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Abstract 

Obesity has a strong genetic component, with up to 20% of variance in body mass 

index (BMI) being accounted for by common polygenic variation. Most genetic 

polymorphisms associated with BMI are related to genes expressed in the central 

nervous system. At the same time, higher BMI is associated with neurocognitive 

changes. However, the direct link between genetics of obesity and neurobehavioral 

mechanisms related to weight gain is missing. Here, we use a large sample of 

participants (n>4,000) from the Adolescent Brain Cognitive Development cohort and 

investigate how genetic risk for obesity, expressed as polygenic risk score for BMI 

(BMI-PRS), is related to brain and behavioral differences in adolescents. In a series 

of analyses, we show that BMI-PRS is related to lower cortical volume and thickness 

in the frontal and temporal areas, relative to age-expected values. Relatedly, using 

structural equation modeling, we find that lower overall cortical volume is associated 

with higher impulsivity, which in turn is related to an increase in BMI 1 year later. In 

sum, our study shows that obesity might partially stem from genetic risk as 

expressed in brain changes in the frontal and temporal brain areas, and changes in 

impulsivity.  
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1 Introduction 

Obesity is consistently associated with alterations in brain anatomy [1–10]. These 

changes can be detected by magnetic resonance imaging (MRI) and affect both grey 

and white matter. Numerous mechanisms have been proposed to explain these 

findings.   

Brain morphometry may underpin behavioral traits that predispose to obesity [11–

14]. Indeed, obesity is heritable and polygenic [15–18] - twin studies show that the 

heritability of body mass index (BMI) is 70%, and large-scale meta-analyses of 

genome-wide association studies (GWAS) have identified over 700 risk alleles [15, 

18–20]. Polygenic risk scores for BMI (BMI-PRS), representing the sum of genetic 

risk per individual, account for 5-15% of variance in BMI proper [18, 21]. It has been 

suggested that the risk alleles act in the brain to cause a behavioral phenotype that 

renders individuals prone to positive calorie balance and weight gain [17, 22, 23]. 

This phenotype may involve satiety and hunger signaling in the hypothalamus, but 

may also include the trait uncontrolled eating, which has been linked to function of 

brain systems implicated in learning and memory, stress, motivation, and executive 

control [14, 15, 23, 24]. 

Conversely, it is also known that obesity can change the brain. Chronically, adiposity 

is associated with a metabolic syndrome that includes hypertension, hyperlipidemia, 

and insulin resistance, which can cause brain atrophy over time [25]. Even over 

shorter time-spans, positive calorie balance may lead to adaptive brain changes. 

Studies of diet-induced obesity in rodents show widespread alterations in synaptic 

density and neuronal composition, occurring in parallel with or even prior to weight 

gain [26–33] 
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Disentangling the chain of causality between brain anatomy and obesity is difficult. 

The approach used here is to estimate the effect of polygenic risk for obesity on 

brain anatomy in young children. This would be expected to limit the effect of 

potential confounds due to metabolic syndrome and have a better chance to identify 

the inherited neural endophenotype that renders individuals vulnerable to weight 

gain. We focus on genetic potential for adult obesity, as the goal of childhood obesity 

prevention should be avoidance of adulthood obesity as it is causally linked with 

negative health outcomes [34]. Here, we analyze how genetic risk for adulthood 

obesity is associated with brain structure, executive function, impulsivity, and 1-year 

BMI change in a sample of 4157 children aged 9-11 years.  
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2 Materials and methods 

2.1 Participants – main sample (ABCD) 

We used data from the Adolescent Brain Cognitive Development Cohort (ABCD), a 

longitudinal, multi-site study from the USA [35–37]. We excluded participants with 

outlier BMI values (below 10 kg/m2 or above 50 kg/m2) [11]. We only included 

participants with full neuroimaging data and participants who passed all quality 

control checks. The final sample consisted of 4,157 children of European descent 

(mean age=10 years, SD=0.5 year; mean BMI=17.94 kg/m2, SD=3.30 kg/m2; mean 

weight=35.60 kg, SD=8.58 kg). At the present time PRS calculation is only possible 

in individuals of European descent as GWAS were conducted in this population.  

