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Abstract 

Augmenting traditional genome wide association studies (GWAS) with advanced machine 

learning algorithms can allow the detection of novel signals in available cohorts. We 

introduce “Genome wide association neural networks (GWANN)”, a novel approach that 

uses neural networks (NNs) to account for nonlinear and SNP-SNP interaction effects. We 

applied GWANN to family history of Alzheimer’s disease (AD) in the UK Biobank. Our 

method identified 25 known AD genes, 2 target nominations and 68 potentially novel genes, 

and validated the results against brain eQTLs, AD phenotype associations, biological 

pathways, disease associations and differentially expressed gene sets in the AD brain. 

Some drugs targeting novel GWANN hits are currently in clinical trials for AD. Applying NNs 

for GWAS illustrates their potential to complement existing algorithms and methods, and 

enable the discovery of novel and tractable targets for AD. 

KEYWORDS: GWAS, Alzheimer’s disease, neural networks, artificial intelligence 

ABBREVIATIONS: NN - Neural Network; GWANN - Genome Wide Association Neural 

Networks; UKBB - UK BioBank; PPI - Protein-Protein Interaction; GSEA - Gene Set 

Enrichment Analysis; ORA - Over Representation Analysis; CDF - Cumulative Distribution 

Function; GO - Gene Ontology
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1 Introduction 
Alzheimer’s disease (AD) affects approximately 30 million people in the world, making it the 

most common form of dementia1. It is characterised by the build-up of Aβ and tau proteins in 

the brain, leading to neuronal death and impaired cognitive function2. In the last 10 years 

genome wide association studies (GWAS) have revolutionised our understanding of the 

inherited basis of disease and they have been critical in identifying multiple risk loci and 

disease pathways associated with AD3. However, some limitations of the current approaches 

at GWAS may be hindering their ability to uncover the complex genetic landscape of AD 

without extending the sample size. Despite the number of SNPs identified until today, they 

still only explain a small fraction of the heritability of the disease4; the hits often appear to be 

unrelated to each other5,6; they have limited biological relevance to the disease7; and it is 

often challenging to ascertain the genes and the biological mechanisms underlying each 

SNP association4–7
. Along with the modern availability of large datasets8–10, an enhancement 

that can complement current GWAS methods is the introduction of machine learning 

analysis methods that can unveil more complex patterns in genomic data that would 

otherwise have been missed by the traditional linear models.  

Machine learning methods, more particularly Neural Networks (NNs), have been 

instrumental in the advancement of multiple engineering industries due to their efficacy in 

analysing complex data patterns11, especially where large amounts of data is available. 

Specifically, in the task of finding disease associated loci, NNs have recently been employed 

and tested on a list of complex traits and diseases such as eye colour and schizophrenia12. 

Given the recent success of NNs in a myriad of fields including genomics, our aim was to 

develop NNs specialised to perform a gene-level GWAS using SNP data available in the UK 

Biobank (UKBB)13. Our method is gene-based and considers groups of SNPs within and 

around a gene to establish the association of the gene with the phenotype of interest. In this 

work we demonstrate the application of our new GWANN method to identify associations 
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with familial history of AD, a proxy for AD8, present the genetic associations found by the 

method, and systematically validate the results against brain eQTLs, AD phenotype 

associations, biological pathways, disease associations and differentially expressed gene 

sets in the AD brain.
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2 Results 

2.1 Identification of novel genes related to AD using GWANN 

GWANN identified 69 genes significantly associated with maternal history, 29 genes 

associated with paternal history, and 95 genes in the parental (i.e. maternal and paternal) 

meta-analysis (Figure 3, Supplementary Table 1). All these were significant after multiple-

comparison correction with a Bonferroni threshold of P value<6.82x10-7 (Figure 2, 

Supplementary Table 2). Table 1 lists the genes with their P values. Supplementary Table 2 

additionally lists the top three input features that were most important to the NNs of GWANN 

in the maternal and paternal history datasets. In terms of the NN architecture, each of these 

features can be a SNP or a covariate encoding. Supplementary Table 3 contains the genes 

in linkage disequilibrium (LD) — thresholds of r2 ≥ 0.1 and r2 ≥ 0.25 — based on the top 

three maternal and paternal SNPs in the windows for the genes. A more conservative set of 

hits considering only those genes that passed P value thresholds of 0.05, 10-2, 10-3, 10-4 and 

10-5 can be seen in Supplementary Figure 1. A standard SNP-level GWAS performed using 

PLINK 2.0 with a logistic regression model, on the same set of SNPs and individuals as used 

in GWANN, identified 13 genes for maternal history, four genes for paternal history and 14 

genes in the meta-analysis. Five of these genes (APOE locus – APOE, APOC1, TOMM40, 

BCAM and EXOC3L2) overlapped with the findings of GWANN. When compared with other 

GWAS on familial history of AD and AD diagnosis listed in the GWAS catalogue3, there was 

an overlap of 25 genes with the GWANN hits. Twelve of these have been previously 

associated with AD (ANK3, APH1B, GLIS3, EPHA1, WWOX in addition to the APOE locus). 

Seven others are listed in the GWAS catalogue as suggestive associations (P value<1x10-5) 

with AD (EXOC4, NRXN1, NRXN3, PAX5, CADM2, LUZP2 and RBMS3). In a recent 

analysis on the pleiotropic predisposition to AD and educational attainment14, DCC and 

CADM2 were identified as associations, and EFNA5 and LRP1B as suggestive associations. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 14, 2022. ; https://doi.org/10.1101/2022.06.10.22276251doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.10.22276251
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

DAB1 has previously been associated with psychosis in AD15, and MACROD2 with 

neurofibrillary tangles16.  

