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Abstract

Objectives: Recent studies show that Test Positivity Rate (TPR)
gain a better correlation than incidence with the number of hospitalized
patients in COVID-19 pandemic. Nevertheless, epidemiologist remain
sceptical concerning the widespread use of this metric for surveillance,
and indicators based on known cases like incidence are still preferred de-
spite the large number of asymptomatic carriers which remain unknown.
Our aim is to compare TPR and incidence, to determine which of the two
has the best characteristics to predict the trend of hospitalized patients
in COVID-19 pandemic.

Methods: We perform a retrospective study considering 60 cases, us-
ing global and local data from Italy in different waves of the pandemic,
in order to detect peaks in TPR time series, and peaks in incidence, find-
ing which of the two has the best ability to anticipate peaks in patients
admitted in hospitals.

Results: On average the best TPR based approach anticipates in-
cidence of about 4.6 days (95% CI 2.8, 6.4), more precisely the average
distance between TPR peaks and hospitalized peaks is 17.6 days (95%
CI 15.0, 20.4) with respect to 13.0 days (95% CI 10.4, 15.8) obtained for
incidence. Moreover, the average difference between TPR and incidence
increases to more than 6 days in the Delta outbreak during Summer 2021,
where presumably the percentage of asymptomatic carriers was larger.

Conclusions: We conclude that TPR should be used as primary in-
dicator to enable early intervention and for planning hospitals admissions
in infectious diseases with asymptomatic carriers.

Keywords: infectious diseases, test positivity rate, asymptomatic carriers,
incidence, COVID-19, infectious diseases surveillance.
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1 Introduction

Test positivity rate (TPR), e.g, the percentage of positive tests over total tests,
is one of the metrics used for public health surveillance in infectious diseases.
Typical applications include estimating the prevalence of diseases in the pop-
ulation, see [1] for malaria disease and [2] for COVID-19, or establish levels of
community transmission from sentinel sites in the COVID-19 pandemic [3]. Over
the past two years, thanks to the large amount of data collected in the COVID-
19 pandemic, new application domains where explored to guide epidemiologic
policy-making [4, 5, 6] assessing epidemic dispersal mediated by asymptomatic
carriers. Recent studies have highlighted a correlation with the number of pa-
tients admitted in hospitals [7, 8], which increases with respect to other indi-
cators like incidence [9] or the daily number of positive cases [10]. This kind
of correlation, was exploited to forecast two weeks in advance variations on the
number of patients admitted in hospitals on the basis of TPR variations [11],
or to define a severity detection rate, to predict ICU admissions [12].

Despite these promising results, the large percentage of asymptomatic carri-
ers in COVID-19 [13, 14], and the risk of hampering control efforts [15], epidemi-
ologist remain sceptics concerning the widespread use of TPR for surveillance,
and other indicators based on known cases like incidence (7-day incidence rate
per 100,000) are in general preferred. One of the motivations of this choice is
that the calculation of TPR is more critical and there is still little agreement
on the method to be used.

A general issue is that tests are not usually classified in the statistics, despite
they belong to different categories, and only the total number of administered
tests is reported daily. Indeed, conducted tests include both diagnostic tests
administered with the goal of discovering new cases; and control tests, addressed
to infected individuals, to monitor the course of the disease or to check the
healing. While the positive percentage of the former can be used for surveillance
modelling the progress of the pandemic, the positive control tests should be
used for different purposes, for example to evaluate the length of quarantine
[16]. Due to this lack of information, test positivity is usually computed as the
ratio between new positive cases and the total number of tests done [17], being
only an approximation of the actual positivity rate.

Another open issue is whether or not antigen tests should be part of the
calculation. For example, CDC (US Centers for Disease Control and preven-
tion) computes test positivity as the percentage of all SARS-CoV-2 Nucleic
Acid Amplification Tests (NAAT) conducted that are positive, while they rec-
ommend to collect antigen tests as separate data[l7]. On the contrary, several
available statistics use both of them as denominator, such as those presented in
the Coronavirus Testing web site [18]. Moreover, when antigen tests are used in
the TPR calculation an additional problem arises, health care guidelines may
recommend that positive antigen tests should be confirmed by NAAT tests be-
cause the latest have a better accuracy. These repeated diagnostic tests done
for the same positive individuals should also be removed by the denominator
[8].


https://doi.org/10.1101/2022.06.10.22276234
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2022.06.10.22276234; this version posted June 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

Furthermore, there are several problems related to data collection in different
regions or countries. For example, in most of the Italian regions the number of
test reported on Monday is lower than the those reported in other days of the
weak and includes a lower ratio of antigen tests. From this it follows that, the
computed TPR is in general higher on Monday with respect to the other days
of the week. In other words in Italy there is a form of weekly seasonality in
TPR time series, and similar problems also arise in other countries.

