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Abstract 

Prenatal phthalate exposure has previously been linked to the development of autism spectrum 

disorder (ASD). However, the underlying biological mechanisms remain unclear. We investigated 

whether maternal and child central carbon metabolism is involved as part of the Barwon Infant Study, 

a population-based birth cohort of 1074 Australian children. We estimated phthalate daily intakes 

using third-trimester urinary phthalate metabolite concentrations and other relevant indices. The 

metabolome of maternal serum in the third trimester, cord blood at birth and child plasma at 1 year 

were measured by nuclear magnetic resonance. We used the Small Molecule Pathway Database and 

principal component analysis to construct composite metabolite scores reflecting metabolic 

pathways. ASD symptoms at 2 and 4 years were measured by subscales of the Child Behavior Checklist 

and the Strengths and Difficulties Questionnaire, respectively. Multivariable linear regression analyses 

demonstrated (i) associations between higher prenatal di(2-ethylhexyl) phthalate (DEHP) levels and 

increased activity in maternal non-oxidative energy metabolism pathways, specifically non-oxidative 

pyruvate metabolism and the Warburg Effect, and (ii) associations between increased activity in these 

pathways and increased offspring ASD symptomology at 2 and 4 years of age. Mediation analyses 

suggested that part of the mechanism by which higher prenatal DEHP exposure influences the 

development of ASD symptoms in early childhood is through a maternal metabolic shift in pregnancy 

towards non-oxidative energy pathways, which are inefficient compared to oxidative metabolism. 

Interventions targeting maternal metabolic activity in pregnancy may be beneficial in reducing the 

potential risk to the developing fetus. 
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Introduction 

Autism spectrum disorder (ASD) is characterized by impaired social interaction and 

communication, as well as perseverative and repetitive behaviors.1 The etiology of ASD is not yet fully 

understood. However, both an adverse early environment and genetic predisposition appear 

important.2 ASD pathophysiology commences in the prenatal period3, an energy-demanding time of 

rapid brain development.4 ASD prevalence has risen substantially in the last two decades and is now 

1–2.5%.5 This increase is unlikely to be explained by factors such as diagnostic changes6 or genetics7 

alone. Thus, there is growing concern over the impact of environmental agents that have been 

epidemiologically associated with ASD,8, 9 and a need to understand common molecular mechanisms 

by which they contribute to ASD development. 

Of the environmental candidates, gestational exposure to manufactured chemicals, such as 

phthalates, is of particular concern given increasing evidence of links to adverse early 

neurodevelopment.10 Phthalates are plasticizers used to increase the flexibility of plastics. However, 

as they are not bonded to the polymer, leaching occurs.11 They can be ingested, inhaled or dermally 

absorbed and major sources of exposure include food processing and packaging materials and 

personal care products.12 Almost all pregnant women in Western populations have detectable levels 

of phthalates in their urine.12, 13 Higher prenatal phthalate exposure has been associated with the 

development of ASD and ASD symptoms in some14-17 but not all18-20 studies. In the Barwon Infant 

Study, we reported that a higher combined level of four phthalates prenatally is associated with an 

increased likelihood of offspring ASD and ASD traits at 4 years (OR 1.55, 95% CI 1.00, 2.40; OR 1.51, 

95% CI 1.20, 2.01, respectively).21 Given the global increase in phthalate production22 and the lack of 

success of individual-level avoidance trials thus far,23 there is a need to obtain a higher level of causal 

evidence on this issue to inform population-wide strategies. One method for achieving this is by 

investigating potential molecular mediators. 

Both higher prenatal phthalate exposure and ASD have been associated with alterations in 

central carbon metabolism (referred to as ‘energy metabolism’ herein), that is, either impaired 

‘oxidative metabolism’ or increased ‘non-oxidative metabolism’. Under normal conditions, oxidative 

processes within the mitochondria maximize energy generation (Figure 1, pathway 1).24 Under 

adverse conditions, like hypoxia25, 26 or oxidative stress27, activity may be diverted to less energy 

efficient non-oxidative processes outside the mitochondria (Figure 1, pathway 2).24 Elevated pyruvate, 

lactate, acetate and alanine blood levels indicate a metabolic shift towards non-oxidative processes 

with a more than ten-fold reduction in ATP energy production per glucose molecule compared to 

oxidative energy metabolism.24  
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Higher prenatal phthalate exposure has been positively associated with metabolic changes 

suggestive of reduced energy output from maternal oxidative metabolism28, 29 and increased non-

oxidative lipid metabolism in the offspring.30-32 Non-oxidative carbon metabolites – pyruvate, lactate, 

acetate and alanine – have not, to our knowledge, been previously examined in children exposed to 

phthalates in utero. 

