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Abstract 

Motivation: Recent efforts have focused on developing methylation risk scores 

(MRS), a weighted sum of the individual’s DNAm values of pre-selected CpG sites. 

Current MRS approaches only include genome-wide significant CpG sites and do not 

consider co-methylation. New methods that relax the p-value threshold to include 

more CpG sites and account for the inter-correlation of DNAm might improve the 

predictive performance of MRS. 

Results: We paired informed co-methylation pruning with P-value thresholding to 

generate P+T MRS and evaluated its performance among multi-ancestry 

populations. Through simulation studies and real data analyses, we demonstrated 

that P+T MRS provides a substantial improvement over current thresholding 

methods for prediction of phenotypes. We demonstrated that European-derived 

summary statistics can be used to develop P+T MRS among other population such 

as African population. However, the prediction accuracy of P+T MRS may differ 

across multi-ancestry population due to environmental/cultural/social differences.  

Availability and implementation: https://github.com/jche453/Pruning-Thresholding-

MRS
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Introduction 

DNA methylation (DNAm), one of the most studied epigenetic mechanisms, 

regulates the mode of expression of DNA segments independent of alterations of 

their sequence by adding a methyl group at cytosine residues, hence contributing to 

variation in cellular phenotypes1. With current advances in and reduction of cost of 

array-based profiling technologies, increasing numbers of large-scale epigenome-

wide association studies (EWAS) have been conducted to study DNAm in 

association with complex human diseases as well as environmental and social 

factors2,3. EWAS has thus far been successful in identifying dozens of cytosine 

guanine dinucleotides (CpGs) associated with various diseases and exposures, 

which could potentially be used for disease diagnosis and prediction, development of 

drug targets, and monitoring of drug response3-8. However, differential DNAm in 

individual CpGs often shows a weak prediction capacity and can only explain a small 

fraction of phenotype variance. Polyepigenetic approaches that aggregate 

information on differential DNAm from multiple CpGs might produce a more accurate 

biomarker for clinical usage9,10. 

 

The most popular polygenic approach for genotype data are polygenic risk scores 

(PRS), which are weighted sum of risk alleles of a pre-selected number of genetic 

variants11. Recently, many efforts have focused on transferring PRS approaches to 

DNA methylation data to construct methylation risk scores (MRS), which are defined 

as weighted sums of the individuals’ DNAm values of a pre-selected number of 
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CpGs10. However, there are many methodological challenges in constructing DNA 

methylation risk scores10,12,13. One of the problems is that DNAm is influenced by 

ancestry, which is usually captured as self-reported race or ethnicity, and captures 

genetic ancestry (differences in the genome related to ancestry) as well as social 

determinants of health such as racism and discrimination, socioeconomic status, and 

environmental effects14. Thus, ideally, when external weights are used for the 

calculation of MRS, these weights should be assessed in a population with the same 

ancestry as the study samples. However, current epigenetic literature remains 

limited by the lack of diversity, with most focusing on European populations15, 

therefore making it difficult to identify appropriate weights for MRS for other 

populations. While it is well known that PRSs are not applicable across different 

ancestries16,17, little is known about the performance of MRS across multi-ancestry 

populations.   

 

Further, most of the current MRS approaches include subsets of individual CpGs, 

usually consisting of those that reached genome-wide significance in previously 

published epigenome-wide association studies (EWAS)10. Research in PRS showed 

that the optimal p-value threshold strongly depends on the data18, and including a 

larger proportion of variants could potentially capture more of the phenotype 

variation19. Moreover, as accounting for high linkage disequilibrium (LD) of single 

nucleotide polymorphisms (SNPs) improves the prediction performance of PRS20, we 

hypothesize that accounting for DNA co-methylation, defined as proximal CpGs with 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 14, 2022. ; https://doi.org/10.1101/2022.06.09.22276204doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.09.22276204
http://creativecommons.org/licenses/by-nc-nd/4.0/


correlated DNAm across individuals21, could increase the prediction accuracy of 

MRS. One of the most popular PRS approaches to deal with single nucleotide 

polymorphisms (SNPs) in high linkage disequilibrium (LD) and to identify p-value 

thresholds with the best prediction accuracy is the pruning and threshold (P+T) 

method22. In the P+T approach, the correlation square (R2) for SNPs within a close 

genetic distance is calculated and less significant SNPs that are correlated with an 

R2 greater than a particular value (LD pruning)23 are removed. Next, several p-value 

thresholds are tested to maximize the prediction accuracy of the derived PRS (p-

value thresholding)23,24. Theoretically, the P + T approach could be applied to 

generate MRS, however, there is no gold-standard on how to conduct pruning for 

DNAm data and the performance of such MRS across multi-ancestry populations 

remains unknown.  

