needed to compare the performance. Categorical variables with a large number 
of categories were recoded to a fewer number of clinically relevant categories consistent with 
prior clinical studies.15 
 
Imputation Methods 
 
Imputation techniques inherently rely on learning underlying representations within non-missing 
aspects of the dataset. Five imputation methods were studied based on previously shown efficacy 
on diverse datasets and differences in underlying algorithms. Machine learning based imputation 
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methods were compared to simple substitution methods where the mean was used for continuous 
variables and the mode was used for categorical variables. 
 
k Nearest Neighbor (KNN) 
A KNN method imputes missing values for a patient using a weighted average of neighborhood 
of similar patients. The weighted average is calculated using the mean squared difference on 
features for which two patients have complete data. 
 
Iterative Single Value Decomposition (SVD) 
The iterative SVD method is an implementation of the imputation approach described by 
Troyanskaya et al that uses single value decomposition to obtain a set of mutually orthogonal 
patterns of non-missing variables which can be linearly combined to approximate all variables in 
the dataset.16  
 
SoftImpute 
The SoftImpute method described by Mazumder et al similarly uses single value decomposition 
for dataset completion, but is potentially more computationally efficient than IterativeSVD by 
regularizing using the nuclear norm of the dataset.17 
 
MissForest 
The MissForest method described by Stekhoven et al leverages multiple decision trees to learn 
the dataset representation and predict missing values. This method has been shown to be 
effective in mixed datasets with both continuous and categorical variables.18  
 
Multiple Imputation with Denoising Autoencoders (MIDAS) 
The Multiple Imputation with Denoising Autoencoders described by Lall et al is an unsupervised 
deep learning method.19 MIDAS trains denoising auto-encoders to reconstruct the original 
dataset after introducing additional missingness. The trained auto-encoders learn representations 
of the data to impute missing values seen in the original dataset.  
 
Comparison of Imputation Methods 
 
To compare imputation methods, first a “complete dataset” without any missing values was 
created from the NCDB. A “missing dataset” was subsequently created by randomly removing 
data values within a fixed proportion of records across all variables of interest. Values for 
outcome variables (follow up time and vital status) were not removed while creating the 
“missing dataset”. Imputation methods were tested by comparing imputed values within the 
“missing dataset” to those found in the “complete dataset”.  (Figure 1) 
 
To evaluate performance across different degrees of missingness, multiple “missing datasets” 
were created with fixed proportions of missing data ranging from 10%-50%. 
 
Given our previous work suggesting metastatic patients are most likely to have missing data in 
cancer registries, imputation methods were also compared using a “missing dataset” with a two-
fold increase in proportion of missing data for patients with metastatic NSCLC compared to non-
metastatic patients.3 
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Performance of Imputation Methods 
 
For continuous variables, imputation efficacy was measured by root-mean-square error (RMSE) 
between imputed values and their original counterparts. For categorical variables, imputation 
efficacy was measured by proportion of falsely classified entries (PFC) compared to their 
original counterparts. Lower RMSE and PFC values suggest a more effective imputation method. 
To compare RMSE across different variables, all numeric values were 0-1 scaled. PFC was 
calculated by summing the total number of values where the original and imputed values 
differed, then dividing by the total number of imputed data values. 
 
In order to investigate how incorporation of ML imputed clinical values impacted survival 
modeling, Cox regression models were created using the complete “ground truth” dataset and 
compared to the imputed datasets. Coefficients of fitted Cox regression models were compared 
using mean absolute error (MAE) and mean squared error (MSE). Performance between Cox 
models were compared using Harrell’s concordance index (C-index).20 
 
Finally, computational efficiency of different imputation methods were compared by measuring 
the algorithm runtimes on a high-performance computing server using 16 virtual processors and 
42 gigabytes of memory. Runtimes were recorded as seconds per patient record to allow for 
comparison if applied to larger or smaller datasets. 
 
Statistical Considerations 
 
All experiments and analyses were performed using Python 3.7 and Stata 16. Imputation 
methods were implemented from open-source Python software libraries scikit-learn, 
fancyimpute, missingpy, and midaspy.21–24 The code to reproduce the results are available on our 
laboratory GitHub repository.25   
 
 
Results 
 
Patient characteristics 
 
50,790 NSCLC patients diagnosed in 2014 were included in the study analysis. Patients records 
were included if they had complete data in the variables used in this study. Our study population 
was 50.2% male, 86.8% white, and 53.0% did not have recorded co-morbidities. The most 
common overall NSCLC stage among patients in this study was stage I (42.0%) followed by 
stage IV (25.2%). The median follow-up was 18.7 months (Table 1). 
 