Inefficient maternal energy metabolism in pregnancy, indicated by elevated metabolic 

markers of non-oxidative metabolism, has been associated with the increased occurrence of offspring 

ASD.33-36 In individuals diagnosed with ASD, energy metabolism abnormalities are common.37, 38 

Prevalence estimates range from 30-50% for biomarkers of inefficient energy metabolism,39 including 

the elevation of serum carbon intermediates: pyruvate40, lactate41, and alanine42. In fact, it is 

estimated that 5% of individuals with ASD have classically defined mitochondrial disease39 compared 

to 0.01% of the general population.43 

A modern causal inference technique, molecular mediation, is increasingly being employed to 

understand the biological mechanisms by which prenatal phthalate exposure influences adverse 

health outcomes.44, 45 However, the role of altered energy metabolism as an underlying mechanism 

for the link between higher prenatal phthalate levels and offspring ASD has not, to our knowledge, 

been evaluated. Here, we aimed to investigate (i) how phthalate exposure in utero associates with the 

mother and child’s energy metabolic profiles, (ii) how energy metabolic profiles associate with 

subsequent ASD symptomology in early childhood, and (iii) if the mother and/or child’s energy 

metabolic profiles mediate the association between prenatal phthalate exposure and ASD 

symptomology.  

 

Methods 

Cohort sample 

From June 2010 to June 2013, a birth cohort of 1,074 mother–infant pairs (10 sets of twins) 

was recruited using an unselected antenatal sampling frame in the Barwon region of Victoria, 

Australia.46 Eligibility criteria, population characteristics and measurement details have been provided 

previously.46 The study was approved by the Barwon Health Human Research Ethics Committee (HREC 

10/24) and families provided written informed consent.  

 

Prenatal phthalate exposure 

Phthalate metabolite levels in the third trimester were measured in 842 women using a single 

spot urine specimen collected at 36 weeks. High-performance liquid chromatography/tandem mass 

spectroscopy with direct injection was performed by the Queensland Alliance for Environmental 
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Health Science as has been outlined previously.21 Repeated spot specimens of monoethyl phthalate 

(MEP), monoisobutyl phthalate (MiBP), mono-n-butyl phthalate (MnBP), mono-(2-ethyl-5-

hydroxyhexyl) phthalate (MEHHP), and mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) in the third 

trimester have intra-class correlation coefficients (ICC) above 0.4 in at least one of two previous 

studies.47, 48 This suggests adequate reliability of single spot specimens for capturing third-trimester 

phthalate exposure. 

 Urinary phthalate metabolite measurements were corrected for batch, specific gravity and 

time of day of sample collection.21 Phthalate estimated daily intake was then calculated accounting 

for maternal prenatal weight, fractional excretion of the compound, and compound-to-metabolite 

molecular weight ratio.21 The metabolites MEHHP, MEOHP and mono-(2-ethyl-5-carboxypentyl) 

phthalate (MECPP) were used to calculate di-(2-ethylhexyl) phthalate (DEHP) daily intake; MEP for 

diethyl phthalate (DEP); MiBP for diisobutyl phthalate (DiBP), and MnBP for di-n-butyl phthalate 

(DnBP; see Table 1S for abbreviations). Due to their similarity, DiBP and DnBP daily intakes were 

summed to make a combined daily intake measure that we will refer to as ‘DBPs’ herein. DEHP, DEP, 

DiBP and DnBP daily intakes were summed to make an overall composite phthalate daily intake 

measure. Findings expanded on our previous work21, 49 and considered the same phthalate measures 

which were log transformed to base two for analyses. 