 

Here, we propose to use the Co-Methylation with genomic CpG Background 

(CoMeBack) method, a method that estimates DNA co-methylation, to account for 

correlations of DNAm at proximal CpG sites21, and pair it with p-value thresholding to 

construct P+T MRS. We conducted simulation studies based on data from an adult 

population consisting of three groups of different ancestries (Indian, White and Black, 

n = 1,199). Next, we applied the P+T approach to DNAm data from the Drakenstein 

Child Health Study (n=270)25, a multi-ancestry birth cohort from South Africa, to 

evaluate the performance of MRS for maternal smoking status. Our simulation study 

and real data application demonstrate that the P+T approach improves the predictive 
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accuracy of MRS over the existing MRS methods. We also showed that MRS built 

upon the data from a population of one genetic ancestry could achieve high 

prediction performance among populations of other genetic ancestries, but the 

performance might differ in the presence of environmental/cultural/social differences 

associated with ancestry.  

 

Materials and methods  

P+T approach for MRS 

P+T method refers to the calculation of MRS using informed co-methylation pruning 

(P) and P-value thresholding (T). First, summary statistics from an EWAS (typically 

include the participant ID, effect size, standard error and P-value of each CpG site) 

need to be estimated in an independent dataset (training dataset) to avoid overfitting, 

and then applied to generate MRS in a testing dataset (the samples used to evaluate 

the performance of MRS).  

 

In our P+T method, co-methylation pruning is done by applying CoMeBack to DNAm 

data of the testing dataset or a reference panel21. Specifically, CoMeBack chains two 

adjacent array probes if the following requirements are met: 1. two probes are less 

than 2kb apart; 2. the reference human genome annotation shows a set of 

unmeasured genomic CpGs between them; 3. the density of unmeasured genomic 

CpGs between them is at least one CpG every 400bp. Chaining of adjacent array 

probes continues until an array probe does not meet the requirements, which will 
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form a unit where multiple CpGs are chained together. Correlations between DNAm 

levels will then be calculated for all array probes inside each unit. If all pairs of 

adjacent probes in a unit have a correlation square (R2) greater than 0.3, such unit 

will be declared as a co-methylated region (CMR). Pruning is conducted by only 

keeping one CpG site per CMR in the dataset, the one with the lowest (most 

significant) P-value in the EWAS summary statistics.  

 

Next, P-value thresholding step (T) is performed for the pruned set of CpG sites. 

Specifically, the P-value thresholding step (T) is performed by applying different P-

value thresholds (e.g., P-value thresholds ∈ [0.05, 0.005, 5 x 10−4, 5 x 10−5, …])  and 

only including those CpG sites in the final MRS calculation that reached a P-value 

below those thresholds in the EWAS summary statistics.  

 

Finally, for each P-value threshold, MRS are calculated as a weighted sum of DNAm 

𝛽 values (𝛽 value = methylated allele intensity / (unmethylated allele intensity + 

methylated allele intensity + 100), ranging from 0 representing unmethylation to 1 for 

complete methylation) of the selected CpGs, where the weights are the 

corresponding effect sizes for each CpG from the EWAS summary statistics. The 

squared correlation (R2) between the phenotype of interest and MRS obtained using 

each P-value threshold is calculated to represent the prediction accuracy. The P-

value threshold that produces MRS with the highest prediction accuracy in the 

testing data set is selected as the optimal P-value and the corresponding MRS is 
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used for downstream analysis. The pipeline for generating P+T MRS is written in an 

R script, which is available at GitHub (https://github.com/jche453/Pruning-

Thresholding-MRS.git).  

 

In our simulation studies and real data application, we compare the P+T MRS 

approach to the T approach, which refers to an approach in which the MRS is 

calculated by only using the thresholding approach described above, not accounting 

for correlations between included CpGs (no use of CoMeBack). 

