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Abstract 47 

Purpose 48 

Delirium presents a significant healthcare burden. It complicates post-operative care in 49 

up to 50% of cardiac surgical patients with worse hospital outcomes, longer hospital 50 

stays and higher overall cost of care. Moreover, the nature of delirium following cardiac 51 

surgery with cardiopulmonary bypass (CPB) remains unclear, the underlying 52 

pathobiology is poorly understood, status quo diagnostic methods are subjective, and 53 

diagnostic biomarkers are currently lacking. 54 

 55 

Objective 56 

To identify diagnostic biomarkers of delirium and for insights into possible neuronal 57 

pathomechanisms.  58 

 59 

Experimental design 60 

Comparative proteomic analyses were performed on plasma samples from a nested 61 

matched cohort of patients who underwent cardiac surgery on CPB. A targeted 62 

proteomics strategy was used for validation in an independent set of samples. 63 

Biomarkers were assessed for biological functions and diagnostic accuracy. 64 

 65 

Results 66 

47% of subjects demonstrated delirium. Of 3803 total proteins identified and quantified 67 

from patient plasma samples by multiplexed quantitative proteomics, 16 were identified 68 

as signatures of exposure to CPB, and 11 biomarkers distinguished delirium cases from 69 
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non-cases (AuROC = 93%). Notable among these biomarkers are C-reactive protein, 70 

serum amyloid A-1 and cathepsin-B.  71 

 72 

Conclusions and clinical relevance 73 

The interplay of systemic and central inflammatory markers shed new light on delirium 74 

pathogenesis. This work suggests that accurate identification of cases may be 75 

achievable using a panel of biomarkers. 76 

 77 

Statement of Clinical Relevance: 78 

The acute implication of delirium is well-documented, yet the true extent of the 79 

consequences beyond the immediate post-operative period has yet to be fully known. 80 

Despite its impact on the geriatric population, delirium remains underdiagnosed. 81 

Correctly identifying cases remain a challenge in clinical practice: the arbitrary and 82 

subjective nature of current diagnostic tools, such as the confusion assessment method, 83 

underscores the urgent need for diagnostic biomarkers. The clinical usefulness of 84 

delirium biomarkers extent beyond the objective identification of cases. Delirium 85 

biomarkers will also be useful for risk stratification, long-term follow-up of patients and 86 

may offer insights into possible etiologies that underpin the condition. In this report, we 87 

found systemic markers of inflammation with well-established association with delirium, 88 

as well as new biomarkers that shed new light on the condition. Although validation in a 89 

larger cohort is the necessary next step, our efforts lay the groundwork for future studies 90 

and highlight new frontiers in delirium research yet to be explored. 91 

 92 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 9, 2022. ; https://doi.org/10.1101/2022.06.08.22276153doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.08.22276153
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 93 

Delirium remains under-diagnosed in clinical practice[1-3]. Characterized by acute 94 

fluctuations in consciousness, deficits in attention and impairments in cognition not 95 

explained by a pre-existing neurocognitive disorder, delirium is etiologically 96 

heterogenous with a particularly high incidence after cardiac surgery[4, 5]. Following 97 

cardiac surgery, it complicates post-operative care in up to 50% of patients with 98 

increased length of hospitalization, increased mortality and higher overall cost of 99 

care[6]. In the long term, post-cardiotomy delirium patients are at increased risk of many 100 

complications, including re-admissions [7], cognitive decline [8-11], functional 101 

impairments [12], and stroke [13, 14], to mention a few. Clearly, delirium presents a 102 

significant healthcare burden on society. The true extent of the consequences beyond 103 

the immediate post-operative period remains unknown. Thus, the accurate identification 104 

of subjects for optimal care in the immediate post-operative period and for long-term 105 

follow-up is likely to exert a significant positive impact on patient care and costs if 106 

implemented successfully. 107 

 108 

Unfortunately, many patients with delirium are missed [15, 16], an observation that is 109 

partly due to the subjective and variable nature of the current diagnostic approach. 110 

Efforts to improve recognition and accurate case identification has seen a steady rise in 111 

recent years, although a small fraction of these attempts has focused on biomarker 112 

discovery. Most of these biomarker studies also employed targeted quantification 113 

strategies for a sub selected list of genes or proteins, an approach that is inherently 114 
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biased and blinded to potentially novel factors involved in the etiology or consequences 115 

of delirium [17][manuscript].  116 

 117 

Challenges with delirium biomarker discovery are due, in part, to the lack of clarity 118 

regarding the underlying pathophysiology of the condition. While a one-size-fits-all 119 

explanation of delirium may be oversimplified, neuroinflammation induced by system-120 

wide activation of an inflammatory cascade remains the prevailing mechanistic 121 

hypothesis[18, 19]. This is supported by recent untargeted and semi-targeted 122 

approaches that sought to study the proteome of human biofluids[20-27], although 123 

neuroendocrine and circadian dysregulation have also been reported[18]. The emerging 124 

focus on signaling and inflammatory markers necessitate biomarker discovery 125 

approaches that focus on the low-abundance proteome, using analytical platforms with 126 

the multiplexing capability and the requisite sensitivity to detect small changes in 127 

proteomic signatures.  128 

 129 

In the present work, we comprehensively profiled the plasma proteome of subjects at 130 

baseline and post-cardiotomy for an untargeted analysis of the plasma proteome. We 131 

included abundant protein immunodepletion and peptide fractionation to enhance signal 132 

from the low abundance plasma proteome. Using independent set of samples, we 133 

validated candidate biomarkers at three time points (at baseline, post-bypass and post-134 

operative) in order to understand the changing trajectories of these biomarkers over 135 

time as they relate to case identification. Finally, we demonstrate the diagnostic 136 

potential of a panel of candidate biomarkers, the accuracy of their use in discriminating 137 
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cases from non-cases and the temporal association between intra-operative events and 138 

changes in biomarker levels. 139 

 140 

 141 

 142 

Results: 143 

Clinical Profile of Study Participants 144 

Subjects (n = 15) were selected from the parent study[28], which was a parallel group 145 

randomized controlled trial that enrolled 100 patients at Beth Israel Deaconess Medical 146 