Imputation efficacy of ML methods 
 
ML methods had improved imputation efficacy compared to substitution for both continuous and 
categorical variables. However, imputation efficacy decreased with increasing levels of 
missingness. The relative performance of ML methods also differed by variable data type. 
Among continuous variables, SoftImpute achieved the lowest RMSE (best performance) of 
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0.071 to 0.080 for 10% to 50% missing data, whereas the RMSE for mean substitution remained 
relatively constant between 0.090 to 0.091. Among categorical variables, MissForest achieved 
the lowest PFC (best performance) ranging from 0.251 to 0.311 for 10 to 50% missing data, 
whereas the PFC for mode substitution remained relatively constant between 0.406 to 0.407 
(Figure 2). 
 
When missing data was introduced with a two-fold increase among metastatic NSCLC patients 
as compared to non-metastatic patients, similar trends in imputation efficacy were also observed. 
SoftImpute achieved lowest RMSE for continuous variables, and MissForest achieved lowest 
PFC for categorical variables (Supplemental Figure 1). 
 
Variable-level imputation efficacy 
 
Variables describing tumor stage and treatment information achieved the greatest relative 
improvement in imputation efficacy with ML methods compared to substitution. On average, 
ML methods achieved a 75.0% improvement over substitution methods for imputing TNM 
clinical M stage, 58.4% improvement for imputing overall group stage, and 56.7% improvement 
for imputing type of primary site surgery. Conversely, for variables describing Race and 
Charlson-Deyo Score, ML methods did not outperform mode substitution (Table 2). 
 
Impact on survival modeling  
 
Cox models incorporating ML imputed clinical data had smaller deviations from models fitted 
using the complete data compared to substitution. The coefficients estimated using imputed data 
from MissForest had a MAE of 0.058 and a MSE of 0.011 compared to the “ground truth” Cox 
model, whereas coefficients estimated using substitution data had the largest MAE of 0.161 and 
MSE of 0.060. The Cox model C-index was 0.795 when using complete data. Cox models 
incorporating ML imputed data achieved similar C-indices ranging from 0.787 to 0.801 for all 
ML methods tested (Table 3). 
 
Algorithm runtimes 
 
Substitution had the lowest algorithm runtime, while ML methods required substantially longer 
runtimes. Substitution required on average 1.54x10-6 seconds per patient record. SoftImpute 
required on average 3.28x10-4 seconds per patient record, and MissForest required on average 
2.96x10-3 seconds per patient record. KNN had the longest runtimes at 3.30x10-2 seconds per 
patient record on average (Figure 4). 
 
 
Discussion 
 
Real-world data can be used to generate important insights for cancer patient care. However, 
missing data remains a substantial issue that will require application of novel imputation 
strategies. Few studies have specifically compared ML approaches for cancer patients using 
large scale national registry data. In our study, we demonstrate that ML algorithms can 
potentially achieve high levels of imputation accuracy while maintaining feature-label 
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relationships in survival modeling. Uniquely, we also show that the performance of ML methods 
differs by data type and between specific variables of the same type. Among the methods tested, 
SoftImpute and MissForest had the best performance for continuous and categorical variables. 
However, while substantial improvement in efficacy was observed with ML methods, these 
observations did not extend to all variables tested, highlighting the need for further research and 
variable-specific analysis consideration of ML approaches for missing data correction. 
 
Given clinical information within cancer registries are abstracted from the medical record, 
missing data may reflect incomplete documentation during the course of routine care. Such data 
are not missing by chance alone and therefore have substantial implications for patient care and 
research. Important clinical information is often not readily extracted from the medical record, 
particularly when structured data fields for a given data element are not available. Even when 
structured data fields exist, previous research demonstrate that clinical information, such as 
tumor stage, may be routinely documented as unstructured free text or may not be documented at 
all.26,27 Moreover, while cancer registrars are highly trained in abstracting oncology data, there 
may be discrepancies in documentation that make reporting challenging.28 Given the large 
number of complex data elements and patients captured in national cancer registries, complete 
documentation and abstraction of all data is likely an impracticable task. Emerging informatics 
approaches such as natural language processing and ongoing data standardization efforts have 
been postulated to increase the speed and completeness of data capture, but recognized 
challenges remain.29,30 Furthermore, missing data is likely not missing completely at random 
within RWD sources and often introduces systematic differences between patient populations. 
While methods for handling missing data exist, a recent systematic review of observational time-
to-event analysis in oncology showed the majority of studies use complete case analysis.31,32 
Given the non-random nature of data missingness in real-world settings, this can lead to 
substantial bias and diminish the generalizability of RWD findings. Therefore, ML approaches 
for data imputation are also likely to have an increasingly important role in generating clinical 
insights from RWD sources for cancer patients. 
 