 

Simulation studies 

To validate the performance of the proposed P+T MRS approach, we conducted 

simulation studies based on whole blood Illumina Infinium Human Methylation 450K 

BeadChip data from a discovery cohort composed of publicly available datasets. 

After the datasets were processed as previously described21, there were 1,199 

adults (898 Indians, 136 Blacks and 165 Whites) and 386,362 CpGs left for MRS 

analysis. CoMeBack was applied to the DNA methylation 𝛽 values of the 386,362 

CpGs to obtain CMR. In each simulation, 10 of the 386,362 CpGs were randomly 

selected to be causal, k% (k = 30, 50, 70 or 100) of which are in a CMR with other 

CpGs. At most, one CpG would be causal in each CMR.  
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The causal CpGs were randomly assigned a “true” effect size from a uniform 

distribution as 𝑤𝑖  ~ 𝑈(−0.5, 0.5). We then simulated a phenotype for the j-th subject 

as follow: 

𝑌𝑗 = ∑ 𝑤𝑖
10
𝑖=1 𝑚𝑖𝑗 + 휀𝑗 , 휀𝑗 ~ 𝑁(0, 𝛿2), 

where 𝑚𝑖𝑗 is the DNAm 𝛽 value of causal CpG site i of the j-th subject, and 휀𝑗 is an 

error term that follows a normal distribution. Different 𝛿2 were set to ensure that the 

targeted variance of phenotype explained by DNAm alone equals 10%, 30% 50% or 

80%.  

 

We also simulated a second phenotype Y*
j for the j-th subject, which was directly 

affected by ancestry using European ancestry as reference: 

𝑌𝑗
∗ = ∑ 𝑤𝑖

10

𝑖=1

𝑚𝑖𝑗 + 𝑎 ∗ (𝑖𝑓 𝐼𝑛𝑑𝑖𝑎𝑛)  +  𝑏 ∗ (𝑖𝑓 𝐵𝑙𝑎𝑐𝑘) + 휀𝑗
∗, 휀𝑗

∗ ~ 𝑁(0, 𝛿∗2) 

Effect of ancestry in our simulations is simulated as the effect of genetic ancestry 

assuming there were no complex social determinants involved in the causal 

pathway. Different 𝛿∗2 were used so that the variance of phenotype that was 

explained by DNAm and ancestry together equals 20%, 50% or 80. For our 

simulations, effect a was set to 0.1 and b to 0.2. In each simulation, both simulated 

phenotypes 𝑌𝑗 and 𝑌𝑗
∗ share the same epigenetic liability (∑ 𝑤𝑖

10
𝑖=1 𝑚𝑖𝑗). 

 

In each simulation, for fair comparison, 762 Indians were randomly chosen as the 

training dataset so that there were at least 136 people left for each race group in the 

testing dataset. Associations between CpGs and each of the two simulated 
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phenotypes were assessed by robust linear regression model using limma R 

package26 in the training dataset. We calculated top 10 principal components (PCs) 

from DNAm of 386,362 CpGs27 and used EpiDISH to estimate cell type proportions 

of each CpGs28. We observed that in our simulation dataset, top 10 PCs are highly 

correlated with cell type proportions (Supplement figure 1A), and using either 

summary statistics adjustment for top 10 PCs or summary statistics adjusted for cell 

type proportions would lead to almost identical prediction performance of MRS 

(Supplement figure 1B). Thus, to account for population stratification and cell type 

difference, we adjusted for the top 10 PCs in our main analyses. The summary 

statistics (effect size and P-values) obtained from association tests in the training 

data were saved and later used to construct MRS in the testing dataset. We 

repeated 1000 simulations per scenario to evaluate the prediction accuracy (R2), 

power and type 1 error rate of the P+T MRS.  