 

EFNA5, NRXN3, BDNF and ROBO1, have been nominated as potential targets for AD. 

Among the other novel genes identified by our method, PITPNM2, RNF182 and SAMD4A 

have been reported to be significantly associated with Braak; RNF182 and SAMD4A are 

associated with CERAD; and CPNE5, SAMD4A, ATP1B3, MAGI2 and ARSG associated 

with COGDX, three measures of AD pathology or cognitive phenotypes (Table 2). A total of 

69 genes were significantly enriched with eQTLs in brain regions and 51 genes show 

differential RNA expression in post-mortem AD brains (Supplementary Table 4). There is 

evidence in the GWAS catalogue for 42 genes which have previously been associated with 

diseases in the category of “nervous system disease” (EFO:0000618).  

2.2 Enriched protein-protein interaction (PPI) network of 

GWANN hits 

The PPI network of the 95 associated genes identified post meta-analysis was significantly 

enriched (P value=3.33x10-16, Figure 4a). Given a network of 95 possible nodes, the 

expected number of connections by chance would be 23, but the network of the GWANN 

hits show 72 connections, thereby being significantly enriched. On retaining only the novel 

GWANN genes, the PPI network remains enriched (.0285). The reason for the drop in 

significance is possibly due to the absence of indirect interactions through the old hits, 

indicated by the green dotted lines in Figure 4b.  
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2.3 Enrichment of GWANN hits using transcriptomic data from 

AD post mortem brains 

Using the results of a recent large meta-analysis of AD brain transcriptomic data17, we 

verified whether the results of our NN analyses show significant representation in the set of 

differentially expressed genes (DEGs) in the cerebellum, frontal lobe, parietal lobe, and 

temporal lobe. The authors reported results for DEGs in different groups of patients, 

denoting these as S1=AD (patients with AD) and S2=non-AD (i.e. patients with mental 

disorders different from AD). We ran our analysis for four different sets of DEGs, (i) S1, (ii) 

S2, (iii) S1 - S2 (patients with only AD and no other mental disorder), and (iv) S1 ∩ S2 (patients 

with any mental disorders). For each set, the DEGs in the cerebellum and parietal lobe, and 

for sets i, ii and iii, the frontal lobe was enriched at a significance level of 1.25x10-2 (=.05/4). 

For the frontal lobe, there were no DEGs reported by the authors for set iv, and there was no 

enrichment in sets i, ii or iii (Table 3).  

 

Another study compared gene expression between controls, asymptomatic AD cases and 

AD cases (GSE118553)18. The studied brain regions were the cerebellum, entorhinal cortex, 

frontal cortex and temporal cortex. None of the regions showed enrichment in the case of 

asymptomatic AD vs controls. DEGs for asymptomatic AD vs AD and AD vs controls in the 

entorhinal cortex showed enrichment, and DEGs for AD vs controls in the temporal cortex 

were enriched at a significance level of 1.25x10-2 (=.05/4). Supplementary Figures 2 and 3, 

respectively, contain the cumulative distribution plots used in the enrichment of each 

dataset. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 14, 2022. ; https://doi.org/10.1101/2022.06.10.22276251doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.10.22276251
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

2.4 Enriched diseases, tissues, biological pathways and GO 

terms using GWANN summary statistics and hit genes 

The gene set enrichment analysis (GSEA) resulted in enrichment of the pathways for 

amyotrophic lateral sclerosis (P value=3.76x10-4) and Alzheimer’s disease (2.98x10-3) 

amongst the set of KEGG pathways. Although both of these are disease-specific pathways, 

all KEGG pathways (disease specific and non-disease specific) were included in the 

analysis. To further ascertain possible disease associations, we also calculated enrichment 

in DisGeNET (Table 4, Figure 5c), obtaining significance in schizophrenia (1.38x10-6), autisic 

disorder (6.67x10-7) and neurodevelopmental disorders (5.72x10-10), to name a few. The 

most enriched tissue groups were the brain, blood vessel and nerve (Figure 5d).  

 

The enriched pathways include statin inhibition of cholesterol production (3.69x10-4); 

disruption of postsynaptic signalling by copy number variations (CNV) (8.38x10-3); regulation 

of commissural axon pathfinding by SLIT and ROBO (3.69x10-3); NTRK2 signalling through 

RAS and CDK5 (5.41x10-3, 6.03x10-3); RUNX1 regulation of transcription of genes involved 

in BCR signalling (6.32x10-3); and Reelin signalling (8.99x10-3). A complete list of pathways 

enriched in the GSEA for maternal history, paternal history and parental meta-analysis can 

be found in Supplementary Table 5, and disease enrichment in Supplementary Table 6.  

 

In the over-representation analysis (ORA) (Figure 5a) using gene ontology (GO) terms, 56% 

(Figure 5b) of the terms were related with the cellular response to nerve growth factor 

stimulus (GO:1990090). The binding of BDNF (neurotrophins family) to NTRK2 (TRK family) 

initiates a cascade of intracellular signalling events including Rho protein signal transduction 

(GO:0035023) triggering neuron recognition (GO:0008038), amyloid-beta metabolic process 

(GO:0050435), cellular component of the Schaffer collateral - CA1 synapse (GO:0098685), 

Golgi to plasma membrane transport (GO:0006893) and ephrin receptor signalling pathway 
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(GO:0048013). The results for GO enrichment of maternal and paternal histories can be 

found in Supplementary Figure 4 and Supplementary Table 7. 

