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Abstract  

Concentrated disadvantaged areas have been disproportionately affected by COVID-19 outbreak 

in the United States (US). Meanwhile, highly connected areas may contribute to higher human 

movement, leading to higher COVID-19 cases and deaths. This study examined whether place 

connectivity moderated the association between concentrated disadvantage and COVID-19 fatality. 

Using COVID-19 fatality over four time periods, we performed mixed-effect negative binomial 

regressions to examine the association between concentrated disadvantage, Twitter-based place 

connectivity, and county-level COVID-19 fatality, considering potential state-level variations. 

Results revealed that concentrated disadvantage was significantly associated with an increased 

COVID-19 fatality. More importantly, moderation analysis suggested that place connectivity 

significantly exacerbated the harmful effect of concentrated disadvantage on COVID-19 fatality, 

and this significant moderation effect increased over time. In response to COVID-19 and other 

future infectious disease outbreaks, policymakers are encouraged to focus on the disadvantaged 

areas that are highly connected to provide additional pharmacological and non-pharmacological 

intervention policies.  

 

Keywords: COVID-19 fatality; Concentrated disadvantage; Twitter; Place connectivity; 

Moderation. 
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 Introduction 

    By 2022, the Coronavirus Disease 2019 (COVID-19) pandemic has entered its third year. To 

curb the transmission and deaths from COVID-19, besides pharmacological interventions, the 

government has implemented a range of non-pharmacological interventions (NPIs) such as social 

distancing, face mask orders, remote work, travel restrictions, and lockdowns. The effects of non-

pharmaceutical policies vary by group and have led to a range of health disparities. Further 

research on health disparities in COVID-19 outbreaks is necessary to guide the prevention and 

control of COVID-19 and related infectious diseases in the future. 

Several studies have shown that areas with concentrations of socioeconomically disadvantaged 

people are strongly associated with more health problems, including disproportionately high 

transmission and deaths of COVID-19 (Levy et al., 2022; Pierce, & Jacob, 2021; Samuels-Kalow 

et al., 2021). Disadvantaged populations live in house conditions that do not allow for effective 

voluntary isolation and quarantine (Duque, 2020; Khanijahani, & Tomassoni, 2022), and suffer 

from poorer health status (Barber et al., 2021). Another significant factor could be the higher 

population mobility of disadvantaged populations. During the pandemic, especially under strict 

policies such as social distancing and mobility restrictions, disadvantaged populations have higher 

mobility since most of them are engaged in essential work (Bonaccorsi, 2020; Sy et al., 2021). 

Thus, the high mobility in disadvantaged areas may contribute to COVID-19 outbreaks in these 

areas. However, few studies have considered the role of connectivity in disadvantaged areas, that 

is, the interaction effect of concentrated disadvantage and connectivity on COVID-19. As a 

relatively stable characteristic of an area/neighborhood, high connectivity can foster population 

mobility within disadvantaged areas and thus may further exacerbate the negative impacts of 

concentrated disadvantages on COVID fatality.   

In this paper, we use Twitter-based place connectivity to test whether place connectivity 

contributes to the adverse consequences of living in concentrated disadvantaged areas on COVID-

19 fatality. The findings may provide insight into the relationship between concentrated 

disadvantage and COVID-19 fatality. 
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Concentrated disadvantage and COVID-19 fatality 

    Concentrated disadvantage, also known as neighborhood disadvantage, or deprivation index in 

some cases, refers to areas with a high proportion of people with low socioeconomic status. 

Concentrated disadvantaged areas aggregate groups such as low-income earners, welfare 

recipients, and single households (Sampson, Raudenbush, & Earls, 1997; Sampson, Sharkey, & 

Raudenbush, 2008), and some may also include minority groups (Lee, Maume, & Ousey, 2003). 