Finally, a negative correlation between TPR and the number of administered
tests was evidenced in some studies [19, 4, 12]. Basically, when the number of
conducted tests increases, test positivity tends to decrease, and thus some varia-
tions of TPR may be linked to an increased volume of testing. This phenomenon
is more evident when the number of administered tests per million inhabitants
is low, and tends to mitigate when a large number of tests are conducted. For
example in fall 2021 when green pass for workers became mandatory in Italy,
and the number of performed tests almost doubled in a few days, a significant
variation was not observed in the TPR time series. To deal with this issue an
adjusted TPR calculation method was proposed in [19] to be used in countries
where capacity of testing is limited.

Our first goal is to clarify TPR calculation issues to identify which method
behaves better for surveillance purposes. Namely, which method has the best
performance in predicting the trend of hospitalized patients. Then, our aim
is to compare TPR and incidence to determine which of the two has the best
characteristics for the same purpose. The metrics that we use for this compar-
ison is based on the intuition that an optimal indicator for planning hospitals
admissions should be able to track the progress of infections. More precisely,
the number of infections that occur day by day in a pandemic: if the number of
infections increases an optimal indicator should also increase, while vice-versa,
if the number of infections decreases, an optimal indicator should decrease.
This aspect cannot be modelled by Rt (the reproduction number) only, because
prevalence levels should be considered to estimate the volume of infections. In-
deed Rt only represents the number of secondary infections generated from a
case day by day, and not the total number of infections.

The peaks of an indicator that models the trend of infections should precede
the peaks in hospitalized patients time series. Indeed hospital admission always
occurs several day after infection, including incubation period, symptom onset
and patient testing, about 15 days for COVID-19 [11], possibly more. The same
consideration holds for admission in intensive care units. Thus, we consider
the distance in days from the peaks of hospitalized time series as a metric to
measure the predictive capacity of the analysed indicators.

In this paper, we compare incidence with different TPR calculation methods:
standard rolling averages, the methods defined in [8, 11], the adjusted TPR
proposed in [19], and a new proposal based on a two level approach. We consider
60 different cases using global and local data from Italy in four waves of the
pandemic, starting from the second wave where data on antigen tests were
made available for some region (Fall 2020), and the successive Alpha, Delta and
Omicron waves.
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In summary, we aim to answer some key questions concerning COVID-19
and infectious diseases in general: is incidence the most appropriate indicator
to track infections when many asymptomatic carriers are present? would TPR
have similar or better performance in the same context? which TPR calculation
method should be used? should antigen tests be used in the TPR calculation?

2 Methods

Unfortunately, since tests are not classified in Italian official data (only NAAT
and antigen tests are distinguished [25]), in this study we have to approximate
the TPR as the ratio between new positive cases and the total number of tests
done, this solution is a common approach used in many countries [18], also
recommended in [17].

Starting from this basic calculation method, we compare 7 different versions
of TPR, two of them are based on NAAT nasopharyngeal swab only, and the
other exploit antigen tests. The first 6 versions are obtained computing the
rolling average of the last 7 days, a common practice to address anomalies in
data collection [18], of the following ratios:

N1: New Positive cases / NAAT tests only.

N2: New positive cases detected with NAAT tests only / NAAT Tests only.
Al: New Positive cases / NAAT + Antigen tests.

A2: New Positive cases / NAAT + Antigen tests - Estimated Repeated Tests.
A3: New Positive cases /| NAAT + Antigen tests - Number of healed patients.

A4: New Positive cases / NAAT + Antigen tests * (growth rate of cases /
growth rate of tests).