Center (BIDMC), between July 2015 and July 2017. Delirium cases and non-delirium 147 

controls were age- and sex-matched (Table 1). There was no difference in baseline 148 

neurocognition between cases and non-cases, and the proportion of patients who 149 

received hyperoxic intraoperative treatment was comparable. There were no significant 150 

differences with regards to demographics, medical co-morbidities, pre-operative 151 

medications, or surgical characteristics. Details of the clinical characteristics of study 152 

subjects were reported previously[28]. 153 

 154 

Discovery Phase of Biomarker Workflow 155 

Using a multiplexed isobaric tagging (TMT)-based design, plasma samples at baseline 156 

and on post-operative day 1 from 7 delirium cases (CAM+) and 8 non-delirium controls 157 

(CAM-) were comprehensively profiled (Figure 1). For precision, samples selected for 158 

the discovery phase of the study were analyzed in duplicates, for a total n = 60 samples, 159 

which necessitated the analysis of seven separate, batched multiplexes. To control for 160 
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technical variation between batches, two channels in each of the seven 11-plex TMT 161 

sets were reserved as bridge samples using equal amounts of a pooled plasma sample. 162 

We fractionated the TMT-labeled peptides using off-line HPLC on a pentafluorophenyl 163 

(PFP) column as described previously[29] into 48 fractions, which were subsequently 164 

concatenated into 12 and analyzed by LC-MS/MS on an Orbitrap Fusion Lumos Tribrid 165 

instrument platform. 166 

 167 

A collective total of 17,540 unique peptides from 3,803 proteins were identified from all 168 

seven multiplexes. An analysis of the number of proteins from each batch, separated 169 

into a binary group based on the corresponding number of peptides used in the 170 

identification of these proteins, demonstrates that our data are clearly dominated by so-171 

called “one-hit proteins,” or proteins identified by a single peptide (Figure 2A). Often, 172 

single-peptide protein identifications are excluded from downstream analysis due to the 173 

increased risk of false protein identifications associated with single-peptide protein 174 

assignments. However, excluding all one-hit proteins can be a huge informational cost 175 

as some of these proteins may be biomarkers of interest.  176 

 177 

One-hit Proteins and Deep Learning for Confident Protein Identification: 178 

To examine this further, we differentiated one-hit proteins identified only in single 179 

batches of experiments from those identified consistently across multiple batches. We 180 

reasoned that identified one-hit proteins consistently identified in multiple independent 181 

analyses are less likely to be false identifications, especially if their consistent 182 

identification is based on the same unique peptide. These one-hit proteins warrant 183 
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additional peptide-centric information for protein inference beyond the sequences of the 184 

single peptides. Figure 2B displays the number of proteins identified in any given 185 

number of collective batches. Of the 3803 total proteins (figure 2B, cumulative batch 186 

≤7), 51% (n = 1941 proteins) were identified based on a single peptide. While the 187 

number of proteins identified based on 2 or more peptides increased with increasing 188 

number of collective batches, the number of one-hit proteins remained fairly consistent. 189 

In particular for cumulative batches three to seven, we found 1698 one-hit proteins that 190 

were present in all of them. 191 

 192 

To enhance the confidence in the identity of these one-hit proteins and minimize false 193 

positive identifications, we employed chromatographic retention time (RT) as additional 194 

peptide-centric information and orthogonal to their identification by tandem mass 195 

spectrometry. Here, we considered a peptide as confidently identified if, in addition to 196 

being a high-scoring peptide by PSM, the observed RT also falls within the RT window 197 

expected for that peptide and its corresponding experimental batch conditions. For 198 

example, K.GTEAAGAMFLEAIPMSIPPEVK.F , a unique peptide from alpha-1-199 

antitrypsin, A1AT_HUMAN (figure 2C, supplemental figure 1, blue rectangles) shows 200 

consistent RTs, regardless of the experimental batch or sample fraction the peptide was 201 

detected. On the other hand, K.GTEDFIVESLDASFR.Y (figure 2C, supplemental 202 

figure 1, red rectangles) is the only peptide-evidence that translocon-associated protein 203 

subunit alpha, SSRA_HUMAN – a one-hit protein – was detected in experimental batch 204 

2.  205 

 206 
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To determine the RT window expected for these single peptides given the LC-MS 207 

conditions of their respective experimental batches, we trained a deep learning-based 208 

RT predictor, the DeepRT+ [30], using 80% of the RT of consistently identified peptides 209 

for a given experimental batch. We tested the prediction accuracy of the DeepRT+ 210 

model with the remaining 20% of the training data and subsequently used the final 211 

model to predict the RT of one-hit proteins. We assessed performance of the RT 212 

prediction using the coefficient of determination, R2, and ∆t95%, the minimum time 213 

window containing deviations between the observed and the predicted RT for 95% of 214 

the peptides (Figure 2D and Supplemental Figure 2). We found the RT of 495 unique 215 

one-hit peptides fell within the ∆t95% metric (Table 2) and were thus included to a final 216 

total of 1731 proteins used for downstream analysis (Figure 2E). The dynamic range of 217 

all proteins spans 6.3 orders of magnitude and confirms signal from a wide range of 218 

abundances in the plasma proteome (Figure 2F). 219 

 220 

Protein Feature Selection and Differential Abundance Analyses 221 

To determine the subset of these 1731 proteins that are most important in discriminating 222 

plasma profiles of cases and from non-cases and between baseline and post-operative 223 

timepoints, we employed an elastic net regularized regression approach[31]. We found 224 