BMI values were converted to standard deviation scores (BMI SDS), which are z-

scores derived from age and sex of each participant, based on Centers for Disease 

Control and Prevention growth charts [38] using the 'childsds' package in R (mean 

BMI SDS=0.20 kg/m2, SD=1.09 kg/m2). 1-year BMI SDS change values were 

calculated as the difference between BMI SDS at a follow-up appointment and BMI 

SDS at the time of brain and behavioral data collection, hence higher values 

represent a BMI SDS increase. 

2.2 Neuroimaging data – main sample (ABCD) 

Data were collected using 3T magnetic resonance imaging (MRI) scanners of 

different manufacturers (Siemens, General Electric, and Philips) at 22 different sites. 

Data collection was harmonized across all acquisition sites by using standardized 

hardware (e.g., head coils) and adjusting acquisition sequences for each scanner 

manufacturer. All imaging protocols can be found elsewhere [35]. We used cortical 

thickness, cortical volume, and fractional anisotropy data provided by the ABCD 

initiative [39]. Cortical thickness and volume data for each parcel of the Desikan-
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Killiany (DK; 68 parcels) atlas [40] were obtained using FreeSurfer 5.3.0 [41] after 

correcting for gradient nonlinearity distortions. Custom scripts were used to obtain 

fractional anisotropy data for 35 major white matter tracts segmented using 

AtlasTrack [42]. Visual inspection of processed data was conducted to ensure that 

only images with no processing errors were included in the dataset. We used quality 

check values provided by the ABCD Study (pass/fail) to only include participants who 

passed quality control in our final sample. Prior to all but brain age analyses, we 

used ComBat software to remove site variability from cortical thickness, volume, and 

FA data [43]. In addition, we scaled all volumetric measures by total intracranial 

volume. 

2.3 Polygenic risk score calculation 

We assessed genetic risk for obesity using body mass index polygenic risk scores 

(BMI-PRS). BMI-PRS was calculated using PRSice-2 [44] with pruning and 

thresholding of BMI GWAS summary statistics from an independent data sample 

(https://www.ebi.ac.uk/gwas/downloads/summary-statistics)[18]. First, variants in the 

GWAS summary statistics were pruned based on linkage disequilibrium of variants 

within 250kb and r2>0.1. Then, the p-value threshold where the PRS was most 

correlated with phenotypical BMI in the investigated dataset (ABCD) was chosen for 

PRS calculation. We normalized all BMI-PRS for downstream analyses. GWAS 

sample and ABCD sample are independent. 

2.4 Participants – brain age sample (PING) 

To place the anatomical findings in the context of expected neurodevelopmental 

stage, we used a separate sample of similar age. We created a predicted brain age 

model to which we compared each ABCD participant's grey matter measures. To 

this end, we used the Pediatric Imaging, Neurocognition, and Genetics (PING) data 
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[45]. This dataset encompasses 1493 children aged 3-20 years collected across 

multiple sites in the US. For our analysis, we selected a subsample with brain 

measures and age data available (n=781). The average age of this sample was 13 

years (SD=5 years), and range was 3 to 18 years. 

2.5 Neuroimaging data – brain age sample (PING) 

Data were collected using 3T MRI scanners from GE, Siemens, or Philips. Data 

collection was harmonized across 10 study sites by adjusting acquisition sequences. 

Details of data acquisition and processing can be found in [45]. Here, we used grey 

matter volume and thickness measures provided by the PING consortium, as derived 

from FreeSurfer [41]. 

2.6 Executive function and impulsivity measures 

To relate our findings to behavioral measures, we used executive function and 

impulsivity indices, as both were previously related to obesity [46, 47]. Impulsivity 

was assessed using the child version of the Urgency, Premeditation, Perseverance, 

Sensation Seeking, Positive Urgency scale (UPPS-P [48, 49]). Here, we selected 

positive and negative urgency measures as they were previously associated with 

eating behavior [50, 51]. To assess executive function, similarly to [52], we 

calculated a composite score based on the results of five tests, namely the 

Flanker inhibitory control and attention test, the dimensional change card sort 

test, the picture sequence memory test, the list sorting working memory test, and 

the pattern comparison processing speed test [52–56](correlations with the 

composite score: Flanker test: 0.64; card sort test: 0.71; picture memory test: 

0.58; working memory test: 0.59; processing speed test: 0.72; all p-

values<0.001). Age corrected scores were used and a composite score for each 

participant was derived by averaging the five standardized scores. 
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2.7 Data analysis  

Statistical analyses were conducted using R (v. 3.6.1; [57]). 