Version Al is the usual 7 days rolling average based on all the tests done,
while versions A2 and A3 are attempts to improve its accuracy removing from
the denominator tests that are not devoted to the diagnosis of new cases, as
follows:

A2 Tt removes an estimation of repeated diagnostic tests (NAAT tests con-
ducted to confirm positive Antigen tests) computed using the approach
presented in [11].

A3 Tt removes the number of healed people, assuming that at least one test
was administered to each of them [11]. This data is usually reported daily
in most of the countries.

Version A4 is the adjusted TPR presented in [19] which deals with the neg-
ative correlation between TPR and the number of administered tests. See Ap-
pendix A for a detailed description of the above TPR calculation methods.
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In addition, we also evaluate a new version of TPR, (A5) based on a two level
approach which aims to model with better accuracy the progress of infections,
generating more stable time series.

2.1 A two level TPR calculation method

A criticism to methods based on standard 7 days rolling average, which com-
pute the TPR of a given day as the average of the preceding 7 days, is that they
mainly deal with data collection issues, without considering modelling and epi-
demiological issues. Indeed, from a knowledge modelling perspective estimating
TPR of a given day as the average of preceding and following days, will be more
appropriate and correct. Moreover, 7 days are necessary to deal with week sea-
sonality issues, but significant variations in the progress of infections could be
captured with better accuracy looking at less than 7 days. For example, the
length in days of the incubation period, which represents the minimal number
of days after which changes can be observed.

To get through these issues, we have devised a two level approach for cal-
culating the TPR: the first level addresses modelling issues, and in the second
epidemiological issues. Let t1,ts,... t, be the daily TPR time series, the TPR
at time ¢, when ¢ > 3 and ¢« < n — 3 can be modelled computing the trend as
follows:

7= licg+ -+ tiys (1)
7

Namely, the TPR in a given day is modelled computing the average value of
the days preceding and following it. This formula cannot be computed for the
last three days, but it can be approximated computing averages on the available
days only, as follows: £,,_o = M, tho1 = @, t M
where t,, be the daily TPR of the last day.

However, this simple approach, which assumes that the average TPR value
will not have significant changes in the remaining days, does not work well due
to the seasonality of the daily TPR time series. Figure 1 (a) illustrates this
problem considering the Emilia Romagna region: the highest values of daily
TPR occur on Monday while on Tuesday the daily TPR is well below average.
Thus, if the last day is Monday, the TPR will be overestimated, and if it is
Tuesday probably underestimated.

To solve this problem we compute the difference between the TPR trend
(computed with formula 1) and daily TPR for each day in the last k weeks. Let
(s1,52,53,84,5,56,57), be the list of average values of these differences for each
day in the week (where s7 is the mean difference associated to the last element of
the trend time series t,,_3), the TPR of the last 3 days is obtained adding to the
previous formulas the weighted differences of the days that are missing (e.g. not
used for computing the formula 1, see Figure 1 (b)): ¢,—2 = @ + 54/6,
fn_1:@+54/5+55/5, %n:@+54/4+55/4+86/4 The
experiments we did show that this approach avoids the effects of seasonality
estimating TPR in the last 3 days. More precisely, analysing time series history

n — Y
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Figure 1: (a) Daily TPR index seasonality in Emilia Romagna region Jan-
uary/February 2022; (b) Computing the TPR trend of the last 3 days adding
seasonal corrections: %,_, example.
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(more than 16000 cases), setting k=4 weeks: ¢,_o improves the naive approach
on average of 0.0004, t,_; of 0.0022, and t,, of 0.0032. Increasing or reducing
k worsens these results. It should be noted that this issue does not have an
influence on the peaks of the TPR time series, thus it does not interfere with
the metric used in the study.

Starting from the trend time series computed as above, we introduced a
second level to compute the final TPR value considering epidemiological issues.
The TPR value is obtained as the average of the last p days of the trend time
series, where p is the incubation period.

tp +tn 1. tn_

Tas = ( 1 lt) (2)
1

Where g = 5 initially [21], and g = 3 in the Omicron outbreak [22, 23].

We will show how this approach effectively improves the predictive properties

and the regularity of the TPR time series.