47 and 64 proteins as signatures of surgical exposure and of delirium, respectively. 225 

Principal component analysis (PCA) of study subjects using the subset of protein 226 

features demonstrates that delirium cases cluster separately, with marginal overlap 227 

between non-delirium controls and baseline samples (Figure 3A). Additionally, plasma 228 

profiles of cases and non-cases are clearly separable post-operatively, although they 229 
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were indistinguishable at baseline (Figure 3B). This strongly suggests a temporal 230 

relationship between post-operative changes in proteomic signatures and subjects’ 231 

surgical exposure and/or related intra-operative physiological events. 232 

 233 

Furthermore, we quantified the extent of changes in biomarker levels before and after 234 

surgery (Figure 3C) and between cases and non-cases (Figure 3D). When using the 235 

proteins identified as a signature of delirium (Figure 3D), we observed a diagnostic 236 

accuracy of 93% in discriminating cases from non-cases (Figure 3E). Functional 237 

analysis of the biomarker panel for biological processes shows acute inflammatory 238 

response and activation of the immune system as the most significantly enriched 239 

functional pathways, predominantly in the extracellular region (Figure 3F and 240 

Supplemental Figure 3). 241 

 242 

Biomarker Verification  243 

For further evaluation of peri-operative proteomic differences between cases and non-244 

cases, an independent set of plasma samples was used to verify biomarkers discovered 245 

a priori (Figure 4). Here, we used parallel reaction monitoring (PRM) as the targeted 246 

approach and employed label-free quantification (LFQ) as orthogonal methods different 247 

from the TMT approach used in the discovery phase. To ascertain the degree to which 248 

changes in protein concentration in the complex background of plasma are quantifiable, 249 

we artificially modified six biological replicates of a pooled plasma sample with the 250 

addition of exogenous proteins: (1) equal amounts of a non-human 251 

(Schizosaccharomyces pombe) homolog of the serine/threonine-protein kinase Chk2 252 
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(CDS1 in S. pombe); and (2) increasing concentrations of heavy-labeled AQUA 253 

peptides[32, 33] of human condensin-2 complex subunit H2 (CNDH2). From this 254 

experiment, we estimate a limit of quantification of ~1fmol on column (Figure 5A), with 255 

negligible impact on target protein quantification due to matrix effects from large (16-256 

fold) variations in the concentration of a non-target protein in the matrix (Supplemental 257 

Figure 4). 258 

 259 

For candidate biomarker verification, we developed parallel reaction monitoring (PRM) 260 

methods through an iterative optimization process (Supplemental Figure 5). We 261 

monitored 153 unique peptide sequences (212 total precursor ions including the 262 

observed range of charge states) from the union of 18 differentially abundant proteins 263 

as PRMs that were distributed across the entire LC-PRM elution gradient (Figure 5B). 264 

For example, we monitored the abundance of the peptide ESDTSYVSLK from C-265 

reactive protein as a doubly-charged ion via five individual y-ions in our PRM method 266 

via Skyline (Figure 5C) in each verification sample. The PRM methods we employed 267 

required the following minimum criteria for peptide quantification: a consistent minimum 268 

of 5 transitions in all samples, a minimum dot-product of 95% and manual inspection of 269 

all peaks for interference-free co-eluting transitions with distinct peak boundaries. 65 270 

precursors from 13 proteins met these criteria for downstream analysis (Supplemental 271 

Table 3). Unsupervised clustering based on the quantification of these candidate 272 

biomarkers shows that post-operative samples aggregate separately from post-bypass 273 

and baseline samples (Figure 5D). This is further confirmed by statistical comparison of 274 
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biomarker levels between the sampling timepoints (Figure 5E and Supplemental 275 

Figure 6). 276 

 277 

Seven biomarkers (A2GL, AACT, CH3L1, CRP, LBP, MA1A1 and SAA1/SAA2) were 278 

significantly increased at post-operative day one (PO1) relative to baseline in this 279 

validation cohort. Four razor peptides were shared between SAA1 and SAA2. However, 280 

no peptides unique to either SAA1 or SAA2 met the minimum quantification criteria for 281 

PRM verification. Similarly, none of the precursor peptides of CAH3, EFNA1, FGL1 or 282 

PEPA4 met PRM quantification criteria. Regardless of statistical significance, we 283 

observe that these candidate biomarker levels show a consistent increase in abundance 284 

between baseline and PO1 (Supplemental Table 3). This panel of differentially 285 

abundant candidate biomarkers yields a discriminatory power of 96% (84.9 – 100%) 286 

between cases and non-cases (Figure 5F). 287 

 288 

 289 

 290 

Discussion 291 

This unbiased proteomic analysis of samples from a prior nested case-control study is 292 

the deepest unbiased plasma proteomic profiling for potential biomarkers of delirium to 293 

date. We employed a rectangular biomarker workflow[34] to both discover and verify 294 

biomarkers of post-operative delirium on a single mass spectrometry platform without 295 

the use of traditional affinity-based verification methods. Dominated by one-hit wonders, 296 

our focus on the low-abundance proteome presented us with the challenge of protein 297 
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inference, for which we applied deep learning to recover pertinent orthogonal peptide 298 

chemical information and salvage a significant number of these one-hit proteins. 299 

 We identified 3808 proteins by isobaric quantitative multiplexed proteomics, 16 of which 300 

were differentially abundant post-operatively from baseline levels, and 11 of which were 301 

differentially abundant in cases relative to controls. This includes proteins with well-302 

documented associations with delirium, such as CRP, CH3L1, AACT, TIMP1, as well as 303 

new ones not previously associated with delirium, including SAA, CATB and PEPA3. 304 