2.5 Potential of novel targets for AD drug discovery 

Seventeen novel hits were reported as tractable targets for drug discovery (Supplementary 

Table 8). NTRK2, FSHR, BCR, PDE1C and EPHA6, are five novel GWANN hits that have 

known approved drugs (Table 4). Among these, BCR has 2 drugs — nilotinib and dasatinib 

— associated with it, one of which has undergone, and the other is currently undergoing 

clinical trials for AD. From the list of enriched pathways, NTRK2 signalling plays an important 

role in synaptic transmission and neuronal development (R-HSA-9032845 and R-HSA-

9026519) and may be a potential therapeutic target for AD. DCC, another GWANN hit that 

was also recently associated with pleiotropic predisposition to Alzheimer's disease and 

educational attainment14, is not currently associated with any approved drug but received the 

highest tractability probability of 98.47%. It has a medical-quality pocket for small molecule 

development and given its importance in axon guidance (enriched pathway R-HSA-428542), 

could potentially be another therapeutic target to explore.
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3 Discussion 
We applied GWANN to maternal and paternal histories of AD using data from the UKBB, 

followed by a parental meta-analysis. In doing so, we identified 23 known or nominated AD 

hits and 72 potentially novel hits. The association analysis was further supported by post-hoc 

enrichment analyses which highlighted enriched biological and disease pathways relevant to 

AD and neurodegeneration. Several GWANN hits were also identified to have known drugs 

that could possibly be repurposed, or a good probability for intervention with various 

modalities like small molecules and antibodies.  

3.1 GWANN identifies hits associated with AD diagnosis 

Of the genes that overlap between GWANN’s discovery and discovery from previous GWAS, 

most of them have also been identified previously using familial history data in the UKBB. 

However, GWANN also identified previously associated or suggestively associated genes 

from GWAS performed on cohorts of diagnosed AD patients that have not been identified in 

the UKBB. GLIS3 was previously identified in a GWAS performed on cerebrospinal fluid tau 

levels20; WWOX was previously identified in the IGAP data21; and IMMP2L was previously 

identified for CNVs associated with AD22. Among the suggestive associations, other than the 

genes possibly linked to AD diagnosis, EFNA5 was suggestively associated with psychosis 

in AD15 and MACROD2 with neurofibrillary tangles16. ANK3, a novel discovery in the latest 

GWAS conducted on the European Alzheimer’s Disease BioBank (EADB)19, was also 

identified by GWANN. Furthermore, observing the neighbourhood of the hits in the EADB 

analysis, we see a greater number of genes reaching nominal significance in the GWANN 

analysis as compared to the neighbourhood of genes that were insignificant in the EADB 

analysis (Supplementary Figure 5). The ability of GWANN to identify these genes from the 

UKBB data suggests the presence of subtle patterns in the data that were possibly missed 

by the traditional linear models but identified by our method.  
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3.2 Role of hit genes and enriched biological pathways in 

neurodegeneration and AD 

The enriched pathways of the novel hits and known suggestive hits play important roles in 

the pathogenesis of AD. For example, axon guidance molecules such as netrin-1 play an 

important role in the regulation of Aβ levels and Reelin levels23. Two enriched pathways, R-

HSA-428542 and R-HSA-8866376 are child-pathways of axon guidance. DCC, a GWANN 

hit, is one of the main receptors of netrin-1 and an integral component of the enriched 

pathway R-HSA-428542. Through its interaction with ROBO1 (GWANN hit and AD target 

nomination) in the presence of SLIT, it plays an important role in controlling commissural 

axon growth; and (ii) its interaction with APP mediates axon guidance by enhancing 

intracellular signalling and may have a role in the negative regulation of Aβ formation24. 

Furthermore, the phosphorylation of DAB1, another GWANN hit, plays a role in Reelin 

signalling (R-HSA-8866376). The loss of Reelin function in humans has previously been 

associated with AD25.  

 

Another GWANN hit with previous suggestive association to AD, PAX5, is a transcription co-

factor along with the RUNX1 complex that plays an important role in BCR signalling and B 

cell development (enriched pathway R-HSA-8939245). The role of B cells in the 

pathogenesis of central nervous system diseases is well established and the B cell depleting 

therapies have shown success in patients with disorders such as multiple sclerosis26. A 

recent study in mice has also suggested the involvement of B cells in neurodegenerative 

diseases like AD by causing immunoglobulin deposits around Aβ plaques27.  

 

AD is often characterised by synaptic failure (2) and disruption of postsynaptic signalling by 

CNVs (WP4875) was among the enriched pathways in the GSEA. Two GWANN hits, 

NRXN1 and NRXN3, belong to the neurexin family of proteins and contribute significantly to 
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synaptogenesis28.  The disruption of the functioning of these genes due to CNVs affect 

synapse formation and neurodevelopment. They have also previously been associated with 

autism29 and schizophrenia30. Another integral component of synaptic transmission is 

controlled by neurotrophins like BDNF (GWANN hit and nominated AD target), which play a 

very important part in the survival, differentiation, and plasticity of neurons. Low levels of 

BDNF mRNA in patients with AD and mild cognitive impairment is an experimentally 

reproduced finding and BDNF treatments in rodent and primate models of AD have shown 

success previously (2). NTRK2 (or TRKB), a novel GWANN hit, is the main receptor that 

BDNF binds to; NTRK2 signalling plays a major role in neuronal development and possibly 

affects hippocampal long-term potentiation (R-HSA-9620244) (2) through CDK5 catalytic 

activity (R-HSA-9032845), two pathways that were also enriched in the GSEA.  