These groups face higher levels of health risks (Barber et al., 2021) and crime risks (Lee, Maume, 

& Ousey, 2003; Wang, & Arnold, 2008). Many studies have revealed the significant relationships 

between concentrated disadvantages and differential forms of health inequalities, such as the 

increased risk of breast cancer (Barber et al., 2021; DeGuzman, 2017), increased incidence of lung 

cancer (Adie et al., 2020), diabetes and cholesterol control (Durfey et al., 2019), mental health 

(Kim, 2010). 

    The distribution of COVID-19 transmission and fatality shows spatial disparities. Concentrated 

disadvantaged areas are more likely to suffer disproportionate COVID-19 infection (Levy et al., 

2022; Yellow Horse, Yang, & Huyser, 2022), deaths (Pierce, & Jacob, 2021), and fatality (Holmes 

et al., 2020; Sen-Crowe et al., 2021a). At the individual level, these areas are concentrated with 

residents of poorer socioeconomic status, who are in poorer health and are more likely to be 

essential workers in professions such as grocery delivery, truck drivers, and cleaners (Ghilarducci, 

& Farmand, 2020; Huyser, Yang, & Horse, 2021; Khanijahani, & Tomassoni, 2022). Most of these 

jobs are difficult to perform remotely and lack the conditions to maintain social distancing. 

Meanwhile, these groups may use public transportation more frequently, such as a study in New 

York City found that areas with low-income people, essential workers, and non-white populations 

had more mobility extracted from subway data during the pandemic (Sy et al., 2021). 

Disadvantaged populations also live in mostly poor house conditions, with many living together 

and without good post-infection isolation (Boateng et al., 2021; Truong & Asare, 2021). These 

factors of physical status, work environment, commuting patterns, and house conditions contribute 

to a higher risk of exposure to COVID-19 and the increased likelihood of COVID-19 infection and 

fatality in socioeconomically disadvantaged populations. Conversely, areas with high 

socioeconomic status may concentrate residents who are in good health status, can work remotely, 
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and live in house conditions that allow isolation from infected family members, which may reduce 

the risk of infection and fatality.  

    Exploration of the association between concentrated disadvantage and COVID-19 is generally 

at the neighborhood (Jr, 2021), zip code (Yellow Horse, Yang, & Huyser, 2022), or county scale 

(Kranjac, & Kranjac, 2021), as well as community-based county-scale indicators (Khanijahani, & 

Tomassoni, 2022). However, to date, most studies have focused on the incidence and mortality in 

the early stages of COVID-19 outbreaks, and fewer studies consider different periods (Tokey, 

2021; Lee, 2021). The fact is that COVID-19 is constantly mutating and spreading, and the impact 

of concentrated disadvantage on virus spread and fatality may vary during different periods. Just 

like some studies have demonstrated that human mobility and education level affect COVID-19 

infection rate at different stages (Tokey, 2021). 

Moderation effects of connectivity 

The connectivity of a place can be described as the strength of a connection between a place and 

one or more places, and this connection is generally manifested in terms of the road, train, air, and 

social media, among others. Unlike direct population movements, connectivity is more stable, as 

it is closely related to geographical location, transportation facilities, and other related static factors. 

The greater the connectivity between areas, the higher level of population mobility between these 

areas. Given human mobility is a significant predictor of COVID-19 incidence (Zeng et al., 2021), 

higher connectivity could be associated with a higher risk of exposure, and greater risk of COVID-

19 infection. Several studies have found that air connectivity (Sun, Wandelt, & Zhang, 2021), 

high-speed train connectivity (Zhang, Zhang, & Wang, 2020; Zhu, & Guo, 2021), road 

connectivity (Cuadros et al., 2020), and Twitter-based place connectivity (Li et al., 2021) are 

associated with the initial outbreak of COVID-19. Particularly, Twitter-based connectivity, 

representing the extent to which a place shares the same users with other places, gives a 

comprehensive measure of the degree of connectivity in all aspects of transportation in that place, 

which can be a more direct proxy for population mobility and exposure risk (Li et al., 2021). 