Using an independent set of samples, we attempted to verify the union of these 305 

candidate biomarkers and found a 96% accuracy in correctly identifying delirium 306 

patients for those for which quantification was possible. Collectively, our findings show a 307 

temporal association between intra-operative events (i.e., surgical insult, administered 308 

anesthesia, etc.) and proteomic changes associated with phenotypic delirium. 309 

 310 

The prevailing mechanistic hypothesis of delirium is one of acute neurocognitive 311 

disruption triggered by system-wide inflammation[18, 19]. In our study, functional 312 

analysis of the post-operatively dysregulated biomarkers suggests a system-wide 313 

activation of the inflammatory cascade and related immunological reactions. Data on 314 

the associations between delirium and acute-phase reactants (APR) such as CRP is 315 

ubiquitous[20, 35-38]. Although known APRs correlate well with the severity of 316 

inflammation, their usefulness as biomarkers is limited as they are not specific to 317 

delirium. We, however, found additional acute-phase reactants that may shed a new 318 

light on delirium. 319 

 320 
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Human serum amyloid A (SAA) is a collective name for a group of polymorphic proteins 321 

functionally associated with high-density lipoprotein (HDL). By the regulation of their 322 

synthesis, they are grouped into the acute phase isotypes (a-SAA: SAA1, SAA2 and 323 

SAA3) and the constitutive isotype (c-SAA: SAA4)[39, 40]. Although predominantly 324 

secreted by the liver, extra-hepatic production occurs in the brain and may be more 325 

relevant in neurocognitive disorders such as Alzheimer’s disease[41-44]. SAA has 326 

cytokine-like effects which likely provokes blood brain barrier (BBB) dysfunction, 327 

induces depressive-like behavior in mice and may impair cognition in human 328 

subjects[45-48]. In the present study, we found SAA1 and SAA2 were both upregulated 329 

post-operatively in delirium cases by over 5 folds (p value < 0.001). This is the first 330 

mention of SAA in the context of delirium and warrants further studies to formally 331 

credential this association with the condition. 332 

 333 

The cysteine protease cathepsin B (CATB) has previously been quantified as an AD-334 

related biomarker and correlates with mini-mental state examination (MMSE) scores 335 

[49-52], but its association with delirium is unknown. It is an inflammasome that 336 

promotes IL-1beta maturation and secretion[52]. It also has a beta-secretase activity, 337 

capable of cleaving amyloid precursor protein into amyloid beta [53]. Given that cases 338 

and non-cases in our study were matched by baseline neurocognition and tMOCA 339 

scores were statistically controlled for, upregulation of CATB in delirium cases may 340 

indicate a common pathophysiological starting point in the continuum of neurocognitive 341 

disorders, of which delirium and AD are a part. Generally recognized as the first enzyme 342 

to be discovered, pepsin (PEP-A) is the native acid protease of the stomach[54]. Blood 343 
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pepsin is an established biomarker of gastric mucosal integrity, and plasma levels 344 

correlate with the degree of mucosal damage[55-58]. Cardiac surgery and CPB places 345 

enormous physiological stress on the body. Through the cholinergic anti-inflammatory 346 

reflex, the body attempts to ameliorate the stress by increasing vagal tone[59-62] which 347 

manifests as gastric acid production. Normally, small amounts of secreted pepsin (~1%) 348 

may be found in blood and urine[63], but with increased acid production, this proportion 349 

may be higher. In the discovery phase of our study, differentially abundant PEP-A levels 350 

in cases relative to non-cases (1.64-fold increase, p value < 0.001) despite pre-351 

operative proton-pump inhibitor administration in the study subjects suggests a peculiar 352 

association between plasma PEP-A levels and delirium. At present, we are unable to 353 

explain the relationship, if any, between increased vagal tone and neuroinflammation. 354 

 355 

The independent association between CPB and delirium remains an ongoing debate 356 

and data on the relationship is conflicting. On the one hand, the use and duration of 357 

extracorporeal circulation is reported to increase the risk of delirium[64-66]. Some 358 

authors, on the other hand, have reported no associations between delirium incidence 359 

and CPD duration[67, 68]. In our cohort, there was no statistically significant difference 360 

in aortic cross-clamp time or duration of bypass between delirium cases and non-361 

cases.[28] To determine the impact of CPB in our cohort, we compared post-operative 362 

plasma profiles to baseline regardless of the case/non-case status of subjects. We 363 

found 16 dysregulated proteins, most of which have been characterized as non-specific 364 

markers of surgical exposure[69-71]. A striking observation in our study is the 365 

similarities in proteomic signatures between cases and non-cases at baseline, despite a 366 
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clear difference at post-operative day one. Previous studies have shown that post-367 

operative delirium cases are likely to be in a heightened pre-operative inflammatory 368 

state [20, 37, 60, 72-75], which makes them more vulnerable to intraoperative stressors. 369 

In our study, similarities in the levels of identified biomarkers at baseline suggests 370 

otherwise.  371 

 372 

The main strength of the present study is in its unbiased, hypothesis-generating 373 

approach to identify potential biomarkers of delirium. This lays the groundwork for future 374 

studies and highlights new frontiers in delirium research yet to be explored. 375 

Translational utility from the research bench to the patients’ bedside requires that the 376 

biomarker readout in the discovery phase is independent of the measurement approach 377 

used for their discovery[76]. For this reason, we validated discovered biomarkers using 378 

label-free quantification, which is orthogonal to the TMT-based measurements in the 379 

discovery phase of our study. Our choice of PRM-MS over traditional affinity methods 380 

for validation (e.g., ELISA) is further premised on the fact that affinity methods are semi-381 

quantitative with inter-operator variability in quantification, have limited dynamic range 382 

and require larger amounts of sample. In addition to the requirement for peptide 383 

antigenicity, antibody cross-reactivity limits multiplexing (i.e., how many proteins can be 384 

validated at a time)[77]. All proteins needing validation require antibodies, a step that 385 

takes considerable amount of time to develop and can be cost-prohibitive if commercial 386 

options are not available[78]. This, in fact, is a long-standing bottleneck in clinical 387 