2.2 Data Collection

The data used for this study were made available by the Italian Department of
Civil Protection [25] for all the Italian regions, for all the course of the pandemic.
This site contains all the relevant time series needed for our analysis, in details:
new positive cases; NAAT tests; antigen tests; recovered, patients admitted in
hospital and in ICU. However, the structure of the dataset was changing over-
time, and data fundamental for our analysis were not always available and/or
reliable, therefore for each wave of the pandemic some of the regions were dis-
carded due to lack of data or known reliability issues.

The first wave of the pandemic starting from February 2020 was not con-
sidered in the study because antigen tests were not used in Italy. In the second
wave (from the 1st of October 2020 to the 10th of January 2021) the data on
antigen tests were not available in the official site, however they have been made
available for 5 regions: Toscana, Piemonte, Friuli Venezia Giulia, Veneto and
the Provincia Autonoma of Bolzano [8]. Since, some of the data collected for
Veneto, Friuli and Bolzano are uncertain (see [8] for data collection details),
only Toscana and Piemonte were considered in this study, and all the other
regions were excluded from the analysis.

From the 15th of January 2021 onwards, data on antigen tests have been
made available for all the regions of Italy. In spite of this, in the successive Alpha
wave (from the 10th February 2021 to the 1st of May 2021) which started right
after (February 2021), some regions were still excluded because hospitalized
patients had started to grow before the beginning of the observed period, where
the data on tests were still unreliable. The excluded regions are: Abruzzo,
Umbria, Molise, and Basilicata.

As regard the Delta wave (from the 1st of July 2021 to the 10th of October
2021), all the regions of Italy were considered except Lazio, where data on tests
were damned due to a hacker attack.
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Successively, in the last Omicron outbreak (from the 24th of December 2021
to the 18th of February 2022): Sardegna was excluded since the TPR peak
was at the end of the observed period (the 16th of February); Valle d’Aosta
was excluded due to an error in the reported data concerning positive cases
detected with NAAT test only; Provincia of Bolzano was excluded because a
large amount of antigen tests were not reported in this period.

Finally, global data of Italy in the last 3 waves were also considered as further
case studies, obtaining a total of 60 different cases: 2 regions in the second wave,
17 regions and the whole Italy in the third wave, 20 regions and the whole Italy
in the Delta wave, and 18 regions and Italy in the Omicron wave.

Although all the data come from a single country, Italy, we believe that
the collected sample is sufficiently general and heterogeneous in order to draw
valid conclusions. Indeed, Italian, regions ranges from little territories with
less then 500 thousand inhabitants to larger regions having over 10 million
inhabitants. Moreover, Italian regions have their own health departments and
different organizations, and, as a consequence, heterogeneous data collection
policies for the administration of diagnostic tests.

2.3 Data Analysis

For all the analysed cases, we compute the number of days that occur between
peaks of the above indicators and peaks of hospitalized people considering both
patients admitted in non critical areas and in intensive care units. We analyse
the generated samples computing average values and standard deviation, also
considering differences between indicators, and the effects due to outliers. We
use the Shapiro-Wilk test to check normality [29], and, when the test fails, we use
a simple non-parametric Bootstrap method [20] with Monte-Carlo simulation
performing 5000 iterations, to compute confidence intervals for the obtained
averages values.

Moreover, we use sample entropy [27] as a measure of the regularity of these
indicators [28]. This is a measure of the probability that two segments of the
analysed time series within a given period minimize discontinuities. Smaller val-
ues of sample entropy indicates a greater probability that a set of TPR values
will be followed by similar values, while a larger value indicates major irregu-
larities. We assume 2 as embedded dimension and the Chebyshev distance as a
metric.

3 Results and Discussion

The results we obtained considering all the selected 60 cases are summarised
in Table 1. An initial analysis of these results allows us to draw preliminary
conclusions about the different versions of TPR, specifically: N2, which uses
positives cases determined with NAAT tests only as a numerator, outperforms
N1 which uses all the new positives; Al, e.g. the standard 7 days rolling aver-
age including both NAAT and antigen tests, outperforms versions A2, A3 and
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Table 1: This table summarises the average distances between peaks of the stud-
ied indicators with respect to patients admitted in non-critical areas and ICUs,
considering all the 60 cases. We present average values, standard deviation and
sample entropy for each indicator.

Indicator Hospitalized Sample ICU
Awvg Dist. Std Dev. | Entropy | Avg Dist. Std Dew.