 

We evaluated the performance of the MRS not only in scenarios of A) same ancestry 

in training and test data, but also B) across different ancestry groups (training data: 

Indian, test data: European or African) and C) in multi-ancestry populations (training 

data: Indian, test data: Indian, European and African). For scenario C), we evaluated 

two analysis strategies: 1. Joint-analysis: perform MRS analyses in the whole testing 

dataset where subjects from all racial groups were merged; 2. Standardization: scale 

MRS to have a standard normal distribution within each racial group before merging 

all subjects for analyses.  
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Application study of smoking MRS 

To evaluate the performance of the P+T approach in a real data setting, we applied 

the P+T approach to calculate a MRS for maternal smoking status during pregnancy 

using cord blood DNAm data from newborns in the South African Drakenstein Child 

Health Study (DCHS), a multi-ancestry longitudinal study investigating determinants 

of early child development29. There were 145 Black African infants and 115 Mixed 

ancestry infants in the DCHS. A detailed description of the enrollment process, 

inclusion criteria, variables measurement and ethical approval of the study have 

been previously published29,30.  

 

Cotinine levels were measured in urine provided by mothers within four weeks of 

enrollment and classified as <10 ng/ml (non-smoker), 10–499 ng/ml (passive 

smoker), or ≥500 ng/ml (active smoker)25. We also considered a dichotomized 

smoking variable indicating if the pregnant women were active smoker versus non-

active smoker (passive smoker + non-smoker) in evaluation of the prediction 

performance of MRS. Cord blood was collected at time of delivery and used to 

measure DNA methylation by either MethylationEPIC BeadChips (EPIC, n=145) or 

the Illumina Infinium HumanMethylation450 BeadChips (450K, n=103)29,30, followed 

by quality control and normalization to calculate  values (details have been 

published elsewhere) 31.  
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Summary statistics for the calculation of MRS were obtained from a study that meta-

analyzed the associations between newborn blood DNA methylation and sustained 

maternal smoking during pregnancy among 5,648 mother-child pairs as part of the 

Pregnancy and Childhood Epigenetics (PACE) Consortium (Table 1)32. The 

participants of all cohorts used in the meta-analysis except one were of European 

ancestry.  

 

In addition, we compared P+T MRS to three previously published MRS for maternal 

smoking during pregnancy (Reese MRS, Richmond 19 MRS, Richmond 568 MRS; 

Table 1). Reese MRS model was trained among 1,068 newborns of European 

ancestry in the Norwegian Mother and Child Cohort Study, while Richmond 568 

MRS and Richmond 19 MRS was trained in multi-ancestry newborns (N=6,685) and 

children around 6.8 years old (N=3,187) in PACE Consortium respectively. The 

training population for Reese MRS and Richmond 19 MRS overlapped with the 

training population for summary statistics used in P+T MRS in our study. Reese et al. 

used a LASSO regression to select CpGs for Reese MRS, which is a weighted sum 

of DNAm  values of 28 CpGs with weights estimated from the LASSO regression33. 

Richmond 19 MRS is a weighted sum of DNAm  values of 19 CpGs that were 

significantly associated with prenatal smoking in an EWAS conducted in peripheral 

blood from children of averaged 6.8 years age (Richmond 19 MRS)34,35. In the same 

study, Richmond 568 MRS was proposed based on 568 CpGs that were significantly 

associated with prenatal smoking in cord blood34,35.  
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Results 

Simulation results 

We compared the prediction performance of P+T MRS to the T method among 136 

Indians in the test data across different simulation scenarios (Figure 1). Figure 1A 

shows that P+T MRS that account for co-methylation between CpGs have stable 

prediction performance when proportion of causal CpGs located in a CMR (k%) 

varies. In contrast, the T method had a slightly lower prediction performance with a 

wider range compared to P+T MRS when k% is small and the prediction accuracy 

decreased with increasing k%. While the P+T MRS outperformed T method when 

𝑉𝐷𝑁𝐴𝑚
2  is 80% (Figure 1A), the difference between P+T MRS and the T method 

decreases as the 𝑉𝐷𝑁𝐴𝑚
2  decreases. This is likely because as variance explained by 

DNAm decreases, there is less power for association testing, and it becomes 

increasingly difficult to distinguish real signals from statistical noise while generating 

the summary statistics.  

 

Next, we assessed the performance of P+T and T method across different ancestries 

and among multi-ancestry populations. Both P+T MRS and T method achieved a 

high power (> 95%) and a low type 1 error rate (~ 5%) within each ancestry in most 

scenarios for both phenotypes except when the phenotype variance explained by 

DNA methylation is 10% or 30% (Supplement table 1-4). When the phenotypes are 

not associated with ancestry (Figure 2A), the three MRS analyses strategies 
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(stratification, joint analysis and standardization) lead to nearly identical results. 