biomarker workflow[79]. 388 

 389 
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Our study is, however, not without limitations. First, sample sizes for both the discovery 390 

and validation phases may have limited statistical power in detecting differences in the 391 

levels of many other biomarkers. In our cohort, the CAM test was administered daily 392 

after surgery. In our statistical analysis, we did not correct for the effects of retesting on 393 

repeated test administration in this cohort. In the discovery phase, our interest in the 394 

low-abundance plasma proteome required an immunodepletion step to remove the 395 

majority of the top 14 most abundant plasma proteins. The extent to which this 396 

experimental step contributed to the removal of other proteins through their specific or 397 

non-specific binding was not ascertained. Although isotypes SAA1 and SAA2 each had 398 

unique peptides in the discovery phase, only the razor peptides met the criteria for 399 

quantification in the validation phase and were thus undistinguishable. Similarly, 400 

peptides from CAH3, EFNA1 and PEPA3 did not meet the minimum quantification 401 

criteria for verification by PRM, and peptides from FGL1 were not detected at all in any 402 

of the verification samples by PRM. 403 

 404 

In summary, diagnostic biomarkers of delirium are urgently needed for accurate case 405 

identification, long-term risk stratification and for molecular characterization of delirium. 406 

In this study, we discovered a panel of biomarkers through the unbiased comparative 407 

analyses of baseline and post-operative plasma samples of delirium cases and non-408 

cases. We underscored the importance of brain-specific biomarkers such as SAA and 409 

CATB and their possible role in the pathophysiology of delirium. In the long-term, it is in 410 

our research interests to rigorously test their associations with delirium and ascertain 411 

how these biomarkers change over time in a larger independent cohort. 412 
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 436 

Materials and Methods: 437 

Study Design and Patient Enrollment: 438 

Subjects in this nested case-control study were selected from the parent study, a 439 

randomized double-blind trial conducted on subjects who underwent coronary artery 440 

bypass grafting (CABG) with cardiopulmonary bypass (CPB) between July 2015 and 441 

July 2017 at the Beth Israel Deaconess Medical Center (BIDMC) in Boston MA. The trial 442 

was registered with ClinicalTrials.gov (NCT02591589, https://clinicaltrials. 443 

gov/ct2/show/NCT02591589, principal investigator: Shahzad Shaefi, registration date: 444 

October 29, 2015). Institutional review board (IRB) approval 2014P000398/33 was 445 

amended for the purposes of this current study on 09/17/2021 by the Committee on 446 

Clinical Investigations at the BIDMC. Details of enrollment, subject randomization and 447 

treatment allocation in the parent study are published elsewhere [28, 80]. Briefly, 448 

patients aged 65 years or older who were booked for elective CABG requiring CPB 449 

were eligible. The primary objective was to examine the temporal relationship between 450 

intra-operative oxygen treatment and post-operative neurocognitive function as 451 

measured by the telephone-based Montreal Cognitive Assessment (tMOCA) score. 452 

Patients were assessed for delirium as a secondary endpoint using the confusion 453 

assessment method (CAM). Patients were excluded if they were undergoing emergent 454 

CABG, if they required single-lung ventilation, CABG without CPB, intraoperative 455 

balloon counter-pulsation or mechanical circulatory support. All patients provide 456 

informed consent. 15 subjects were randomly selected for proteomic profiling in this 457 

nested case-control study. Because quantitative studies on the effect size of delirium 458 
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biomarkers using mass spectrometry is largely unexplored, formal power analysis was 459 

not done. 460 

 461 

Sample Collection: 462 

Whole blood samples at baseline, post-bypass (P-BP) and on post-operative day one 463 

(PO1) were collected into 4mL EDTA-treated tubes (BD Diagnostics) and centrifuged 464 

immediately at 200g at room temperature for 10 min. Resulting plasma was stored at -465 

80ºC until they were thawed for aliquots used here for proteomic profiling. 466 

 467 

Chemicals and Reagents: 468 

All LC-grade chemicals are marked with asterisk (*): Dithiothreitol (DTT), 4-(2-469 

hydroxyethyl)-1-piperazineethanesulfonic acid (EPPS), Tris (hydroxymethyl) 470 

aminomethane (Tris), formic acid* and acetonitrile* were purchased from Sigma-Aldrich. 471 

Methanol* was obtained from Fisher. Trypsin Protease, SDS, 2-iodoacetamide (IAA), 472 

High Select Top14 Abundant Protein Depletion Mini Spin Columns and TMT 11 plex kit 473 

were acquired from Thermo Fisher Scientific. 474 

 475 

Sample Preparation analysis: 476 

Sample Immunodepletion: 477 

Buffer exchange on single-use High Select Top14 Abundant Protein Depletion mini-spin 478 

columns (ThermoFisher Scientific) was performed twice using 200 µL of 50mM Tris [pH 479 

8.1] / 50mM NaCl. 10 µL of each plasma sample was applied to the mini-columns, 480 

incubated at -4ºC with gentle end-over-end mixing for 15 min, according to 481 
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manufacturer’s instructions. Flowthrough were collected by centrifugation at 1000g for 2 482 

min into 2mL Eppendorf tubes. Concentrations of the depleted samples were obtained 483 

using the Pierce BCA Protein Assay Kit (Thermo Scientific) at 562 nm absorbance per 484 

manufacturer’s instructions. 485 

 486 

Digestion and Labelling for Biomarker Discovery 487 

Depleted samples were treated with SDS (2% final) and DTT (2mM final) for denaturing 488 

at 75ºC for 15 min. Samples were cooled to room temperature before alkylation with IAA 489 