2.7.1 Relationship between BMI-PRS and phenotypical BMI SDS  

We first conducted a proof-of-concept analysis to investigate whether BMI-PRS was 

related to measured BMI SDS. To this end, we used regression analysis with BMI 

SDS as an outcome variable and BMI-PRS, first 20 genetic principal components (to 

control for population stratification), age, sex, interaction of age and sex, and study 

site as predictor variables.  

2.7.2 Relationship between brain volume and BMI-PRS 

Next, we explored the relationship between genetic risk for obesity (BMI-PRS) and 

brain measures of interest – cortical thickness, cortical volume, and fractional 

anisotropy. We ran separate permutation-based regression analyses (10,000 

permutations) for each cortical parcel and white matter tract. We used BMI-PRS as a 

predictor of brain measures, while accounting for age, sex, parental education, 

parental income, parental marital status, child's education, and first 20 genetic 

principal components. We used Benjamini-Hochberg correction to adjust for multiple 

comparisons [58]. This was applied separately to cortical thickness, cortical volume, 

and white matter measures. Brain plots were prepared using 'fsbrain' package in R 

[59].  

2.7.3 Cortical architectonic types 

To gain a better understanding of the cortical areas affected by BMI-PRS, we 

investigated how they relate to brain cortical profiles of the organization of cortical 

types along sensory processing hierarchies (i.e. idiotypic, unimodal, heteromodal, or 

paralimbic cortex). We used cortical architectonic maps representing the sensory-

fugal gradient [60, 61] and parcellated them using the Desikan-Killiany atlas [40]. 
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Next, we calculated total cortical grey matter volume and average cortical thickness 

of each of the cortical types for each subject and regressed these measures against 

BMI-PRS using previously described covariates (permutation-based regression, 

10,000 permutations). We then calculated effect sizes (partial eta squared) to 

compare which architectonic types were most strongly associated with BMI-PRS. 

2.7.4 Brain age analysis 

Brain maturation in adolescence is associated with changes in grey and white 

matter. We therefore related the neuroanatomical effects of BMI-PRS to brain age in 

the ABCD sample based on a model from a different dataset. This model was based 

on the PING sample and used grey matter measures while correcting for intracranial 

volume. We then used the model to estimate the brain age of participants in the 

ABCD sample. The model was derived using linear regression with 10-fold cross 

validation. Due to low sample size in the PING dataset, the model was based on 

global measures of brain structure: cortical grey matter volume, and average cortical 

thickness, rather than individual DKT parcels. Prior to the analysis, sex and study 

site effects were removed from the measures from both ABCD and PING using 

linear regression. Model performance was assessed using root mean square error 

(RMSE). We initially included linear and quadratic terms in the model, however, 

since the model did not improve significantly with quadratic terms, we decided to 

only use linear terms in the final estimation.  

Brain age for each participant in the ABCD dataset was estimated based on imaging 

features and the model described above. For each participant, we calculated a 

difference between chronological age and brain age – delta age [62, 63]. Finally, we 

correlated delta age with BMI-PRS (corrected for first 20 genetic principal 

components). Because delta age is correlated with chronological age, we used 
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Spearman's partial correlation analysis to regress out the effects of chronological 

age [62]. 

2.7.5 Structural equation model 

To pool our results in one model and investigate how BMI-PRS can affect BMI SDS 

change via brain and behavioral changes, we used a structural equation model 

(SEM) with the following measures of interest: BMI-PRS, global brain measures – 

cortical thickness, cortical volume, and FA – executive function and impulsivity, and 

1-year change in BMI SDS. Data were first residualized to remove variance related 

to age, sex, parental education, parental marital status, household income, child's 

education, study site, and first 20 genetic principal components. Additionally, BMI 

SDS change was residualized for baseline BMI SDS to make sure that the effects 

found in the SEM were not due to correlations of our variables of interest with 

baseline BMI SDS. 