However, when the phenotypes are ancestry-dependent, both joint analysis and 

standardization of MRS showed very poor prediction of the phenotypes (Figure 2B). 

Findings were similar when the phenotype variance explained by DNA methylation 

was reduced from 80% to 10%, 30% or 50% (Supplement Figure 2). On the contrary, 

when the phenotype variance explained by DNA methylation was low, joint analysis 

and standardization of MRS increased the power due to increased sample sizes in 

comparison to the analyses of the individual subgroups (Supplement table 3).  

 

MRS of maternal smoking status 

Figure 3 shows the prediction performance of MRS for maternal smoking status 

among DCHS newborns. As the p-value threshold decreases, the prediction 

accuracy of the resulting MRS increases before reaching a plateau, demonstrating 

the importance of P-value thresholding in MRS to control for noise. Among mixed 

ancestry newborns, P+T MRS of smoking status achieved a prediction accuracy of 

29.5% using P-value threshold of 5x10-21, while the best T method MRS have a 

lower prediction accuracy (24.5%) using P-value threshold 5x10-10, confirming the 

benefits of pruning in MRS calculation (Figure 3A). Both P+T MRS and T method 

MRS had lower prediction performance for maternal smoking among Black African 

infants (10.9% and 8.0% respectively) (Figure 3B), which is likely due to the low 

prevalence of active smoking among mothers of Black African infants in DCHS 

(13%) compared to mothers of mixed ancestry infants (49%) (Supplement figure 3). 
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Joint analysis of P+T MRS showed a prediction accuracy of 20.4%, which is between 

the prediction accuracy of P+T MRS among Black African infants and mixed 

ancestry infants (Figure 3C). Standardization approach did not improve the 

performance of MRS (Figure 3D). 

 

We next compared the prediction accuracy and distribution of P+T MRS to other 

established MRS for maternal smoking during pregnancy and newborn DNAm 

(Figure 4). P+T MRS showed a similar prediction accuracy as Reese MRS among 

both Black and Mixed ancestry infants, and they outperformed all other smoking 

MRS (Figure 4A). The distributions of P+T MRS in Black African infants and mixed 

ancestry infants were similar within each category of maternal smoking status 

(Figure 4B), whereas the other MRS had different distributions in Black infants and 

Mixed ancestry infants within each category of smoking, suggesting that P+T MRS 

might be more comparable across different ancestries than the 3 established MRS 

approaches (Figure 4C, Supplement figure 3). Furthermore, the P+T approach is 

computationally efficient and does not require access to individual DNAm data from 

the training data since it makes use of published EWAS summary statistics.  

 

Discussion 

Based on the well-established P+T framework in PRS, we developed P+T MRS, 

which aggregates EWAS signals and could potentially be used as a biomarker in 

association studies where single CpGs do not achieve significance4,36,37. The 
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proposed P+T MRS approach uses CoMeBack for co-methylation pruning and 

evaluates multiple P-value thresholds to maximize prediction performance. Such 

MRS could potentially serve as a powerful dimension reduction approach for 

mediation and multi-omics integration analyses4,36-39 as well as biomarkers of 

individual disease risk in a clinical setting40-42.  

 

Overall, our simulation studies demonstrated good performance of P+T MRS for 

predicting phenotypes of interest with good statistical power and well-controlled type 

1 error. We demonstrated that the prediction accuracy of MRS reflects the variance 

of phenotype that is explained by DNAm. By accounting for inter-correlation between 

CpGs, P+T MRS showed a better performance than the standard T method, 

especially when a large number of causal CpGs are located in CMRs. In the real 

data application, we further confirmed the improvement of P+T MRS, with improved 

prediction of maternal smoking status compared to the T method. However, P+T 

MRS could still have poor prediction performance if the external EWAS is 

underpowered or subject to bias. 