Incidence | 13.067 10.734 0.305 10.417 13.631
TPR N1 | 11.7 12.17 0.34 9.05 14.835
TPR N2 13.833 11.649 0.421 11.183 12.614
TPR A1 | 16.083 11.279 0.324 13.433 15.692
TPR A2 | 16.033 11.309 0.327 13.383 15.662
TPR A3 | 13.65 11.828 0.349 11.0 16.813
TPR A4 | 16.033 11.237 0.334 13.383 15.192
TPR A5 17.633 10.66 0.225 14.983 14.871

the adjusted TPR A4. Basically, all the attempt to improve TPR accuracy
removing tests from the denominator, or considering changes in the number of
administered tests seem to fail. For example, removing tests used to check the
healing, apparently provides a better approximation during the growth phase
of the curve, but it tends to create artificial peaks, before the phase of descent,
when the number of recovered patients is high.
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Figure 2: The best TPR (A5) computed for Italy compared with naive 7 days
rolling average (A1) in the Omicron phase.

Last but not least, the new version of TPR (A5) outperforms all the other
indicators including incidence and has a better regularity, considering both stan-
dard deviation and sample entropy. Thanks to these properties, a decrease ob-
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served after a growth phase has more chance of identifying a peak, rather than
an anomalous effect. Figure 2 presents a comparison between A5 and the naive
7 days rolling average (A1) illustrating the benefits of having a better sample
entropy.

These considerations for TPR versions N1, A1, and A5 hold in all the anal-
ysed waves, thus we focus the subsequent discussion on these indicators only
comparing them with incidence. Similar results hold for both patients admitted
in non critical areas and in intensive care units. However, considering ICUs it
is clear that the results do not allow to reach meaningful conclusions, because
standard deviation is quite high, thus a more deep analysis is needed for ICUs.

If we consider patients admitted in non critical areas instead, it appears
that TPR (A5) has a better predictive capacity than incidence when asymp-
tomatic carriers are present, providing a preliminary answer to one of the key
questions we asked at the beginning of the paper. Indeed, the average distance
between TPR peaks and hospitalized peaks is 17.6 days with respect to 13.0
days only, obtained for incidence. In practice the best TPR based approach
anticipates incidence of about 4.6 days. These preliminary observations are
certainly strengthened by the fact that we obtained similar results computing
average values of TPR and incidence in all the considered waves, that is, TPR
outperforms incidence in all the analysed waves, and the results have similar
proportions. However, more considerations are needed to draw definitive con-
clusions and compute confidence intervals.

Let Arpgr and A be respectively the sets of distances between TPR (version
Ab) and incidence peaks with respect to peaks of hospitalized time series, and
Arpr_1 be the set of differences between Arpgr and Aj case by case. Figure
3 (a,b,c) shows how the elements of these sets are distributed. Although their
distributions are not far from Gaussian, the Shapiro-Wilk test of normality [29]
returns p-values less than .05, with sufficient evidence that data do not come
from normal distributions. More precisely: Arpg stat: 0.958, pvalue: 0.041;
Aj stat: 0.942) pvalue: 0.007; Appgr_s stat: 0.928, pvalue: 0.001). However,
the analysis of single cases has shown that extreme cases are always outlier, thus
the considered sets do not belong from heavy-tailed distributions. In light of
these concerns, we use a non-parametric Bootstrap method with Monte-Carlo
simulation to estimate confidence interval of averages of the analysed distribu-
tion (Figures 3 (d,e,f). The experiments we did show that 5000 iterations are
enough to converge generating stable values, the resulting confidence intervals
are: ATPR: 95% CI 150, 204, A[ﬁ 95% CI 104, 158, ATPR—I: 95% CI 28,
6.4.

Given that confidence intervals estimated for TPR and incidence overlap,
we analyse all single cases where incidence anticipates TPR. As Figure 3 (c)
shows, incidence anticipates TPR, of more than 2 days in 5 out of 60 cases only.
Nonetheless, in all these cases which include: Lazio (18 days), Campania (4)
and Sardegna (5) in the 3rd wave, Lombardia (8) in the Delta wave, and Puglia
(6) in the Omicron wave, the trends of TPR and incidence remain similar, both
of them reach the top of a plateau about at the same time, and the delay of
TPR peaks are caused by small variations in the plateau.