Using the lavaan package in R (version 0.6-5 [64]) we created an SEM, where we 

hypothesized that BMI-PRS would affect average cortical thickness, total grey matter 

volume, and average FA. These measures were then hypothesized to affect 

impulsivity and executive function, which would in turn affect BMI SDS. We allowed 

for residual correlations between impulsivity and executive function measures, and 

between brain measures. 

We estimated the model using maximum likelihood estimation with pairwise missing 

values exclusions and robust standard errors. Model fit was assessed using root 

mean square error of approximation (RMSEA), standardized root mean square 

residual (SRMR), and comparative fit index (CFI).  
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3 Results 

3.1 Relationship between BMI-PRS and phenotypical BMI SDS 

BMI-PRS was significantly positively associated with BMI SDS (standardized beta 

coefficient estimate=0.263, t=17.610, F(45,4111)=10.39, 95% confidence intervals: 

0.255-0.319, p<0.001; Figure 1a). BMI-PRS accounted for 7.2% variance in BMI 

SDS beyond the first 20 genetic principal components, age, sex, study site, and 

age*sex interaction. As for the adults in Locke et al. [15], the BMI-PRS SNPs were 

normally distributed in our population, and the effect of risk SNPs on BMI was 

additive (Figure 1a). BMI SDS, BMI-PRS, and genetic principal components strongly 

differed by study site (Figure 1b-d), hence all the results presented here are 

corrected for study site and genetic principal components unless otherwise stated. 

3.2 Brain-PRS relationship 

BMI-PRS was negatively associated with cortical volume in several brain areas, 

predominantly in the frontal and temporal lobes (Table 1, Figure 2a). The strongest 

associations were visible in the left precentral and right superior frontal gyri. BMI-

PRS was also associated with lower cortical thickness in the frontal and temporal 

areas (Table 1, Figure 2b). We did not find any significant associations between 

BMI-PRS and white matter fractional anisotropy. 

3.3 Cortical architectonic types 

To investigate whether cortical volume and thickness changes related to BMI-PRS 

belong to specific cortical architectonic types defined by Mesulam [60], we calculated 

total cortical volume and average cortical thickness for each of the types (idiotypic, 

unimodal, heteromodal, and paralimbic) per subject and investigated their 

association with BMI-PRS. Total cortical volume of the heteromodal and unimodal 
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cortex, but also average cortical thickness of the heteromodal cortex were 

significantly negatively associated with BMI-PRS (Table 2).  

3.4 Brain age analysis 

The grey matter-based brain age model returned an RMSE of 3.49 years. Higher 

age was related to lower cortical thickness and volume. Partial correlation analysis 

showed that grey matter-related delta age in the ABCD dataset was significantly 

positively related to BMI-PRS (r=0.032, p=0.042; Figure 2c). This indicates that 

higher genetic risk for obesity is associated with cortical thinning and volume 

decreases, relative to age-expected values. 

3.5 Structural equation model 

The structural equation model returned a good fit (RMSEA=0.041, CFI=0.979, 

SRMR=0.020; χ2=55.349, p<0.001). We found significant negative associations 

between BMI-PRS and global cortical volume, between global cortical volume and 

both negative and positive urgency, a significant positive association between 

fractional anisotropy and executive function, and a significant positive association 

between negative urgency and 1-year BMI SDS change (Table 3, Figure 3). 

Together, these associations illustrate a potential pathway by which BMI-PRS could 

affect BMI SDS change via brain alterations that are related to higher impulsivity. 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 7, 2022. ; https://doi.org/10.1101/2022.06.07.22275937doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.07.22275937
http://creativecommons.org/licenses/by/4.0/


 

 

13 

4 Discussion 

Obesity is partially heritable and highly polygenic, and most of the genetic 

associations identified act in the central nervous system [15–17, 19]. Environmental 

factors are thought to interact with a vulnerable brain to favour weight gain, a theory 

supported by evidence that genetic predisposition to obesity is exacerbated in an 

obesogenic environment [17, 65]. Studies in adults have linked elevated BMI to 

executive function, impulsivity, and neuroanatomical changes, all of which have been 

argued to impact feeding behaviour [5, 14, 25, 46, 50–52, 66]. However, the direction 

of causality is unclear as chronic adiposity also leads to widespread changes in grey 

and white matter, and consequent cognitive changes [67]. We aimed to reduce the 

role of this possible confound by studying the effect of genetic risk rather than BMI 

per se in young children. 