Our study corroborates existing literature showing ML approaches hold substantial promise in 
missing clinical data imputation within oncology. Previous work examining the application of 
ML techniques in imputing breast cancer registry data suggested that ML imputed information 
can be used to improve survival prediction, but the number of patients in the datasets tested were 
relatively small and the findings may not be generalizable to cancer patients in the United 
States.6,33 It is well recognized that ML methods have variability in their performance among 
different datasets. Our study corroborates previous work suggesting SoftImpute and MissForest 
may be highly accurate in imputing clinical data compared to traditional statistical or other ML 
methods.34,35 Our findings are also consistent with studies showing that an increased proportion 
of missing clinical data likely has an adverse effect on model performance. This is in contrast to 
earlier results using KNN and singular value decomposition methods on microarray data, which 
showed no significant deterioration in performance for up to 20% of data missing.7,16 This is 
likely due to loss of inter-feature relationships as a significant portion of the data becomes 
corrupted. While numerous imputation approaches have been proposed for medical data, few 
studies have specifically examined their efficacy in real-world cancer registry data.36–38 
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While the recent application of deep learning to missing data imputation has demonstrated 
performance gains over other ML imputation methods, we did not observe this using the 
autoencoder model implemented within our study.19,39,40 This may indicate that the inter-feature 
relationships captured within cancer registry data are not well represented within the latent space 
of deep learning networks, although performance differences are expected with differences in 
dataset dimensionality and model architecture. The relatively poor ML performance in imputing 
race within our study also differed from previous work using deep neural networks to impute 
race/ethnicity using patient disease history, however, a significantly smaller number of features 
and samples was available in our study.41 Nevertheless, our findings reinforce that while ML 
techniques hold substantial promise in imputing missing clinical data within oncology, data and 
model specific performances need to be considered. 
 
There are limitations to our study. We examined a single cancer type and registry source, and 
therefore our results may not be generalizable to other cancer registries. However, our study 
uniquely uses a large national registry commonly used in observational research and is 
nevertheless informative for selection of ML approaches in handling missing data. Under our 
experimental conditions, data was introduced in a missing completely at random fashion. To 
address this, we also tested a simple scenario of systematic differences in data missingness 
between metastatic and non-metastatic cancer patients. In real-world scenarios, it is possible that 
multiple data missingness mechanism exist concurrently including missing at random and 
missing not at random data. Our study also does not comprehensive test all available ML 
approaches. Such an undertaking would be impracticable and we have chosen in this study to 
compare five methods that can be implemented and reproduced with relative ease using open-
source libraries. Finally, runtimes were captured are on a high-performance computing server, 
which may not be reflective of real-world use scenarios where imputation algorithms may be run 
on local computers with less compute and memory capacity. Nevertheless, the relative 
performance of each approach is likely similar and will be informative for clinicians and 
researchers who may wish to incorporate these approaches. 
 
In conclusion, we compared the performance of five ML approaches for imputing missing 
clinical data among lung cancer patients within a large national registry. Consistent differences 
in performance were observed by data type and across different thresholds of data missingness, 
with SoftImpute and MissForest achieving the best performance for continuous and categorical 
data, respectively. There was substantial variation in the relative performance for each individual 
variable, however, the overall incorporation of ML imputed clinical data preserved the 
discriminatory ability of Cox survival models. Taken together, these findings support careful 
selection of ML methods by data element to improve data completeness for cancer patients. 
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Figures and Tables 
 
Figure 1. Schematic of experimental approach. From a complete dataset, we (1) generate 
synthetic missing values in each variable for 10-50% of patient records, then (2) apply five 
different machine learning approaches to impute the missing clinical information. Imputation 
performance is measured by (3) efficacy metrics and impact on (4) Cox survival models. 
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Figure 2. Performance of imputation methods at varying levels of missing data. Root-mean-
square error (RMSE) is shown for continuous variables and proportion of falsely classified 
(PFC) entries is shown for categorical variables. 
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Figure 3. Average algorithm runtime in seconds per sample. 
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Table 1. Patient characteristics for the complete dataset used in our study. 
 
 Total 
 N=50,790 
Age at Diagnosis 69.0 (62.0-76.0)a 

Sex  
   Male 25,473 (50.2%)b 

   Female 25,317 (49.8%) 
Race  
   White 44,076 (86.8%) 
   Black 5,143 (10.1%) 
   Other 1,571 (3.1%) 
Charlson-Deyo Score  
   0 26,907 (53.0%) 
   1 15,877 (31.3%) 
   2 5,825 (11.5%) 
   >=3 2,181 (4.3%) 
NCDB Analytic Stage Group  
   Stage 0 174 (0.3%) 
   Stage I 21,335 (42.0%) 
   Stage II 6,979 (13.7%) 
   Stage III 9,508 (18.7%) 
   Stage IV 12,783 (25.2%) 
   Occult (lung only) 11 (0.0%) 
Last Contact or Death, Months from Dx 18.7 (6.4-33.8) 

a Median (Interquartile Range) is reported for continuous variables 
b N (%) is reported for categorical variables 
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Table 2. Variable-level imputation performance at 20% missing.  
  