10
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Figure 3: The figure shows how the values in the sets Arpgr, awg: 17.6, sd:
10.7 (a), Ay, awg: 13.1, sd: 10.7 (b), and Arpr_j, awg: 4.6, sd: 7.1 (c¢), are
distributed, and the results obtained boostrapping them with 5000 iterations
(d,e,f).
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Analysing instead the relationship of TPR and incidence with hospitalized
patients, TPR peaks follows peaks of hospitalized patients in one case only
(Friuli in the Delta wave), while this happens three times for incidence (Friuli,
Valle d’Aosta, and Marche in the Delta wave).

In summary, although there are a few cases where incidence anticipates TPR,
their average 95% confidence intervals are almost disjoint, and it never happens
in practice that incidence really outperforms TPR, with a possible negative im-
pact on surveillance. This means that techniques that exploit TPR. for estimat-
ing two weeks in advance variations in hospital admissions, like those presented
in [11], will work anyway for the detected outliers. We can therefore conclude
that for surveillance purposes TPR outperforms incidence in COVID-19. The
insight of this research is that metrics based on known cases are not able to
model with sufficient accuracy the progress of infections in infectious diseases
with asymptomatic carriers, while TPR also accounting for unknown cases, and
thus modelling under-ascertainment [26] does it.

Concerning intensive care units an in-depth analysis of the obtained results
shows that they were negatively influenced by low values found for the Omicron
variant (19 cases), as presented in Table 2 (a). Indeed, if we exclude the Omicron
wave, and we compute the average distances between peaks for the remaining 41
cases, the results get closer to those obtained for patients in non-critical areas
(see Table 2 (b)). Indeed, the best version of the TPR anticipates incidence of
about 4.2 days, in details the average distance between TPR and ICU peaks is
about 18.3 days and 14 days only for incidence. On the contrary, for hospitalized
in non-critical areas in the Omicron outbreak average values are conform to those
obtained in the other waves. Anyway, the values of standard deviation for ICUs
remains high.

A plausible explanation of the low predictive values obtained in the Omicron
outbreak for both TPR and incidence with respect to ICU, is that this effect
is due to the concatenation of Delta and Omicron variants. A reasonable hy-
pothesis is that the observed peaks for ICU, which occurred in the first half of
January, mostly depend from Delta peaks presumably occurring at the end of
December 2021. Subsequently, when Omicron has become dominant, there was
a significant reduction of critical cases confirmed by an evident decrease of the
ratio between critical cases admitted in ICU and patients in non-critical areas,
which globally in Italy dropped by half from the end of December (about 13%)
to the first half of January (about 6%).

Another aspect which may give further guidance on the relationship of the
studied indicators with asymptomatic carriers, is whether significant changes
can be observed in different seasons of the year, for example during the summer
when the number of asymptomatic carriers is presumably higher. Table 2 (c)
presents the results of the analysis for the Delta outbreak at the beginning
of July 2021. If we compare this results with those obtained in cold seasons
presented in Table 2 (d), we can observe that the average time lags between
TPR (A5) peaks and hospitalized time series increases from 15.7 to 21.1 days.
This effect depends on at least two factors: 1) the course of the diseases which is
presumably longer during the summer, 2) the percentage of asymptomatic which
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Table 2: TPR and Incidence average peaks distances with respect to patients
admitted in non critical areas and ICUs considering different waves and seasons.
For each indicator we present average values, standard deviation and sample

entropy.

(a) Omicron wave (19 cases)
Indicator Hospitalized Sample ICU

Avg Dist.  Std Dev. | Entropy | Avg Dist.  Std Dev.
Incidence | 12.895 8.687 0.332 2.579 13.019
TPR N2 15.263 12.9 0.524 4.947 15.582
TPR Al 15.474 10.475 0.237 5.158 14.612
TPR A5 18.158 10.137 0.2 7.842 14.091
(b) All the cases excluding Omicron wave (41 cases)
Indicator Hospitalized Sample ICU