(7mM final) at room temperature in darkness for 30 min and quenched with DTT 490 

(additional 2mM final) for 10 minutes. Proteins were isolated by single-pot solid-phase-491 

enhanced sample preparation (SP3) and digested to peptides in EPPS buffer overnight 492 

at 30ºC with 1:50 w/w trypsin (PromegaTM). Tryptic peptides were labeled with TMT-11 493 

plex reagent for 1 hr according to manufacturer’s instructions. Two channels in each set 494 

of TMT-11 plex were reserved for pooled plasma to be used as bridge samples for 495 

technical control. Labeling efficiency of at least 95% was confirmed on a 1-hr gradient 496 

before pooling. Labeled tryptic peptides were then desalted on an OASIS µHLB 497 

(Waters) and subsequently dried by vacuum centrifugation prior to off-line HPLC 498 

fractionation on a pentafluorophenyl (PFP) column as described previously [29]. 48 499 

fractions were concatenated into 12 fractions for LC-MS/MS analysis. All samples were 500 

prepared in duplicates. 501 

 502 

 503 

 504 
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Digestion for Biomarker Validation 505 

Equal amounts of recombinant purified CDS1 protein were added to each depleted 506 

sample before treatment with SDS (2% final) and DTT (2mM final) for denaturation and 507 

alkylation as described above. Proteins were isolated by single-pot solid-phase-508 

enhanced sample preparation (SP3) and digested to peptides in 50mM ammonium 509 

bicarbonate buffer overnight at 30ºC with 1:50 w/w trypsin (PromegaTM). In a separate 510 

experiment to check for signal linearity, increasing concentrations of heavy-labeled 511 

peptides of CNDH2 condensin subunit were added to the samples at this point. Tryptic 512 

peptides were desalted on an OASIS µHLB (Waters) and dried by vacuum 513 

centrifugation. All samples were run in duplicates. 514 

 515 

 516 

LC-MS/MS 517 

All data were acquired on an Orbitrap Fusion Lumos Tribrid instrument (ThermoFisher 518 

Scientific, San Jose, CA) equipped with EASY-nanoLC 1200 ultra-high pressure liquid 519 

chromatograph (ThermoFisher Scientific, Waltham, MA). Dried peptides were 520 

resuspended in 5% methanol / 1.5% formic acid and injected onto a 35-cm long / 100-521 

µm (inner diameter) in-house pulled analytical column packed with Reprosil C18 522 

stationary phase particles. Discovery samples were separated on 120-minute gradient, 523 

and validation samples on a 60-min gradient, at 350nL/min flow rate. Acquisition 524 

parameters included 120,000-resolution at MS1, AGC target value of 5.0×105, scan 525 

range of 350 – 1250 m/z and maximum injection time of 100ms. For the TMT-labeled 526 

peptides, the top eight MS2 peaks were selected for further fragmentation at 55% 527 
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normalized high-collision energy (HCD) via SPS-MS3 for quantification of reporter ions 528 

in the scan range of 110 – 500 m/z. For the label-free peptides in the validation phase, 529 

MS2 scans were generated at 30,000 resolution and AGC value of 2.5×105, using 30% 530 

normalized collision energy (HCD). 531 

 532 

Bioinformatics 533 

Peptide Spectral Matching: 534 

Acquired data (in .raw format) were searched using COMET [81] against a target-decoy 535 

version of the human proteome (Uniprot, downloaded in 2020 and 2022, for the 536 

discovery and validation phases respectively). The fasta for the validation phase was 537 

appended with sequences from CDS1_SCHPO. Search parameters included a mass 538 

tolerance of 20ppm, maximum missed cleavages of 3, carbamidomethylation of 539 

cysteine as fixed modification and oxidized methionine as variable modification. In 540 

addition, the mass of 229.162932 Da was added to the N-termini and lysine residues of 541 

all peptides as fixed modification for the TMT data. A false discovery rate (FDR) of 1% 542 

was applied at the peptide level and final list of PSMs were filtered using XCorr and 543 

delta XCorr. All data were subsequently imported into R environment for statistical 544 

computing (v4.1.1) and Python programing language (v3.8) for downstream analyses 545 

[82, 83].  546 

 547 

TMT Data Wrangling and Normalization (Discovery Phase): 548 

After correcting for differential sample loading, the ratios of sample proteins to their 549 

respective bridge proteins were computed. Here, data from bridge samples was used 550 
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for quality control and to correct for batch-to-batch technical variations. Values were 551 

subsequently log-transformed and mean-centered. Data from all batches were 552 

combined and analyzed for possible outlier observations using OutlierDM R Package. 553 

Proteins were removed if their frequency of observation was less than half of all 554 

samples.  For one-hit wonders in each batch of experiment, a retention time (RT) 555 

predicting model was built in Python using DeepRT+ as described by Ma, Ren [30]. 556 

Prediction performance was assessed with coefficient of determination (R2) and delta-557 

t95% (∆t95%). ∆t95% is the minimum time window containing deviations between the 558 

observed and the predicted RT for 95% of the peptides. Peptides with RT outside the 559 

∆t95% range were excluded from downstream analysis. Missing entries in the data were 560 

imputed by making random draws from the left tail of the gaussian distribution of the 561 

entire log-transformed data matrix (using -2.5 SDs from the mean, width = 0.3). 562 

 563 

Protein Feature Selection and Differential Abundance Analyses 564 

To determine the subset of protein features that differentiated cases from non-cases, or 565 

postoperative expression profiles from baseline, Elastic Net algorithm was used [31]. 566 

This is a regularization and feature selection method with good performance on high-567 

dimensional data (i.e., an n×p data with very large p proteins but small n samples). 568 

Elastic Net is insensitive to features that dominate the matrix (e.g., albumin) and likely 569 

suppress signal from low abundance predictors and skew model coefficients. In 570 

addition, Elastic Net is a good choice if overfitting and multicollinearity (or protein 571 

features that are highly correlated and essentially communicate the same information) 572 

are a concern. Tuning parameters were achieved by grid optimization with a five-fold 573 
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nested cross-validation where the last fold was held out for testing. The average of 574 

hyperparameters from all folds were computed and used to build the final model. 575 