3.3 Repurposing known drugs of novel hits for AD 

A large proportion of the known drugs associated with the novel GWANN hits belong to a 

broader group of drugs known as tyrosine kinase inhibitors (TKI). Drugs like nilotinib and 

dasatinib, among other TKIs, are being tested to be repurposed for AD due to their ability to 

reduce tau hyperphosphorylation and reverse Aβ-induced synaptic dysfunction and synapse 

loss in mouse models of AD-related pathology31. A previous study using mouse models also 

identified the effect of TKIs in reducing Aβ levels and astrocyte and dendritic cell number 

after treatment with nilotinib and bosutinib, two drugs associated with the novel GWANN hit 

NTRK2. Other than TKIs, dipyridamole, a drug associated with the novel hit PDE1C, was 

previously shown to prevent Aβ-induced microglial inflammation, thereby making it a 

possible therapeutic intervention for AD32. Pentoxifylline, a methylxanthine associated with 

PDE1C, has been suggested to improve cognitive function in patients with vascular 

dementia33, reduce the odds of occurrence of Parkinson’s disease34 and reduce Aβ levels34. 

This further supports the quality of the novel GWANN hits and (i) suggests the possibility of 
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repurposing the existing drugs for AD, and (ii) provides evidence that several of these drugs 

are already being explored for the treatment of AD. 

3.4 Limitations and considerations 

Given that the method involves training a very large number of NNs, we acknowledge the 

fact that it requires a fairly large amount of computational time and resources. However, we 

believe that with the rapidly advancing field of ML and AI, it is possible to further optimise 

this method to achieve a speed up in computational time and reduction in resource usage. 

For example, the method of “knowledge distillation” uses the concept of a larger teacher NN 

teaching a much smaller student NN to learn the same task, which allows a significant speed 

up in time35. Secondly, NNs are more difficult to interpret as compared to traditional linear 

models, thereby rendering them as “black boxes''. In this work we explored the gradients of 

the NNs to identify the SNPs that were most important in driving the prediction, but more 

methods to increase their interpretability and identify interactive effects could be very 

beneficial in further understanding the hits identified and those missed by GWANN. Finally, 

we acknowledge the fact that the discovery in this work warrants replication in different 

cohorts containing diagnosis of AD. 

 

3.5  Conclusion 

We applied our method to family history of AD using data from the UKBB, but it can 

potentially be extended to other data sources, as well as be applied to other diseases or 

groups of diseases to understand the common associations, if any, between them. The 

ability of GWANN to identify a set of possible targets that are part of meaningful biological 

pathways associated with AD and neurodegeneration, opens the world of GWAS to a new 

analysis method that could augment the success of existing methods in understanding the 

pathogenesis of AD and other diseases. 
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4 Methods and Materials  

4.1 Data source 

We utilised data from the UKBB (http://www.ukbiobank.ac.uk). The data comprises health, 

cognitive and genetic data collected from ~500,000 individuals aged between 37 and 73 

years from the United Kingdom at the study baseline (2006–2010)13,36. We used imputed 

SNP data as input to GWANN. In addition, the covariates used were age (field 21003), sex 

(field 31), the first six genetic principal components (PCs) obtained from UKBB variables 

(field 22009), education qualification (field 6138) and a binary variable if this data was not 

available (1 if missing and 0 if not). Full UKBB cohort and variable descriptions are provided 

in the Supplementary material. 

4.2 Cohort selection 

The case groups consisted of individuals with maternal and paternal histories of AD, some of 

whom also had AD diagnosis. Individuals with diagnosed AD but no familial history of AD, 

and those with other neurological disorders were removed from the control groups37. We 

divided the entire range of ages into three groups (age-group1: 38-52, age-group2: 53-61, 

age-group3: 62-73 years) and paired them with the 2 sexes (male and female) to obtain six 

broad groups — (age-group1, male), (age-group1, female) etc. In order to deal with the 

problem of imbalanced classes which affects the training of machine learning algorithms, we 

opted to randomly downsample the controls, while balancing for the six groups, to match the 

number of cases and obtain a 1:1 ratio. The sets of individuals in the datasets for paternal 

history and maternal history analyses were not overlapping. After these steps, maternal 

history had 26,133 cases and controls, and paternal history had 12,680 cases and controls. 
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4.3 Neural network model  

GWANN follows an architecture with 2 branches that later merge into a single trunk (Figure 

1). One of the branches reads contiguous SNPs within a genomic region involving each 

gene, while the other reads the covariates. The common trunk combines this information to 

predict family history of AD. Each sample consists of SNPs and covariates for a group of 10 

individuals, with all 10 being either cases (people with family history of AD) or controls. The 

NN is trained on predicting whether the sample is formed by cases or controls. The rationale 

behind using convolutional layers in our architecture (Figure 1) was to implement “group 

training”, which allows the NNs of GWANN to consider the group of 10 cases or controls as 

a single sample, enabling them to identify similar patterns across the individuals in the 

group. Before passing the output of this section to the densely connected section of the 

model, they are passed through an “attention” block to focus on important features and 

ignore features without much information. The final feature vector, obtained from the densely 

connected portion of the NN focussing on the SNPs, is concatenated with a feature vector or 

encoding generated from the covariates (bottom-left branch of NN in Figure 1) and finally 

passed through the densely connected end layers of the NN to obtain the final prediction. 