Awvg Dist. Std Dev. | Entropy | Avg Dist. Std Dewv.
Incidence | 13.146 11.56 0.292 14.049 12.317
TPR N2 | 13.171 10.959 0.373 14.073 9.694
TPR Al 16.366 11.622 0.365 17.268 14.662
TPR A5 17.39 10.885 0.236 18.293 14.037
(c) Delta wave, summer 2021 (21 cases)
Indicator Hospitalized Sample ICU

Avg Dist.  Std Dev. | Entropy | Avg Dist.  Std Dev.
Incidence | 14.762 14.573 0.32 16.952 15.37
TPR N2 14.19 13.971 0.372 16.381 11.902
TPR Al | 20.048 13.899 0.359 | 22.238 17.765
TPR A5 21.143 12.631 0.252 23.333 16.915

(d) Cold seasons: non-critical areas (39 cases);
ICUs excluding the Omicron outbreak (20 cases).

Indicator Hospitalized Sample ICU

Avg Dist.  Std Dev. | Entropy | Avg Dist.  Std Dev.
Incidence | 12.154 7.781 0.296 11.0 6.693
TPR N2 | 13.641 10.177 0.447 11.65 5.695
TPR A1 | 13.949 8.869 0.306 12.05 7.493
TPR A5 | 15.744 8.871 0.21 13.0 6.986
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increases with hot weather. The first factor is supported by the fact that all the
indicators increase, the second factor most likely depends on loss of accuracy
of incidence in modelling the progress of infection due to a large proportion
of asymptomatic carriers. It is worth noticing that during the winter (Table
2 (d) excluding the omicron outbreak) the results obtained for ICUs are more
conform to those obtained in other studies like [11, 12], and standard deviation
has acceptable values.

4 Conclusions

The results we have discussed, allows us to answer with sufficiently convincing
arguments the questions asked at the beginning of this study. First, there is an
evidence that incidence is not the best indicator for surveillance in infectious
diseases when a considerable percentage of asymptomatic carriers is present, as
for the COVID-19 pandemic, test positivity should be used instead. This result
holds for patients admitted in non critical areas, while more investigations are
needed for ICUs. Second, further support is given to the hypothesis that antigen
tests should be used in TPR calculation. The performance of the best PCR
based TPR calculation method are similar to those of incidence: the average
is slightly higher, but standard deviation gets worse. In other words TPR
outperforms incidence only if antigen tests are considered in the calculation.
Key practical implications of this research are that: data collection procedures
should be improved to make TPR calculation as accurate as possible; TPR
based approaches to compute epidemiological parameters, like Rt, should be
investigated more deeply.

Data availability

The data used in this study were provided by the Italian Civil Protection De-
partment, and are available here: https://github.com/pcm-dpc. We also pro-
vide upon reasonable request the used dataset ()a csv file) and the computed
time series using a google graph html format, which can be visualized using a
simple Web browser.
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A TPR calculation methods

Let dayP and dayN be respectively the new positive cases and cases detected
with NAAT tests only for each day; let dayT and dayA be respectively the
number of NAAT tests and the number of Antigen tests done for each day; let
dayR and Pr be respectively the number of healed patients and an estimation
of repeated tests, and let the notation day Xy indicate N days average of dayX,
we can define the above TPR versions as follows:

S dayPr 100 (3)
N dayT7
S dayN7 % 100 (4)
N2 dayT7
S dayP7 x 100 (5)
AL dayT + day A,
S dayP; x 100 (6)
A2 dayT + dayA, — Pry
dayP; * 100
Tas W (7)

a dayT + dayA; — day R~

We brefly recall the method presented in [11] to estimate the average num-
ber of repeated tests Pr. Let % = P4 be the antigen positivity rate, and

% = PT the NAAT positivity rate, given that in general PT = ¢ x P4
where 1) > 1 holds, (namely the positivity rate for antigen tests is lower, see for
example the results presented here [24]), if we set ¢ = 2 which is a reasonable

approximation observing the data that are available for Italy, we obtain:

dayA, * day Py, * 2 (8)
P= 7
dayTr + day A, + 2

Finally, the adjusted TPR [19] is defined multiplying observed TPR, version
Al, with a factor which express the growth rates of cases and tests as follows:

(Cy = C—1)/Cia
(Ty —Ty—1)/Ti1 (9)

where C; and T; are the cumulative number of cases and tests at time ¢
respectively.

TA4 = TA1 *
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