 

In the prediction of maternal smoking status, P+T MRS showed comparable 

performance to Reese MRS, which was derived using the LASSO method33. When 

predictors are highly correlated, LASSO typically selects one of the correlated 

predictors and shrinks the effect size of the rest to zero, which might produce similar 

results to our pruning procedure in developing MRS. One of the advantages of P+T 
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MRS is that it is based on EWAS summary statistics which are often publicly 

available, making it a valuable approach, as it is often difficult to obtain individual 

DNAm data from an external cohort. In contrast, to construct MRS like Reese MRS, 

individual DNAm data are usually required to perform a LASSO regression, and 

these are often not accessible. Recently, novel penalized regressions have been 

proposed to generate PRS with only GWAS summary statistics and publicly 

available reference data43, but their applications to EWAS summary statistics for 

MRS have not been investigated. To develop MRS for different exposures and 

outcomes, we urge EWAS studies to make their genome-wide summary statistics 

publicly available. 

 

In our simulation studies, weights obtained from Indian training samples were 

applied to generate P+T MRS, thus MRS among Indian testing samples were 

assumed to have the best prediction of the simulated phenotypes. However, MRS 

among Whites and Blacks also achieved a prediction accuracy as high as among 

Indians for both simulated phenotypes suggesting that genetic ancestry does not 

contribute to difference in prediction abilities of MRS across multi-ancestry 

population. This is likely because we assumed all ancestries share the same causal 

CpGs and effect sizes. However, in the real world, this assumption could possibly be 

violated for many phenotypes. Furthermore, unlike ancestry in our simulation 

studies, ancestry in the real world is complex. The meaning of ancestry could be 

different in different regions/nations, and “effect of ancestry” involves the joint effects 
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of ancestry-associated social determinants of health and environmental effects , and 

cultural context44. Ancestry, along with environment and social differences 

associated with it, could affect both MRS and phenotypes in numerous causal 

pathways and potentially modify the effect of MRS on the phenotypes. Thus, even if 

all ancestries indeed share the same causal CpGs and effect sizes, it might still not 

be sufficient to disentangle the relationship between ancestry, DNAm and phenotype 

of interest. This may greatly impact the transferability of MRS across different 

ancestries, which could be the reason why we observed an inconsistency of 

performance of P+T MRS in terms of their distributions and predictions across multi-

ancestry population in the real data analyses. In practice, we recommend that 

researchers conduct MRS analyses stratified by ancestry first and evaluate the effect 

of ancestry on MRS analyses before pooling participants together for a joint analysis. 

 

In our real data application, summary statistics for smoking were obtained from a 

cohort with mainly people of European ancestry32. MRS of smoking among mixed 

ancestry infants achieved a prediction accuracy of nearly 30%. However, the 

prediction accuracy of P+T MRS among Black African infants was only 10.9%. We 

suspect that the difference was largely due to the prevalence of active smoking 

among mothers of Black African infants being lower than those of mixed ancestry 

infants (13% vs 49%), which is similar to how the prevalence of outcome affects the 

predictive ability of PRS45.  
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To the best of our knowledge, this is the first study to evaluate P+T approach in the 

construction of MRS among multi-ancestry populations. However, there are several 

potential limitations that warrant mention. First, the sample size of both simulation 

studies and real data analyses was relatively small, thus our results might not fully 

capture the strengths and limitations of P+T MRS. Second, lack of different ancestry-

specific summary statistics made it impossible to compare the use of external 

weights from population of different ancestries (e.g. European ancestry vs other 

ancestries). Third, the prevalence of active maternal smoking is different in different 

ancestries and has influenced the performance of P+T MRS. As a result, real data 

analysis of smoking MRS could not provide firm evidence about the transferability of 

MRS between Black African and mixed ancestry infants. Fourth, we mainly focused 

on the prediction performance of P+T MRS. Further studies are needed to assess 

the performance of P+T MRS in mediation analysis.    

 

In conclusion, P+T MRS provides a substantial improvement for prediction of 

phenotype of interest, either exposures or diseases, over T method that does not 

account for co-methylation between CpGs. In contrast to PRS, using existing 

summary statistics that were derived from European populations can be used to 

calculate MRS in other ancestries, thus reducing the ancestry/ethnicity disparity in 

medical research. However, caution is needed in the analyses and interpretation of 