 

Metabolomic profiling 

Metabolomic analysis was performed on non-fasting maternal serum samples collected at 28 

weeks of gestation, umbilical cord serum samples, and child’s plasma samples collected at 1 year of 

age using the Nightingale nuclear magnetic resonance-based platform (Helsinki, Finland). Platform 

details can be found elsewhere.50 Low-molecular-weight metabolites were quantified according to 

Nightingale’s 2016 (maternal, child) and 2019 (cord) bioinformatics protocols.50, 51 Analyses were 

restricted to metabolites related to central carbon metabolism (amino acids, n=9; ketone bodies, n=3; 

glycolysis-related, n=5). 

 

Autism spectrum disorder: symptoms 

The DSM-5-oriented autism spectrum problems subscale of the Child Behavior Checklist for 

Ages 1.5-5 (CBCL-ASP)52 and the peer relationship problems and prosocial behavior subscales of the 

Strengths and Difficulties Questionnaire for Ages 2-4 (SDQ-peer and SDQ-prosocial)53 completed by 

the child’s caregiver at 2-3 years and 4 years, respectively, were used as measures of ASD symptom 

severity. Subscale scores were calculated by summing the responses to behavioral statements (0:not 
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true, 1:somewhat true, 2:very true). CBCL-ASP was based on 12 items (range 0-24) and SDQ-peer and 

SDQ-prosocial were based on 5 items (range 0-10).  

In this cohort, CBCL-ASP predicted subsequent doctor-diagnosed autism with an area under 

the curve (AUC) of 0.92.54 In the literature, the CBCL/1.5-5 pervasive developmental problems scale 

(CBCL-PDP), SDQ-peer and SDQ-prosocial have moderate to high accuracy in distinguishing 

preschoolers with ASD from those who are typically developing (AUC 0.9255, 0.82 and 0.7756), 

respectively. CBCL-ASP has replaced CBCL-PDP to reflect changes in the DSM-5.  

 

Statistical methods 

Pathway scores were constructed using the Small Molecule Pathway Database (SMPDB).57 For 

each central carbon metabolism pathway that contained at least three of the 17 metabolites, a 

principal component analysis was run on the concentrations of the metabolites in that pathway and 

the first principal component (PC1) was used as a composite measure. Separate multivariable linear 

regression models were used to estimate the associations for BIS children between (i) the phthalate 

measures and each of the individual and composite metabolite measures at the three timepoints (28 

weeks of gestation, birth, 1 year), and (ii) the metabolite measures and each of the ASD-symptom 

outcomes.  

Two models were run for each analysis using all available data: one with a minimal set of 

adjustment factors limited to child’s assigned sex at birth and process factors including gestational 

age at urine collection, gestational age at serum collection (prenatal timepoint only), maternal 

contamination of cord serum (birth timepoint only), child’s age at plasma collection (1-year timepoint 

only), and child’s age at behavior ratings; and another with a more extensive set of adjustment factors. 

For the latter, both prior knowledge and data-adaptive methods were used to (i) identify disease 

determinants that are independent of exposure and (ii) help separate confounders from factors that 

are antecedents or mediators of the putative exposure-disease associations.58 This data-adaptive 

approach is useful in low-knowledge settings where initial directed acyclic graphs may be 

incomplete.58 Focus was given to factors previously identified as being associated with ASD.54 

Additional potential confounders were individually added to the model and the change in the estimate 

of the exposure-outcome association was assessed (Table 2S).  

 Metabolite pathway scores (potential mediator, M) that were (i) associated with any of the 

phthalate measures (exposure, E) in the regression of M on E, and (ii) with any of the ASD-symptom 

outcomes (outcome, O) in the regression of O on M, were each tested as mediators of the E-O 

association in formal mediation analyses. The total effect of prenatal phthalate levels on ASD 

symptoms was decomposed into two components: the natural direct effect (the portion of the effect 
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that was not mediated by metabolite level) and the natural indirect effect (the portion of the effect 

that was mediated by metabolite level; Figure 1S). 