The risk alleles for obesity were normally distributed in our population, and the 

number of risk alleles per individual was linearly proportional to BMI SDS. Both were 

also observed in the Locke et al. GWAS study of 330,000 adults [15]. This suggests 

that the genetic disposition for obesity is already influencing BMI before age 10. We 

further found effects of BMI-PRS on grey matter morphometry, supporting the 

proposition that these genes exert their obesogenic effects via the brain.  

High BMI-PRS was related to differences in grey matter volume and thickness 

relative to age-expected values. More specifically, BMI-PRS was associated with 

reduced grey matter volume and cortical thickness in bilateral fronto-temporal areas. 

Some of these regions are associated with executive function and have long been 

implicated in the control of food intake and impulsivity in adults [24, 68–70]. Our 

findings raise the possibility that cognitive control and impulsivity are also implicated 

in childhood body weight. Indeed, changes in brain morphometry were also 
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associated with both a composite score for executive function and personality 

measures of impulsivity (positive and negative urgency), while impulsivity was 

related to an increase in BMI SDS. The fact that the heteromodal and unimodal 

levels of sensory processing hierarchies were most affected by BMI-PRS is 

consistent with impulsive individuals exhibiting a non-normative maturation of the 

heteromodal regions [60, 71]. It is also in line with our previous findings relating 

those heteromodal and unimodal regions to BMI in adults [72]. Overall, this suggests 

that impulsivity and fronto-temporal cortical morphometry are linked to obesity in 

young children, and that the effect may mediate some of the genetic risk for obesity. 

Importantly, grey matter change has been associated with obesity itself in adults, not 

obesity risk, although there it is thought to reflect damage secondary to metabolic 

consequences of adiposity [25]. While we cannot rule out such an effect in 9–10-

year-olds studied here, a more likely explanation may be that polygenic risk for 

obesity is associated with brain development. 

The influence of impulsivity on body weight and lack of influence of executive 

function on body weight in this population warrants some discussion. The links 

between obesity and reduced executive function have been established repeatedly 

in adults and children, even in the ABCD sample [46, 52]. Indeed, uncontrolled 

eating, a heritable trait associated with BMI that encompasses many aspects of food 

intake regulation [14], is correlated to lower performance on executive function tests 

in adults and higher impulsivity [24, 73], although these effects are not always 

consistent [14, 74]. Most authors suggest that cognitive control plays a role in food 

intake via decision making about portion size, food choice, and the like, however it is 

unlikely that this type of cognitive control is relevant in children. As for impulsivity, the 

links with BMI are also well-established, even in children [50, 75–78]. Studies in 
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infants and children have shown that genetic risk for obesity manifests predominantly 

as increased hunger, reduced satiety, food responsiveness, or uncontrolled eating 

[23, 79–82], some of which could be related to impulsivity [83]. This would be in line 

with our findings that show genetic influence on BMI SDS change via brain and 

impulsivity measures. 

A major limitation of our study and, perhaps, all studies investigating genetic risk for 

obesity in the ABCD sample, is the fact the BMI and BMI-PRS were not equally 

distributed over different study sites. BMI and BMI-PRS were also correlated with 

genetic principal components that reflect population stratification and that also 

differed by study site. While it is likely that the site differences in BMI-PRS also 

reflect population stratification, the differences in BMI might be related to other 

phenomena, such as different obesogenic environments, which is not considered as 

a confounding factor in our analysis. Thus, removing variance associated with 

genetic principal components could also remove some of the true associations 

between BMI-PRS or BMI and neurobehavioural data. Therefore, our study might not 

reflect all true associations between the investigated obesity-related features. 

Further, our study is a predominantly a cross-sectional one and so does not allow to 

properly investigate causal associations between BMI-PRS, brain structure, 

executive function, and impulsivity. Finally, we also did not directly investigate any 

aspect of eating behavior. 