The covariate encodings are obtained from the penultimate layer of the bottom-left branch. 

Further information about the NN architecture can be found in the Supplementary material. 

4.4 Training the neural network 

The NNs were trained to predict the status of maternal and paternal history of AD in two 

separate analyses. The dataset for each phenotype was split into case-control balanced 

training and testing sets. For maternal history, this resulted in a training set of 44,426 and a 

testing set of 7,840; paternal history was split into a training set of 21,556 and a testing set of 

3,804. In order to implement “group training”, we separately upsampled the individuals in the 

training and testing sets by 10 and randomly grouped them into groups of 10. We ensured 
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no overlap of individuals between the training and testing sets. All missing SNP values were 

replaced with -1 and all variables were min-max scaled prior to training. To optimise the 

training process, (i) we pre-trained the covariate branch (bottom-left branch in Figure 1); and 

(ii) saved and reused the encodings from the penultimate layer, instead of passing the 

covariates through the pre-trained branch during each training to obtain the same encodings. 

 

For every gene, SNPs within the gene and 2500 bp upstream and downstream of it were 

considered. Since NNs are computationally more intensive than linear models, we set the 

limit to 2500 bp as a trade-off between increased computational time and including 

downstream and upstream SNPs in the analysis. This also minimised the chances of overlap 

between genes which are very close to each other. We divided every gene into windows of 

maximum 50 SNPs and the final analysis was done on all windows of all genes. A different 

NN was trained for each window per gene in the entire genome. This resulted in having to 

train a total of 73,310 models for maternal history and 73,299 models for paternal history. 

The NN models were built and trained using PyTorch38, a Python library built and optimised 

for machine learning and deep learning. Code will be available upon request.  

4.5 Identifying significantly associated genes 

A null distribution of accuracies, Anull, was obtained from a set of NNs trained on the same 

covariate encodings along with simulated SNP data generated using the “dummy” command 

of PLINK 2.039,40.  The P value of window i was obtained as 1 - CDFnull(ai), where CDFnull is 

the cumulative distribution function of the distribution fit to Anull.  

4.6 Meta-analysis for parental histories of AD 

After conducting separate analyses for maternal and paternal histories of AD, for each 

phenotype, we assigned a gene-level P value as the most significant P value amongst all 

windows for that gene. Following this, we used METAL41 to perform a gene-level meta-
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analysis of the parental histories of AD (maternal and paternal). Since NNs do not produce 

beta values or standard errors, the “sample size weighted” method was used and the 

“weight” parameter for maternal and paternal histories were set as 7,840 and 3,804 

respectively, the number of samples in the testing set for each analysis.  

4.7 Enrichment and post-hoc analyses 

LDLink42 was used to find the LD between SNPs using the “British in England and Scotland” 

population. We used information from the Agora AD knowledge portal 

(https://agora.adknowledgeportal.org) to identify genes that have (i) significant eQTLs in the 

brain; (ii) change in RNA expression in post-mortem AD brains; (iii) AD target nominations; 

and (iv) association with AD cognitive phenotypes (Braak, CERAD and COGDX). STRING 

V11.543 was used to perform PPI analysis of the genes that were significantly associated 

after the parental meta-analysis. Pathway enrichment was performed using GSEA44. This 

enrichment was performed using the gene-level statistics for the parental meta-analysis for 

all analysed genes. The enrichment was performed for KEGG, Wiki and Reactome pathways 

present in the canonical pathways of MSigDB v7.5.145. We also performed an enrichment 

analysis of DEG sets in AD post-mortem brain regions — meta-analysis of AD brain 

transcriptomic data17 and GSE11855318 — using the same method, with the exception of 

multiple testing corrections. We applied a bonferroni correction for the number of DEG sets 

that were analysed. In addition to the GSEA, we performed a GO ORA of the GWANN hits 

using ClueGO v2.5.846 and a disease enrichment analysis with DisGeNET47. FUMA48 was 

used to identify tissues enriched using the GWANN genes with P value<1x10-5. Finally, we 

used TargetDB49 to get a picture of the tractability or suitability of the novel GWANN hits for 

intervention by modalities such as small molecules or antibodies. The details and 

parameters of implementation for the different analyses can be found in the Supplementary 

material. 
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Figure captions 

Figure 1. NN architecture used in the GWANN method. The top-left branch generates a 1D 

encoding from the SNPs input (green), while the bottom-left branch does so for the covariate 

input (red). The right trunk merges the encodings of both branches to output whether the 

input belongs to cases (blue output) or controls (red output). 

 

Figure 2. Manhattan plot of the parental meta-analysis. The threshold for genome wide 

significance (P value<6.82x10-7) is indicated by the red dotted line. GWANN identified 21 

known hits, 2 nominated AD targets and 72 novel gene hits. The black dotted line indicates 

the suggestive association threshold (P value<1x10-5). 