Sex-specific and sex-interaction analyses were conducted. To check that the time of day of 

maternal serum collection did not influence the main results, sinusoidal and cosinusoidal functions of 

sample collection time were included as adjustment factors in the regression models. Statistical 

analyses were performed using Stata version 15.1 (StataCorp, USA) and R version 4.1.0 (R Foundation 

for Statistical Computing). Mediation analyses were implemented using the mediation R package.59 

 

Results 

All or almost all (98%-100%) of the 842 women with phthalate measurements in the inception 

cohort had detectable levels of DEHP, DEP, and DBPs metabolites which varied more than 1000-fold 

(Table 3S). In the study sample (N=720 children; participant flowchart in Figure 2; sample 

characteristics in Table 1), the geometric mean for DEHP daily intake was 1.6μg/kg bodyweight/day 

(geometric SD 2.1) which is well below the current tolerable daily intake of 50μg/kg bodyweight/day 

in Europe.60 Most children exhibited few ASD symptoms and only 1% (n=7, 1 female) had an ASD 

diagnosis (Table 1). Summary statistics for metabolites are provided in Table 1 (prenatal) and Table 

4S (birth and 1-year).  

 

Prenatal phthalates and maternal prenatal metabolomics 

Higher DEHP exposure and higher pyruvate, lactate and alanine levels 

Higher DEHP exposure was associated with higher levels of pyruvate and lactate (Figure 3/2S). 

The data was also somewhat compatible with a positive association between DEHP and alanine. A 

doubling in the daily intake of DEHP during pregnancy was associated with an estimated mean 

increase of 2.4μmol/L (95% CI 0.0, 4.7), 38.7μmol/L (95% CI 6.1, 71.3) and 2.8μmol/L (95% CI -0.2, 5.8) 

in pyruvate, lactate and alanine, respectively (Table 5S). When considering other phthalate measures, 

similar but generally weaker patterns were observed for lactate and alanine (Figure 3S). 

 

Higher DEHP exposure associated with higher non-oxidative energy pathway scores 

In non-oxidative pyruvate metabolism, pyruvate is converted to lactate, acetate and alanine 

and our Non-Oxidative Pyruvate Metabolism Score (NOPMS) captured 45% of the overall variability. 

In the Warburg Effect, glucose is converted to pyruvate which is then converted to lactate and our 

Warburg Effect Metabolism Score (WEMS) captured 57% of the overall variability. A doubling in the 

daily intake of DEHP during pregnancy was associated with an estimated mean increase of 0.09 SD 

units (95% CI 0.02, 0.15) and 0.08 SD units (95% CI 0.02, 0.15) in the NOPMS and WEMS, respectively 
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(Figure 3/2S). Similar but weaker patterns were observed for the composite phthalate measure 

(Figure 3S). However, for DEP and the DBPs, the data had low compatibility with any association being 

present which suggests the findings for the composite phthalate measure were primarily driven by 

DEHP (Figure 3S). 

 

Maternal prenatal metabolomics and offspring ASD symptoms 

Higher pyruvate, lactate, citrate and alanine levels associated with higher ASD symptom scores 

For a 1 SD elevation in pyruvate, citrate and alanine, the estimated mean increase in CBCL-

ASP at 2 years was 0.17 points (95% CI 0.03, 0.31), 0.15 points (95% CI 0.01, 0.29), and 0.19 points 

(95% CI 0.04, 0.33), respectively (Figure 3/2S). For a 1 SD elevation in pyruvate, citrate and lactate, 

the estimated mean increase in SDQ-peer problems at 4 years was 0.18 points (95% CI 0.07, 0.28), 

0.19 points (95% CI 0.08, 0.29), and 0.14 points (95% CI 0.04, 0.24), respectively (Figure 3/2S). See 

Table 5S for unscaled regression estimates. 

 

Higher non-oxidative energy pathway scores associated with higher ASD symptom scores 

The estimated mean increase in CBCL-ASP score at 2 years for a 1 SD elevation in NOPMS and 

WEMS was 0.19 points (95% CI 0.05, 0.34) and 0.14 points (95% CI 0.00, 0.28), respectively (Figure 

3/2S). Per 1 SD elevation in NOPMS and WEMS, the estimated mean increase in SDQ-peer problems 

score at 4 years was 0.15 points (95% CI 0.04, 0.25) and 0.16 points (95% CI 0.06, 0.26), respectively 

(Figure 3/2S).  