The current research could support genetic risk for obesity as causally related to 

developmental brain changes, leading to excess weight accumulation via higher 

impulsivity, or eating-related traits that are heritable and already expressed in 

infancy. This research contributes to a better understanding of neural mechanisms of 

obesity in adolescence, and could inspire future strategies for obesity prevention. 
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Because BMI-PRS can be calculated early in life, individuals at a high risk for obesity 

could be identified and targeted by interventions that are, e.g., aimed at decreasing 

impulsivity, which could lead to beneficial health outcomes in the future.  
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8 Figures 

 

Figure 1 a Relationship between BMI-PRS z-score and BMI SDS (right axis) overlayed on a histogram (left axis). 
The histogram represents the number of participants in each BMI-PRS z-score bin; b relationship between BMI 
SDS and study site; c relationship between BMI-PRS and study site; d relationship between the first genetic 
principal component and study site. BMI-PRS: body mass index polygenic risk score. BMI SDS: body mass index 
standard deviation score. 
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Figure 2 a Relationship between BMI-PRS and cortical volume; b relationship between BMI-PRS and cortical 
thickness; c relationship between BMI-PRS and predicted brain age. 
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Figure 3 Schematic representation of the structural equation model. Significant associations are marked in 
red/green, non-significant associations are marked with dashed lines. BMI-PRS body mass index polygenic risk 
score. BMI SDS body mass index standard deviation score. 
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9 Tables 

Table 1 Relationship between BMI-PRS, cortical thickness and cortical volume. 

Parcel 
 Hemisphere Regression 

estimate p-value 

Cortical volume 

Lateral orbitofrontal 

Left 

-0.024 <0.001 

Posterior cingulate -0.023 <0.001 

Precentral -0.046 <0.001 

Superior frontal -0.020 <0.001 

Caudal anterior cingulate 

Right 

0.040 <0.001 

Caudal middle frontal -0.035 <0.001 

Entorhinal -0.023 <0.001 

Inferior temporal -0.028 <0.001 

Lateral orbitofrontal -0.025 <0.001 

Precentral -0.029 0.012 

Rostral middle frontal -0.031 <0.001 

Superior frontal -0.037 <0.001 

Cortical thickness 

Rostral anterior cingulate  

Left 

-0.025 <0.001 

Superior frontal  -0.033  <0.001 

Temporal pole  -0.041  <0.001 

Inferior temporal  Right  -0.023  <0.001 
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Table 2 Association between cortical thickness/volume for each cortical architectonic type and BMI-PRS. 

Cortical type Partial η2 Regression estimate p-value 

Cortical volume 

Idiotypic 0.0001 -0.103 1.000 

Unimodal 0.0008 -0.203 <0.001 

Heteromodal 0.0012 -0.252 <0.001 

Paralimbic 0.0002 -0.104 0.106 

Cortical thickness 

Idiotypic 0.0002 0.009 0.959 

Unimodal 0.0001 -0.008 0.574 

Heteromodal 0.0004 -0.012 0.033 

Paralimbic 0.0002 -0.009 1.000 
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Table 3 Structural equation model results. BMI-PRS body mass index polygenic risk score. BMI SDS body mass 
index standard deviation score. 

Outcome variable Predictor Estimate Standard error z-value p-value 

Cortical volume BMI-PRS -0.027 0.012 -2.242 0.025 

Cortical thickness BMI-PRS -0.011 0.013 -0.818 0.414 

Fractional anisotropy BMI-PRS 0.003 0.011 0.229 0.819 

Executive function 

Cortical volume -0.028 0.023 -1.251 0.211 

Cortical thickness -0.027 0.019 -1.424 0.154 

Fractional anisotropy 0.100 0.020 5.041 0.000 

Positive urgency 

Cortical volume -0.156 0.068 -2.282 0.022 

Cortical thickness 0.051 0.059 0.860 0.390 

Fractional anisotropy 0.030 0.060 0.503 0.615 

Negative urgency 

Cortical volume -0.139 0.062 -2.249 0.025 

Cortical thickness 0.007 0.054 0.128 0.898 

Fractional anisotropy -0.087 0.057 -1.537 0.124 

BMI SDS increase 

Executive function -0.007 0.010 -0.735 0.462 

Positive urgency 0.002 0.004 0.472 0.637 

Negative urgency 0.010 0.004 2.440 0.015 
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