 

Figure 3. (a) Venn diagram of 69 maternal, 29 paternal and 95 meta-analysis genes with P 

value<6.82x10-7 in each analysis. (b) Analysis of the intersection of hit genes between the 

methods on the x axis and y axis. The number of genes in the sets and intersections are 

specified within the brackets and the intensity of each block (darker is more significant) 

represents the significance of the size of the intersection set, given the 2 individual sets. 

Blocks in grey suggest an insignificant number of genes in the intersection. The EADB set is 

without the APOE locus, and hence the intersection with the traditional UKBB GWAS (using 

the same data set as used for GWANN) results in a null set. 

 

Figure 4. PPI network of GWANN hits from STRING. Red - old hits/suggestive hits, orange - 

nominated hits, blue - novel hits. The grey solid lines indicate a direct connection between 

two genes and the green dotted lines indicate an indirect connection through a known hit. In 

each of the networks, the node with the highest degree (most interactions) is the bottommost 

node followed by decreasing degree in the anti-clockwise direction. (a) PPI network 
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containing the 46 (inclusive of old, nominated and novel hits) out of the 95 hits that had 

connections with each other. (b) The same network as in (a) after removing all known hits. 

 

Figure 5. (a) GO term over representation analysis for GWANN meta-analysis hits using 

ClueGO v2.5.8. For network visualisation purposes, GO child terms spanning more than two 

were grouped and collapsed into a node (white nodes). V-shaped gene nodes correspond to 

either antisense, 'BDNF-AS' as opposed to BDNF; or flanking sequence regions, between 

'PDCD10' and 'SERPINI1'. GO node size is proportional to the number of genes enriched in 

the group. (b) Pie chart showing the percentage of GWANN hits in each GO term. (c) Dotplot 

of the disease enrichment analysis with DisGeNET, with gene ratio (x-axis, #input genes / 

#genes in disease term); disease terms from a multitude of disease-gene databases (y-axis); 

FDR for each disease enriched term; and number of genes (#genes found in the disease 

term). (d) Tissue specificity plot (up and down regulated) for GTEx v8 54 tissue types using 

GWANN genes with P value<1x10-5 in the paternal meta-analysis. Significantly enriched 

tissues (Pbon<0.05) are highlighted in red.
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Tables 
HGNC 