 

Metabolomics in cord blood and child’s blood at 1 year 

There were no consistent findings across or within the exposure-mediator and mediator-

outcome models at the perinatal (cord serum) or postnatal (1 year child’s blood) time points (Figure 

4S-7S). 

 

Mediation analyses 

Increased maternal non-oxidative energy metabolism in pregnancy partly mediates positive 

association between prenatal DEHP exposure and ASD symptoms 

The indirect effect estimates suggest that elevations in maternal NOPMS and WEMS each 

partially mediate the association between higher prenatal DEHP exposure and increased ASD 

symptomology in early childhood (Figure 4a, 4b, 4d). That is, the data are compatible with the 

hypothesis that higher levels of prenatal DEHP exposure increase maternal non-oxidative energy 

metabolism during pregnancy, which in turn increases the likelihood of offspring ASD symptoms. 
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However, there was a lower degree of compatibility when WEMS and CBCL-ASP were considered as 

mediator and outcome, respectively (Figure 4c). 

 

Additional analyses 

Generally, differences by sex were not detected (Figure 8S). There was weak evidence of an 

interaction between sex and the composite phthalate daily intake measure, suggesting the association 

between phthalate exposure and increased non-oxidative energy metabolism is stronger in mothers 

carrying male compared to female fetuses. Larger sample sizes are needed in future work to further 

investigate sex differences. Including sinusoidal and cosinusoidal functions of time of maternal serum 

collection as adjustment factors in the regression models did not materially change the findings.  

 

Discussion 

Using causal mediation analyses, this study is the first to report that a metabolic shift in 

maternal energy metabolism in pregnancy partially underlies the association between higher prenatal 

DEHP exposure and increased offspring ASD symptomology in early childhood. This shift is towards 

extra-mitochondrial non-oxidative pathways – non-oxidative pyruvate metabolism and the Warburg 

Effect – that are far less efficient at generating energy than intramitochondrial oxidative 

phosphorylation.  

In this study, higher prenatal DEHP exposure was associated with elevated lactate, pyruvate, 

NOPMS and WEMS in maternal serum during pregnancy. Similar positive associations between 

phthalate levels and non-oxidative metabolites (lactate and pyruvate) have been reported in maternal 

prenatal urine samples.28, 29 DEHP exposure also causes an accumulation of lactate, suggestive of 

increased non-oxidative metabolism, in various cell types in vitro (cardiomyocytes61, adipocytes62, 63 

and Sertoli cells64) and muscle tissue in vivo65, and is linked to disrupted regulation of enzymes along 

central carbon metabolism pathways (Figure 9S).  

DEHP could act directly or indirectly to cause a metabolic shift towards non-oxidative energy 

metabolism in pregnant women. DEHP and its metabolites may enhance the activity of non-oxidative 

energy metabolism pathways directly by binding to or altering the activity of regulators of non-

oxidative metabolism (for example, the mitochondrial pyruvate carrier complex or peroxisome 

proliferator-activated receptors66, 67). DEHP could also cause this metabolic shift indirectly. For 

instance, DEHP exposure is associated with an elevation in cellular oxidative stress,68 which is linked 

to a subsequent increase in carbon intermediates.27, 69 DEHP may also contribute to mitochondrial 

dysfunction,70, 71 which diminishes cellular energy supply and increases the utilization of non-oxidative 

energy metabolism pathways. Alternatively, a DEHP-induced elevation of non-oxidative metabolites 
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could be due to a high glycolytic rate that strains the oxidative capacity of the mitochondria72; 

however, there is inconsistent evidence of hyperactive glycolysis after DEHP exposure.71 Overall, 

DEHP, through several possible direct or indirect actions, could increase the utilization of non-

oxidative energy pathways. 