 576 

Using the subset of protein features, an unsupervised visualization of the data was 577 

achieved with principal component analysis (PCA). Hierarchical clustering was 578 

employed to check for reproducibility of replicate samples and inherent sample clusters, 579 

and together with a heatmap, the overall protein expression patterns. Here, clustering 580 

was achieved using Ward’s clustering algorithm.[84] Briefly, Ward’s minimum variance 581 

method begins with singleton clusters and recursively merges them by minimizing the 582 

total within-cluster variance as the objective function. After this point, protein values for 583 

any given biological replicates were summarized as means prior to differential 584 

abundance analyses. Two-way comparison for differential abundance was achieved by 585 

Student’s t-test, assuming unequal variance. Differential abundance analysis was 586 

visualized with volcano plots. Because statistical comparison was done for only a 587 

subset of proteins, no correction for multiple hypothesis testing was done. Proteins were 588 

deemed differentially regulated between conditions if there was a statistically significant 589 

t-test (p value cutoff ≤ 0.05) and a log2 fold-change of at least ±1. This fold-change 590 

cutoff was selected to prioritize a panel of biomarkers with significant changes between 591 

conditions that is unlikely to be due to chance. 592 

 593 

PRM Label-free Data Procession (Validation Phase): 594 

Raw files were imported into Skyline v21.2.0.369 [85]. Precursor peptides with 595 

modifications other than carbamidomethylation of cysteine (as fixed modification) or 596 
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oxidized methionine (as variable modification) were excluded.  Peptide quantification 597 

criteria was defined as follows: (1) consistently identified precursors across all validation 598 

samples, (2) with maximum of two missed cleavages, (3) a consistent minimum of five 599 

transitions, and (4) at least 0.95 dop-product with the spectral library of chromatograms. 600 

All peak boundaries were manually inspected for interference-free co-eluting transitions 601 

before peak areas were integrated at the MS2 level. For any given precursor peptide, 602 

the five most intense fragment ions in the m/z range of 120 – 1500 were used for 603 

quantification. Final dataset was exported as .csv and analyzed in R environment for 604 

statistical computing (v4.1.2; R Core Team 2021). No imputations were required in the 605 

validation data. Data was normalized by computing peak area ratios relative to 606 

CDS1_SCHPO to correct for run-to-run variations. For each protein biomarker, Kruskal 607 

Willis global test was first used followed by post-hoc Mann-Whitney U test for pairwise 608 

comparisons of the normalized peak areas between the different sample collection 609 

timepoints (baseline, post-bypass and post-operative day 1). 610 

 611 

 612 

Data accessibility statement: 613 

Datasets from the discovery and validation phases are available as supplemental 614 

material. 615 

 616 

 617 

 618 

 619 
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Figure 1 Caption: Study Design and Biomarker Discovery Workflow 620 

Biomarker discovery: a cohort of 15 subjects were selected from the parent study of 100 621 

patients who underwent a non-emergent coronary artery bypass grafting (CABG) on 622 

cardio-pulmonary bypass (CPB) as part of a previously published clinical trial (1,2). 623 

Plasma samples of delirium cases (CAM+) and non-delirium controls (CAM-) were 624 

retrieved from the biorepository for subsequent proteomic analysis (3). Samples were 625 

immunodepleted, digested and labeled with multiplex isobaric quantification (TMT) 626 

reagents. For each set of TMT reagents, two channels were reserved for bridge 627 

samples for post-hoc batch correction (4). TMT-labeled samples were concatenated (5) 628 

and additionally fractionated (6) prior to LC-MS/MS (7) for quantification at MS3 (8). 629 

After peptide spectral matching and false discovery rate (FDR) curation, the final 630 

dataset of 3803 proteins was quantified and analyzed for candidate biomarkers (9). 631 

 632 

 633 

Figure 2 Caption: 634 

A. Total number of proteins identified per batch. Bars are demarcated by the 635 

number of unique peptides used for protein identification. Gray portion of each 636 

barchart represents proteins identified by only a single peptide, highlighting the 637 

scope of one-hit proteins in our analysis. 638 

B. Number of proteins identified in a cumulative number of experimental batches. 639 

For example, of the 1638 total proteins identified in up to two cumulative batches 640 

of experiments (cumulative batch ≤ 2), about 90% of those (n = 1470) were one-641 

hit proteins. The number of one-hit proteins increases only marginally with 642 
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increasing cumulative batches (light green portion of the green bars), in contrast 643 

to proteins identified from at least two peptides. 644 

C. Chromatographic retention times of select peptides from the discovery 645 

experiment. Plot shows the consistency of retention times (RT) of 646 

K.GTEAAGAMFLEAIPMSIPPEVK.F (blue rectangle), observed in two fractions 647 

from multiple LC-MS runs. K.GTEDFIVESLDASFR.Y (red rectangle), on the 648 

other hand, was only identified once. In the absence of additional peptides, these 649 

single peptides required further information to reduce false protein assignments 650 

D. Scatter plot of experimental and predicted RTs of peptides from experimental 651 

batch 1. RTs were predicted by training a deep learning RT predictor, DeepRT+. 652 