Symbol 
Chromosome Pm+p Pm Pp 

HGNC 

Symbol 
Chromosome Pm+p Pm Pp 

APOE 19 9.60E-190 1.00E-65 1.80E-158 PTPRN2 7 5.60E-09 1.90E-05 5.10E-05 

TOMM40 19 9.60E-170 1.00E-65 2.40E-127 BCR 22 8.20E-09 1.70E-09 1.50E-01 

APOC1 19 9.40E-153 1.00E-65 2.50E-102 MGAT4C 12 8.20E-09 1.10E-08 5.90E-02 

BCAM 19 7.50E-75 1.00E-64 2.20E-14 PITPNM2 12 7.50E-08 6.10E-10 6.00E-01 

GEMIN7 19 1.60E-21 2.60E-28 4.00E-01 CORO2B 15 1.30E-08 2.50E-07 1.10E-02 

EXOC3L2 19 8.90E-08 3.50E-08 1.50E-01 KIF13A 6 1.60E-08 7.00E-09 1.20E-01 

PPP1R37 19 1.90E-08 6.90E-08 3.70E-02 ASIC2 17 1.60E-08 1.80E-08 7.20E-02 

GLIS3 9 4.10E-20 6.90E-08 8.40E-17 LMAN1 18 1.60E-08 1.10E-07 2.40E-02 

ARSG 17 1.90E-15 1.30E-18 2.10E-01 BAHCC1 17 1.80E-08 2.80E-08 5.90E-02 

C2CD2 21 7.70E-14 4.40E-09 3.30E-06 ELP4 11 1.80E-08 2.60E-05 1.30E-04 

NFIA 1 5.40E-13 1.40E-14 1.20E-01 CNTN5 11 3.80E-07 4.90E-04 1.00E-04 

PIGK 1 6.40E-08 6.90E-08 8.60E-02 DCC 18 2.10E-08 2.90E-06 2.00E-03 

TENM2 5 1.80E-12 6.20E-06 5.00E-09 USP47 11 2.10E-08 4.40E-03 1.20E-08 

EFNA5 5 2.60E-08 1.80E-08 9.70E-02 COL23A1 5 2.40E-08 7.10E-03 3.50E-09 

SMAD9 13 1.90E-12 3.40E-16 5.40E-01 CPNE5 6 2.60E-08 1.80E-08 9.70E-02 

SNRPB2 20 2.50E-12 4.80E-14 1.50E-01 SGCZ 8 2.80E-08 5.90E-07 1.10E-02 

MTUS2 13 8.90E-12 1.70E-09 1.00E-03 PAX5 9 2.80E-08 1.30E-06 5.60E-03 

MAGI2 7 8.90E-12 1.70E-09 1.00E-03 TANC1 2 2.80E-08 1.30E-06 5.60E-03 

MYT1L 2 1.60E-11 1.10E-08 3.20E-04 LYPD6B 2 5.80E-07 2.90E-06 4.20E-02 

PARD3B 2 1.90E-10 2.50E-07 1.90E-04 NRXN3 14 2.80E-08 2.60E-05 2.30E-04 

CNTN4 3 2.70E-11 2.80E-08 2.30E-04 BDNF 11 3.00E-08 6.10E-06 1.40E-03 

IQSEC1 3 4.70E-11 4.40E-09 2.00E-03 ARHGAP24 4 3.10E-08 4.40E-09 2.10E-01 

ATP1B3 3 5.60E-09 2.70E-09 9.70E-02 EXT1 8 3.10E-08 2.00E-06 4.30E-03 

ROBO1 3 2.10E-08 1.80E-08 8.60E-02 SORCS2 4 4.50E-08 7.40E-05 1.00E-04 

FLNB 3 6.50E-08 9.00E-06 2.00E-03 SAMD4A 14 5.20E-08 1.80E-08 1.50E-01 

RBMS3 3 9.30E-08 4.90E-04 1.40E-05 GPR137C 14 4.90E-07 6.90E-08 2.90E-01 

ATP2C1 3 1.20E-07 5.90E-07 3.70E-02 TYW1B 7 5.90E-08 2.90E-06 5.60E-03 

SERPINI1 3 1.70E-07 7.40E-05 5.50E-04 EXOC4 7 6.50E-08 8.80E-07 1.60E-02 

EPHA6 3 1.90E-07 6.20E-06 8.60E-03 IMMP2L 7 1.60E-07 2.00E-04 1.30E-04 

CADM2 3 2.30E-07 1.90E-05 3.60E-03 EPHA1-AS1 7 2.70E-07 2.20E-02 1.20E-08 

CHCHD6 3 3.20E-07 2.00E-03 6.50E-06 ICAM3 19 6.40E-08 6.90E-08 8.60E-02 

STAC 3 4.90E-07 2.60E-05 5.60E-03 DAB1 1 6.50E-08 9.00E-06 2.00E-03 

HPSE2 10 3.00E-11 1.50E-11 5.20E-02 CARD11 7 7.70E-08 1.30E-05 1.70E-03 

APH1B 15 3.80E-11 4.40E-09 1.70E-03 ARHGAP15 2 7.80E-08 2.60E-05 7.60E-04 

MACROD2 20 4.80E-11 5.30E-05 1.20E-08 UBE2E2 3 5.40E-08 4.20E-06 3.60E-03 

PDE1C 7 6.60E-11 6.10E-10 1.10E-02 UBE3A 15 1.30E-07 1.00E-09 6.30E-01 

ARHGEF28 5 6.60E-11 6.90E-08 2.30E-04 C1QTNF9 13 1.30E-07 5.60E-08 1.50E-01 

WWOX 16 1.30E-10 6.90E-08 4.50E-04 NTRK2 9 1.40E-07 2.90E-06 1.30E-02 

TMEM170A 16 1.60E-07 6.90E-08 1.50E-01 BAIAP2L1 7 1.90E-07 1.10E-07 1.40E-01 
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HGNC 

Symbol 
Chromosome Pm+p Pm Pp 

HGNC 

Symbol 
Chromosome Pm+p Pm Pp 

LUZP2 11 1.90E-10 1.30E-06 2.70E-05 PDCL2 4 2.10E-07 2.00E-06 2.40E-02 

FGGY 1 2.60E-10 2.20E-10 5.20E-02 NALCN 13 2.50E-07 7.10E-03 2.40E-07 

ANK3 10 3.60E-10 2.80E-08 2.70E-03 RNF182 6 3.00E-07 4.90E-04 7.60E-05 

CTNNA3 10 1.20E-07 5.30E-05 5.50E-04 CRISPLD1 8 4.10E-07 2.80E-08 3.70E-01 

FSHR 2 6.80E-10 1.40E-02 3.50E-13 PEBP4 8 4.40E-07 3.20E-02 8.30E-09 

NRXN1 2 3.40E-09 4.20E-06 1.90E-04 LRRC4C 11 4.90E-07 1.30E-05 1.10E-02 

LRP1B 2 3.40E-08 1.90E-05 4.50E-04 WDR11-AS1 10 5.80E-07 5.90E-07 1.20E-01 

VIPR2 7 2.80E-09 8.80E-04 1.90E-08 MYH11 16 6.30E-07 2.60E-05 7.30E-03 

LINC00113 21 3.70E-09 7.70E-11 3.30E-01 
     

 

Table 1. GWANN hit genes. Pm+p represents the METAL meta-analysis P value, Pm the 

GWANN maternal analysis P value and Pp the GWANN paternal analysis P value.
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HGNC Symbol Brain eQTL RNA change in brain BRAAK (adj_p) CERAD (adj_p) COGDX (adj_p) 

APOC1 TRUE TRUE 8.85x10-03 3.29x10-02 5.87x10-02 

ARSG TRUE TRUE 7.55x10-01 6.38x10-01 2.24x10-02 

MAGI2 TRUE TRUE 3.91x10-01 5.70x10-01 3.79x10-02 

PDE1C TRUE FALSE 2.35x10-01 6.99x10-03 9.28x10-01 

ATP1B3 TRUE TRUE 3.62x10-01 2.35x10-01 1.09x10-02 

CPNE5 TRUE TRUE 7.24x10-02 2.20x10-01 3.39x10-02 

NRXN3 TRUE TRUE 6.92x10-01 7.34x10-01 2.32x10-02 

SAMD4A TRUE TRUE 2.61x10-05 3.11x10-04 2.60x10-05 

PITPNM2 TRUE FALSE 1.69x10-02 7.54x10-02 1.60x10-01 

RNF182 TRUE FALSE 4.58x10-02 1.32x10-03 1.85x10-01 

LYPD6B TRUE TRUE 6.58x10-01 4.41x10-02 8.45x10-01 

 