A metabolic shift towards maternal non-oxidative energy metabolism during pregnancy could 

arise through multiple underlying biological processes with known links to ASD. Oxidative stress, 

reported to be induced by DEHP exposure44, is more likely to be chronic during pregnancy in mothers 

whose children develop ASD33 and greater oxidative stress is associated with the generation of non-

oxidative energy metabolites.72, 73 Similarly, underlying mitochondrial dysfunction increases metabolic 

diversion to non-oxidative pathways73, 74 and mothers with disrupted mitochondrial function during 

pregnancy are also more likely to have children who develop ASD.39 The existing links in the literature 

between these two biological mechanisms39 that both increase non-oxidative energy metabolism and 

offspring ASD risk further support our finding that DEHP-induced disrupted energy metabolism 

contributes to the development of offspring ASD symptomology. 

This is the first report that elevated non-oxidative energy metabolism during pregnancy is 

associated with increased offspring ASD symptomology at both 2 and 4 years. A shift toward non-

oxidative metabolism provides a possible unifying mechanism for a variety of prenatal environmental 

exposures reported to increase the risk of offspring ASD. For instance, studies of pregnant women 

with conditions known to increase the risk of offspring ASD diagnosis (e.g. gestational diabetes75, 

obesity76, psychological stress77 and preeclampsia78) incidentally report an elevation of non-oxidative 

energy metabolites during pregnancy.79 Furthermore, women with deviations in central carbon 

metabolism during pregnancy after exposure to high levels of air pollution are more likely to have 

offspring with ASD.36 Similarly, mothers exposed to chemicals known to increase non-oxidative 

metabolites (e.g. valproate80 and dexamethasone81) are also more likely to have a child diagnosed 

with ASD.82 Rodent studies have demonstrated that manipulations of maternal prenatal energy 

metabolism can result in offspring structural brain abnormalities that are a hallmark of ASD.83-85  

Strengths of the study include comprehensive data on prenatal environmental measures, 

unique serial carbon metabolomic indices and the use of previously validated ASD symptom scales 

from ages two to four years in a large study sample, providing the first setting, to our knowledge, 

where these factors have been examined together. The use of pathway scores allowed us to evaluate 

the composite impact of related metabolites in a biologically defined pathway. The highly 

dimensioned cohort enabled an evaluation of non-causal and causal factors, and the findings of 

regression analyses with the minimal adjustment set persisted after inclusion of confounders. The use 
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of modern causal inference methods allowed us to show molecular mediation. Other causal features 

such as plausibility and dose response were also present.  

It is likely that that elevated non-oxidative energy metabolism is a marker of a closely related 

biological primary cause such as impaired mitochondrial oxidative phosphorylation. However, acetyl 

CoA and other relevant measures were not available to provide a readout on oxidative energy 

metabolism. Further, this project did not perform functional assays such as assessing maternal 

mitochondrial function in pregnancy (e.g. using Seahorse XFe96 Analyzer86) and further work on this 

should be conducted. The sample was not large enough to study ASD diagnosis as a main outcome or 

interrogate differences by sex. Given an ASD prevalence here of 1%, a cohort sample of 6,000 would 

have been required to provide 60 ASD cases and comparator children with highly dimensioned data 

including serial metabolomics. Such cohorts do not, to our knowledge, currently exist. Only single 

urine and blood samples were collected from the mother during pregnancy. However, past work has 

found repeat phthalate measures in pregnancy to be moderately reproducible,47, 48 and we have 

further accounted for some of the features (time of day, maternal weight) associated with variability. 

Maternal blood lactate and pyruvate levels are also relatively consistent across trimester 3.87, 88 

Further, error in measurement introduced by single samples would tend to bias estimates towards 

the null. While, for most mothers, phthalate urinary metabolites were measured later in trimester 3 

than the maternal serum metabolites, adjustment for this time interval had little effect and the 

strength of association between phthalate levels and pathway scores did not materially differ by time 

interval between serum and urine measures. Finally, serum and plasma were non-fasting samples. An 

assessment of the impact of time of maternal blood collection showed it had little effect on the results. 