Prediction performance is assessed with R2 and ∆t95% (red dashed lines). up = 653 

number of unique peptides trained. 654 

E. Selection of the final 1731 proteins for downstream differential abundance 655 

analysis. Use of DeepRT+ salvaged 495 one-hit proteins that would otherwise be 656 

removed from downstream analysis. 657 

F. Dynamic range of all 1731 proteins, ranked in decreasing order of intensity. Each 658 

dot represents the median intensity of all intensity values recorded for a given 659 

protein across all samples. Intensity is plotted on the log-scale and spans 6.3 660 

orders of magnitude between the high-abundance classical plasma proteins and 661 

the low-abundance signaling proteins. Functional groups are based on Putnam's 662 

classification. Red dots highlight representative members in each functional 663 

group. Labels are gene names of the corresponding proteins 664 

 665 
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 666 

Figure 3 Caption: 667 

A. Principal component analysis of all discovery samples (including replicates). 668 

Clustering is based on a subset of 64 proteins identified by the penalized 669 

regression approach (ElasticNet) for feature selection. 670 

B. Hierarchically clustered heatmap of proteomic signatures of delirium cases and 671 

non-delirium controls at two time points (baseline and post-operative day 1, 672 

PO1). Post-operatively, a subset of proteins (protein cluster 2, dashed lines) 673 

shows a higher expression in cases relative to non-cases, although the 674 

expression of this subset of proteins was very similar between the two groups at 675 

baseline 676 

C. Volcano plot of p-value (log10 scale) vs fold-change (log2 scale) of the 47 proteins 677 

that explain most of the variation in proteomic profiles of the baseline and post-678 

operative day 1 samples. Blue dot means protein is significantly different at PO1 679 

relative to baseline by at least 2 folds (p-value cut-off = 0.05) 680 

D. Volcano plot of the 64 proteins that explain most of the variation in proteomic 681 

profiles between delirium cases and non-delirium controls. 682 

E. Diagnostic accuracy of the panel of 11 differentially abundant proteins that 683 

discriminate cases from non-cases. 684 

F. Functional analysis of biomarkers for biological processes enriched among the 685 

panel of 11 differentially abundant proteins that discriminate cases from non-686 

cases. 687 

 688 

  689 
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Figure 4 Caption: Biomarker Validation 690 

Validation samples included baseline (B), post-bypass (P-BP) and post-operative day 1 691 

(PO1) samples. To each unlabeled validation sample, an equimolar amount of CDS1, a 692 

protein from S. pombe with no sequence overlap to human proteins previously 693 

expressed and purified from bacteria, was added as a reference standard to control for 694 

run-to-run variations. Select tryptic peptides of regulated proteins from the discovery 695 

phase were targeted for quantification using via PRM-MS. Concentrations of each 696 

biomarker were analyzed for changes across the sampling time points (B, PB, PO1). 697 

Hypothetical data are depicted as exemplars.  698 

 699 

 700 

Figure 5 Caption: 701 

A. Normalized peak areas of CNDH2_HUMAN condensin subunit with increasing 702 

concentrations of its heavy-labeled stable isotope standards spiked into a 703 

background matrix of plasma. Grey area is the 95% confidence band of the 704 

regression line of fit: y = (12.84 + 33.25x[CNDH2]) x 106 705 

B. Number of precursors monitored concurrently during five-minute windows across 706 

the 78-minute gradient for used for validation experiments. 707 

C. Representative extracted ion chromatogram (XIC): the five most intense 708 

fragment ions of the CRP_HUMAN peptide ESDTSYVSLK, co-eluting at 709 

28.3mins. All other peptides were quantified similarly with a minimum of five 710 

transitions consistent across all samples, a minimum dot product (dotp) of 95% 711 
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and manual inspection for distinct peak boundaries and interference-free 712 

transitions. 713 

D. Principal component analysis of all validation samples. Notable here is the 714 

clustering of post-bypass samples together with the baseline, signaling similar 715 

proteomic signatures between the two timepoints. 716 

E. Representative plot of differential abundance analysis of validated proteins for 717 

the candidate biomarker C-reactive protein (CRP), showing changes across the 718 

three sample collection time points: baseline, post-bypass (P-BP) and post-719 

operative day one (PO1)  720 

F. ROC analysis of the discriminatory power of the validated panel of biomarkers  721 

 722 

  723 
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Table Captions: 724 

1. Selected baseline characteristics of study subject in the discovery phase. 725 

Delirium cases were age- and sex-matched to non-delirium controls. Details of all 726 

clinical characteristics of study subjects are reported elsewhere (Shaefi et al., 727 

2021). Abbreviations: tMOCA: telephone-based Montreal Cognitive Assessment 728 

test for Dementia 729 

2. Summary of DeepRT+ training parameters and results of prediction assessment. 730 

Training. Given that each batch of sample has unique LC-MS experimental 731 

conditions that uniquely impact RT, seven different models were built for each of 732 

the seven batches of experiments. Abbreviations: RT (min): minimum RT for the 733 

batch; RT (max): maximum RT; aa: amino acid; up (training): number of unique 734 

peptides trained; up (predicted): number of unique peptides whose RTs were 735 

predicted; R2: coefficient of determination = correlation coefficient for bivariate 736 

analysis; ∆t95%: deviations between observed and predicted RT that contains 737 

95% of peptides for a given batch of experiment. 738 

3. Discovery proteomics data 739 

4. Condensin subunit (NCAPH2) linearity assessment 740 

5. List of target peptides for PRM and instrument parameters 741 

 742 
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Supplemental Figures: 744 

1. Chromatographic retention times of select peptides, showing consistency of RT 745 

and adjacency of sample fractions from which they were identified 746 

2. Scatter plot of experimental and predicted RTs of peptides from experimental 747 

batch 2 - 7. up = number of unique peptides trained 748 

3. Functional analysis of biomarkers for enriched cellular components 749 

4. Normalized peak areas of CNDH2_HUMAN condensin subunit, superimposed 750 

with CDS1-SCHPO against increasing concentrations of its heavy-labeled stable 751 

isotope standards spiked into a background matrix of plasma. 752 

5. Flowchart of PRM method development 753 

6. Differential abundance analysis of validated proteins, showing changes across 754 

the three sample collection time points: baseline, post-bypass (P-BP) and post-755 

operative day one (PO1). †: SAA1 and SAA2 could not be distinguished in the 756 

validation phase as none of the peptides unique to them met the quantification 757 

criteria. 758 

 759 
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