MRS results across multi-ancestry populations. More investigations of MRS are 

urged to further improve their prediction accuracy and translational values, also in 
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combination with other clinical and non-clinical variables, especially among multi-

ancestry population. With the current increase of large consortia-led EWAS for 

different exposures and health outcomes (e.g., the PACE consortium), we believe 

the predictive performance of MRS will continue to increase, and the P+T method 

has the potential to be widely used for risk prediction and mediation analyses. 
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Figure 1. Simulation study. Prediction accuracy of P+T and T method in 

dependence of (A) the proportion of causal CpG sites in CMRs and (B) 

proportion of phenotype variance explained by DNA methylation, among 

Indian participants. For each simulation, the discovery cohort was repeatedly and 

randomly split into a training set comprising 762 Indians and a testing set comprising 

136 people of the same ancestry. Phenotypes were simulated without an influence of 

ancestry. Results are shown for (A) different proportions of causal CpGs located in 

CMR (30%, 50%, 70%, 100%) and (B) different proportions of phenotype variance 

explained by DNA methylation (10%, 30%, 50%, 80%). Each box represents the 

distribution of prediction accuracy across 1000 simulations, where the central mark is 

the median and the edges of the box are the 25th and 75th percentiles.

A 
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Figure 2. Simulation study. Prediction accuracy of P+T and T approach across 

different racial groups and among multi-ancestry populations. For each 

simulation, the discovery cohort was repeatedly and randomly split into a training set 

comprising 762 Indians and a testing set comprising 136 people of each ancestry 

group. The proportion of causal CpGs located in CMR is 70% and the proportion of 

phenotype variance explained by DNA methylation (and ancestry) is 80%. Results 

are shown for the prediction of simulated phenotypes (2A) without an influence of 

ancestry and (2B) influenced by ancestry. Joint-analysis refers to MRS analyses of 

all participants pooled from all ancestry groups and standardization refers to 

standardizing MRS within each ancestry group and then merging all participants 

before analyses. Each box represents the distribution of prediction accuracy across 

1000 simulations, where the central mark is the median and the edges of the box are 

the 25th and 75th percentiles. 

B 
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Figure 3. Real data application. MRS for the prediction of maternal smoking 

during pregnancy using cord blood DNA methylation data from newborns in 

the South African Drakenstein Child Health Study (DCHS). Prediction accuracy 

of maternal smoking status is shown stratified for A. Mixed infants. B. Black infants. 

C. joint-analysis (all subjects pooled from all ancestries) D. Standardization 

(standardizing MRS within each ancestry and merging all subjects before analyses).

A B 

C D 
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Figure 4. Real data application. Comparison of P+T method to 3 other 

published MRS for predicting maternal smoking status in the South African 

Drakenstein Child Health Study (DCHS). A Prediction performance of all 5 MRS 

methods for Mixed infants, Black infants and pooled samples (joint-analysis). 

Distribution of (B) P+T MRS and (C) Reese MRS (best performing MRS in (A)) 

among non-smokers, passive smokers and active smokers stratified by ancestry.  

A 

C B 
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Table 1.  Overview of included EWAS, their phenotypes, training sample and methods.  

MRS 
Training 
dataset 

publication 

Training 
Population 

Phenotype 
MRS 

publication 
Method 

No. of 
CpG 
sites 

 P+T MRS 
Sikdar et al.  

20191 

Multi-ethnic 
newborns 

(mainly White, 
N=5,648) 

Most cohorts ascertained 
sustained smoking during 

pregnancy by 
questionnaires; two cohorts 
incorporated cotinine-based 

smoking measure 

- P+T 22 

Reese MRS 
Reese et al. 

20172  
White newborns 

(N=1,068)* 

Sustained smoking during 
pregnancy obtained from 
combined information of 
cotinine-based and self-

report based classification 

Reese et al. 
20172  

Logistic LASSO 
regression 

28 

Richmond 
568 MRS 

Joubert et al. 
20163  

Multi-ethnic 
newborns 
(N=6,685)* 

Maternal smoking during 
pregnancy via 
questionnaires 

Richmond 
et al. 20184 

Robust linear 
regression; 

Bonferroni correted 
P-value < 0.05 

568 

Richmond 
19 MRS 

Joubert et al. 
20163  

Multi-ethnic 
older children 

(average age = 
6.8 years) 
(N=3,187) 

Maternal smoking during 
pregnancy via 
questionnaires 

Richmond 
et al. 2018 

Robust linear 
regression; 

Bonferroni correted 
P-value < 0.05 

19 
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* These training populations overlapped with training population for summary statistics used for P+T MRS. 
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