Our results highlight the important role of the prenatal environment in ASD causation and 

suggest that part of the mechanism by which prenatal exposure to DEHP influences offspring ASD 

symptom development is through factors related to a metabolic shift in maternal energy metabolism 

in pregnancy. A shift towards non-oxidative metabolism, which is inefficient compared to oxidative 

metabolism, may be a common biological response to a variety of prenatal environmental exposures 

that also increase the risk of offspring ASD. Thus, strategies of managing or preventing deviation 

toward non-oxidative energy metabolism in the mother during pregnancy may be beneficial in 

reducing the potential risk to the developing fetus.  
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Figure 1. The metabolic shift towards inefficient non-oxidative energy metabolism. Normal energy 

metabolism typically maximizes the energy generating potential of the mitochondria through the 

oxidization of pyruvate (pathway 1). Metabolic shifts in central carbon metabolism can occur under 

adverse conditions like hypoxia or oxidative stress 25-27, that could be due to toxic substance exposure, 

or other factors. This results in the elevation of non-oxidative pathways, allowing for the diversion of 

carbon metabolic intermediates (pyruvate, lactate, alanine, acetate) away from the mitochondria 

(pathway 2) at the cost of further oxidative energy production (pathway 1). Elevated levels of these 
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carbon metabolic intermediates in the blood or urine thus indicate a metabolic shift towards more 

inefficient non-oxidative energy metabolism.
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Figure 2. Barwon Infant Study participant flowchart. Participants included in each analysis were those with complete data on the variables of interest.
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Table 1. Participant characteristics.  

 
Sample used in mediation 

analyses (N=720) 

  
N 

Mean (SD)  
or % (n) 

or Median [IQR] 
or GM {GSD} 

Parent and household factors 

Mother's age at conception (years) 720 32.1 (4.3) 

Father's age at conception (years) 688 34.0 (5.4) 

All grandparents are Caucasian 717 86.8% (622) 

Mother is university-educated 717 58.0% (416) 

Father is university-educated 704 39.9% (281) 

SEIFA IRSD in lowest tertile 720 29.3% (211) 

Prenatal factors 

Mother’s pre-pregnancy BMI (kg/m2) 646 25.0 (5.2) 

Mother’s weight at 28-week interview (kg) 720 80.4 (14.8) 

Mother was exposed to ETS during preconception or pregnancy 720 7.6% (55) 

Mother smoked throughout pregnancy 720 2.9% (21) 

Mother had gestational diabetes mellitus 608 3.9% (24) 

Mother had pre-eclampsia 700 2.4% (17) 

Mother’s dietary omega-3 (g/day) 699 1.4 (0.6) 

Mother supplemented fish oil throughout pregnancy 467 16.9% (79) 

Mother’s Edinburgh Depression Scale risk category in T1 & T2 530  

   low risk <10 
 

87.4% (463) 

   moderate risk 10-12 
 

8.5% (45) 

   high risk >12 
 

4.2% (22) 

Mother consumed any alcohol in pregnancy 701 51.5% (361) 

Gestational age at blood collection (weeks) 720 28.2 (1.2) 

Gestational age at urine collection (weeks) 720 36.2 (0.7) 

Time interval between blood and urine collection (weeks) 720 8.0 (1.2) 

Maternal plastic exposure (µg/kg body weight/day) 

DEHP daily intake 720 1.6 {2.1} 

DEP daily intake  1.6 {3.8} 

DBPs (DiBP + DnBP) daily intake   1.9 {2.0} 

Sum of DEP, DBPs & DEHP daily intakes 720 6.3 {2.2} 

Maternal glycolysis-related metabolites (μmol/L) 

Glucose  720 4729.3 (1272.4) 

Lactate 720 1839.0 (490.3) 
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Pyruvate 720 121.0 (37.0) 

Citrate 720 129.7 (18.5) 

Glycerol 638 83.2 (30.9) 

Maternal amino acids (μmol/L) 

Alanine 720 391.6 (46.5) 

Glutamine 720 411.3 (56.2) 

Glycine 720 262.0 (34.4) 

Histidine 720 75.5 (13.8) 

Isoleucine 720 44.5 (15.1) 

Leucine 720 67.6 (15.8) 

Valine 719 118.7 (30.0) 

Phenylalanine 720 95.4 (14.7) 

Tyrosine 720 38.7 (11.1) 

Maternal ketone bodies (μmol/L) 

Acetate 720 39.1 (9.2) 

Acetoacetate 720 15.1 [8.6-22.6] 