Sub KNN SI IS MF DA  Average change a (range) 
Continuous variables, RMSE 

      
 

Age 0.141 0.133 0.121 0.128 0.121 0.132 9.92% (5.8 - 14.3) 
Distance to Hospital 0.031 0.034 0.030 0.030 0.032 0.032 -3.26% (-10.7 - 1.7) 
Tumor Size 0.041 0.038 0.035 0.037 0.037 0.039 8.23% (3.1 - 13.0) 
Number of Lymph Nodes 0.101 0.074 0.065 0.069 0.067 0.075 30.38% (25.5 - 35.3) 

Categorical variables, PFC        
Sex 0.505 0.475 0.428 0.474 0.443 0.478 8.95% (5.4 - 15.1) 
Insurance Status 0.349 0.366 0.344 0.472 0.261 0.402 -5.72% (-35.3 - 25.1) 
Radiation Treatment 0.357 0.235 0.236 0.268 0.175 0.252 34.68% (25.0 - 51.0) 
Sequence of Radiation and Surgery 0.060 0.047 0.058 0.060 0.021 0.043 23.37% (0.0 - 64.5) 
Chemotherapy Treatment 0.545 0.363 0.324 0.353 0.295 0.373 37.28% (31.4 - 45.9) 
Sequence of Systemic Therapy and Surgery 0.146 0.086 0.103 0.090 0.036 0.081 45.72% (29.3 - 75.0) 
Race 0.128 0.136 0.128 0.128 0.134 0.135 -2.97% (-6.1 - 0.0) 
Primary Site Surgery 0.506 0.238 0.205 0.246 0.149 0.256 56.74% (49.4 - 70.5) 
Charlson-Deyo Comorbidity Score  0.463 0.514 0.463 0.544 0.479 0.535 -9.50% (-17.5 - 0.0) 
Tumor Grade 0.535 0.534 0.463 0.554 0.475 0.555 3.52% (-3.8 - 13.5) 
Stage Group 0.579 0.266 0.221 0.251 0.170 0.297 58.38% (48.7 - 70.6) 
Median Household Income 0.683 0.730 0.647 0.704 0.638 0.695 0.01% (-6.9 - 6.5) 
Clinical T Stage 0.600 0.518 0.506 0.563 0.357 0.537 17.27% (6.2 - 40.4) 
Clinical N Stage 0.385 0.328 0.300 0.320 0.289 0.357 17.18% (7.3 - 25.0) 
Clinical M Stage 0.252 0.070 0.048 0.065 0.043 0.090 75.01% (64.3 - 83.0) 
Abbreviations: RMSE = root-mean-square error, PFC = proportion of falsely classified entries, Sub = substitution, KNN = k-nearest 
neighbor, SI = SoftImpute, IS = IterativeSVD, MF = MissForest, DA = denoising autoencoder 
a Average change refers to the average relative difference between ML imputation methods compared to substitution. 
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Table 3. Differences in Cox model coefficients and overall model concordance index after 
incorporation of imputed clinical data. 
 
Method MAE MSE C-Index 
Complete data - - 0.795 
Substitution 0.161 0.060 0.772 
KNN 0.070 0.018 0.801 
SoftImpute 0.070 0.013 0.797 
IterativeSVD 0.099 0.023 0.787 
MissForest 0.058 0.011 0.798 
Autoencoder 0.080 0.016 0.794 

Abbreviations: MAE = mean absolute error, MSE = mean standard error, C-index = concordance 
index 
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Supplemental Figure 1. Performance of imputation methods when missingness systematically 
differed between patients with metastatic versus non-metastatic non-small cell lung cancer. For 
non-metastatic patients, only 5, 10, 15, 20, and 25 percent of records were spiked with missing 
data. 
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Supplemental Table 1. National Cancer Database variables used for analysis. 
 
Continuous variables 

AGE 
CROWFLY 
TUMOR_SIZE 
REGIONAL_NODES_EXAMINED 

Categorical variables 
SEX 
INSURANCE_STATUS 
RX_SUMM_RADIATION 
RX_SUMM_SURGRAD_SEQ 
RX_SUMM_CHEMO 
RX_SUMM_SYSTEMIC_SUR_SEQ 
RACE 
RX_SUMM_SURG_PRIM_SITE 
CDCC_TOTAL_BEST 
GRADE 
ANALYTIC_STAGE_GROUP 
MED_INC_QUAR_16 
TNM_CLIN_T 
TNM_CLIN_N 
TNM_CLIN_M 

 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 14, 2022. ; https://doi.org/10.1101/2022.06.12.22276306doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.12.22276306