Table 2. Genes that had significant association with at least one of BRAAK, CERAD or 

COGDX in data obtained from the Agora AD knowledge portal 

(https://agora.adknowledgeportal.org/). 
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a 
AD Other brain disorders Only AD AD and other brain 

disorders 

Cerebellum 1.37x10-3* 1.04x10-3* 5.49x10-3* 4.13x10-3* 

Parietal lobe 8.77x10-7* 7.31x10-11* 5.82x10-4* 4.67x10-6* 

Frontal lobe 6.38x10-3* 6.46x10-5* 1.10x10-2* 2.01x10-2 

Temporal lobe 5.82x10-2 4.06x10-1 5.82x10-2 - 

     

b 
AD vs control Asymptomatic AD vs AD Asymptomatic AD vs 

Controls  

Cerebellum 6.11x10-1 8.26x10-1 1.46x10-1  

Entorhinal cortex 3.11x10-5* 9.39x10-5* 5.53x10-1  

Frontal cortex 4.34x10-2 
3.89x10-2 1.55x10-1  

Temporal cortex 1.49x10-3* 2.24x10-2 5.93x10-2  

 

Table 3. (a) Enrichment P values of DEGs in four different brain regions for AD and other 

mental disorders analysed by Patel et al. [CITE] (b) Enrichment P values of DEGs in four 

different brain regions for the analysis between AD, asymptomatic AD and controls by Patel 

et al. [CITE] 

* P value<1.25x10-2 
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Disease FDR GWANN hit count Disease FDR GWANN hit count 

Alzheimer's Disease 2.42x10-05 38 Adolescent Idiopathic Scoliosis 1.05x10-07 19 

Schizophrenia 1.38x10-06 37 Bipolar Disorder 3.54x10-04 19 

Mathematical Ability 6.82x10-14 29 Systolic Pressure 2.01x10-05 18 

Obesity 2.36x10-03 29 Autism Spectrum Disorders 3.54x10-04 18 

Body Mass Index 2.55x10-11 28 Major Depressive Disorder 4.49x10-03 17 

Leukaemia, Myelocytic, Acute 3.70x10-02 27 Impaired Cognition 4.81x10-02 17 

Intellectual Disability 7.02x10-04 26 Abnormal Behaviour 6.18x10-03 14 

Autistic Disorder 6.67x10-07 23 Familial (FPAH) 2.26x10-02 14 

Seizures 8.28x10-03 23 Blood Protein Measurement 3.78x10-02 14 

Intelligence 1.58x10-09 21 

Attention Deficit Hyperactivity 

Disorder 9.41x10-03 13 

Neurodevelopmental Disorders 5.72x10-10 20 Anxiety 4.30x10-02 13 

Global Developmental Delay 1.56x10-02 20 Developmental Delay (Disorder) 1.74x10-03 12 

Body Height 2.26x10-02 20 Alzheimer Disease, Late Onset 3.28x10-04 11 

Smoking 2.94x10-11 19 Mental Disorders 4.24x10-02 11 

Scoliosis, Isolated, Susceptibility To, 3 1.43x10-08 19 Dementia 4.93x10-02 11 

 

Table 4. Disease enrichment. Disease gene sets from DisGeNET that were significantly 

enriched after applying FDR correction. Column “GWANN hit count” indicates the number of 

genes that were part of the disease gene set among the 95 significant genes from GWANN. 
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HGNC symbol Drug Name Type Associated disease 

BCR Bosutinib Small molecule Cancer 

Dasatinib Small molecule Cancer 

Imatinib Small molecule Cancer 

Imatinib mesylate Small molecule Cancer 

Nilotinib Small molecule Cancer 

Nilotinib hydrochloride monohydrate Small molecule Cancer 

Ponatinib Small molecule Cancer 

Ponatinib hydrochloride Small molecule Cancer 

Radotinib Small molecule Cancer 

EPHA6 Vandetanib Small molecule Cancer 

FSHR Corifollitropin alfa Protein Infertility 

Obesity 

Hypogonadotropic hypogonadism 

Follitropin alfa Protein Infertility 

Polycystic ovary syndrome 

Menotropins Protein Infertility 

Hypogonadotropic hypogonadism 

Polycystic ovary syndrome 

Kallmann syndrome 

Urofollitropin Unknown Infertility 

NTRK2 Altiratinib Small molecule Cancer 

AZD-6918 Small molecule Cancer 

AZD-7451 Small molecule Glioblastoma multiforme 

Cenegermin Protein Cancer 

Entrectinib Small molecule Cancer 

Neoplasm 

Larotrectinib Small molecule Cancer 

Neoplasm 

Larotrectinib sulfate Small molecule Leukaemia 

Lestaurtinib Small molecule Giant cell tumour 

PLX-7486 Small molecule Neoplasm 

Selitrectinib Small molecule Keratitis, eye disease 

PDE1C Dipyridamole Small molecule Stroke 

Heart disease 

Bipolar disorder 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 14, 2022. ; https://doi.org/10.1101/2022.06.10.22276251doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.10.22276251
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 
 

HGNC symbol Drug Name Type Associated disease 

Diabetes mellitus 

COVID-19 

Pentoxifylline Small molecule Diabetes mellitus 

Brain disease 

Hepatic disease 

 

Table 5. Novel GWANN hits with known associated drugs and the main category of 

diseases they are used for.  
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