3-hydroxybutyrate 718 130.1 (67.9) 

Birth factors 

Child's sex 720  

   Female  48.1% (346) 

   Male  51.9% (374) 

Child birthweight category 720  

   low birth weight <2500g 
 

1.0% (7) 

   typical birth weight 2500-4200g 
 

90.6% (652) 

   high birth weight >4200g 
 

8.5% (61) 

WHO Z-score for birthweight by sex and gestational age 720 0.4 (0.9) 

Gestational age at birth (weeks) 720 39.6 (1.2) 

Caesarean birth 720 30.4% (219) 

Apgar score at 5 minutes 709 9 [9-9] 

Multiparous 720 56.1% (404) 

Postnatal factors 

Breastfeeding duration 718   

   no or stopped breastmilk feeding before 1 week  3.9% (28) 

   breastmilk feeding at 1 week but not 6 months of age  29.2% (210) 

   any breastmilk feeding for 6 months or greater  66.9% (480) 

Child ASD diagnosis and symptoms 

CBCL/1.5-5 autism spectrum problems subscale (raw score) 596 1 [0-2] 

Child’s age at CBCL/1.5-5 assessment (years) 597 2.5 (0.1) 
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SDQ P2-4 peer relationship problems subscale 674 1 [0-2] 

SDQ P2-4 prosocial behaviour score subscale 674 8 [6-9] 

Child’s age at SDQ P2-4 assessment (years) 678 4.1 (0.2) 

ASD diagnosis (4 years) 671 1.0% (7) 

NB. SD, standard deviation; IQR, interquartile range; GM, geometric mean; GSD, geometric standard deviation; 
SEIFA, Socio-Economic Indexes for Areas; IRSD, Index of Relative Socio-economic Disadvantage; BMI, Body mass 
index; ETS, Environmental tobacco smoke; T1 & T2, Trimester 1&2; WHO, World Health Organization; DEHP, 
Diethylhexyl phthalate; DiBP, Diisobutyl phthalate; DnBP, Di-n-butyl phthalate; DEP, Diethyl phthalate; CBCL, 
Child Behavior Checklist; SDQ, Strengths and Difficulties Questionnaire; ASD, Autism spectrum disorder. 
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Figure 3. Higher prenatal maternal DEHP exposure is associated with enhanced prenatal maternal non-oxidative energy metabolism pathways. 

Increased activity of prenatal maternal non-oxidative energy metabolism pathways is associated with more offspring ASD symptoms.  
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DEHP, di(2-ethylhexyl) phthalate; CBCL-ASP, Child Behavior Checklist autism spectrum problems subscale; SDQ-peer, Strengths and Difficulties 

Questionnaire peer relationship problems subscale; T3, Trimester 3; 

1 Model adjusted for child’s sex, gestational age at blood collection, gestational age at urine collection, mother’s age at conception, any maternal smoking in 

pregnancy, maternal diet in pregnancy; 

2 Model adjusted for child’s sex, gestational age at blood collection, child’s age at assessment of ASD symptomology, socioeconomic disadvantage, maternal 

multiparity.    
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Figure 4. Prenatal maternal non-oxidative pyruvate metabolism (a and b) and Warburg Effect metabolism (d) are partial mediators of the association 

between prenatal maternal DEHP exposure and offspring ASD symptomology in early childhood.   

Models with metabolism pathway score as the dependent variable are adjusted for child’s sex, gestational age at blood collection, gestational age at urine 

collection, mother’s age at conception, any maternal smoking in pregnancy, and maternal diet during pregnancy; models with an ASD symptoms measure as 

the dependent variable are adjusted for child’s sex, gestational age at blood collection, child’s age at ASD symptom questionna ire, socioeconomic 

disadvantage, and maternal multiparity; DEHP, di(2-ethylhexyl) phthalate; CBCL-ASP, Child Behavior Checklist autism spectrum problems subscale; SDQ-peer, 

Strengths and Difficulties Questionnaire peer relationship problems subscale; 

1 Estimated increase in metabolite (mmol/L) per doubling of prenatal DEHP daily intake; 

2 Estimated increase in ASD symptom score per mmol/L increase in metabolite measure. 
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