There are few studies with mixed results regarding the association between connectivity and 

COVID-19 clinical consequences (including fatality). Some studies have shown a significant 

association between air connectivity index and increased death (Fountoulakis et al., 2020) and 

death risk (Correa-Agudelo et al., 2020) in early-stage, while another suggested that pedestrian-

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 6, 2022. ; https://doi.org/10.1101/2022.06.06.22276053doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.06.22276053
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

oriented street connectivity is associated with lower COVID-19 death rates, because residents in 

this built environment may have higher physical activity and lower levels of obesity and chronic 

disease (Wali, & Frank, 2021). To date, no studies have directly analyzed the relationship between 

place connectivity and COVID-19 fatality. Given fatality is more influenced by age structure and 

the quality of the healthcare system (Moosa, & Khatatbeh, 2021), the association between 

connectivity and COVID-19 fatality may be indirect or connectivity may moderate the impact of 

various factors such as health infrastructure in the area, access to health services, and pre-existing 

health conditions of a population on COVID-19 clinical outcomes.  

As many studies have confirmed (Ghilarducci, & Farmand, 2020; Khanijahani, & Tomassoni, 

2022), people living in high concentrated disadvantaged areas may have higher needs to travel 

because most of them are essential workers and have limited resources to support remote working. 

In this case, if the area is also highly connected, these people may be more likely to take advantage 

of the convenient connectivity conditions (e.g., transportation) to go to work. Under the 

implementation of NPIs like lockdown during the pandemic, a high connectivity place with a 

concentration of disadvantaged groups may have higher mobility compared to other high 

connectivity places without a concentration of disadvantaged groups. Higher mobility is associated 

with higher rates of infection (Sun, Wandelt, & Zhang, 2021; Zhang, Zhang, & Wang, 2020). For 

people living in disadvantaged areas, a higher infection rate is usually linked with higher fatality 

given their poor pre-existing health conditions (Ross, & Mirowsky, 2001) and barriers to access 

to healthcare services (Kirby, & Kaneda, 2005; Peters et al., 2008). Therefore, a hypothesis is that 

connectivity may amplify the negative impacts of concentrated disadvantage on COVID-19 

fatality.  

Although several studies have demonstrated the association between mobility and concentrated 

disadvantage (Benitez, J., Courtemanche, & Yelowitz, 2020; Sy et al., 2021), and the effects of 

human mobility and concentrated disadvantage on COVID-19, respectively (Samuels-Kalow et al., 

2021; Zhang, Zhang, & Wang, 2020), to the best of our knowledge, no study has yet tested the 

moderation effect of connectivity on the association between concentrated disadvantage and 

COVID-19 fatality. If this moderation is confirmed, it is meaningful for the prevention and control 

of COVID-19 and similar infectious diseases and would further support the significance of the two 

factors (i.e, concentrated disadvantage and connectivity) in the NPIs during the pandemic. 
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The present study 

This paper proposes that place connectivity can intensify the harmful effects of county-level 

concentrated disadvantage on county-level COVID-19 fatality. If a county with a concentration of 

disadvantaged populations is also a highly connected county, the disadvantaged group will have 

higher mobility through place connectivity and a greater probability of exposure to the virus, which 

may contribute to the deleterious effect of concentrated disadvantage on COVID-19 fatality. If so, 

this may help further explain why concentrated disadvantage is associated with a high COVID-19 

fatality. Furthermore, since the pandemic has been prevalent for a long time, and travel restriction 

policies have changed across time, place connectivity may not contribute to population movement 

in the same way, such that the effect of place connectivity on concentrated disadvantage and 

COVID-19 fatality may be varied.  

    In this paper, we use Twitter data to measure place connectivity. Twitter-based place 

connectivity is based on real Twitter users and is comprehensive connectivity, as previous studies 

have noted that it reflects connectivity not only in terms of transportation, but also in terms of 

social networks, geography, and socioeconomics (Li et al., 2021). Meanwhile, given the close 

association with these relatively static factors, place connectivity is a stable factor across years 

before the pandemic (Li et al., 2021). This study uses historical place connectivity to analyze its 

relationship with current COVID-19 fatality, which will be useful in guiding the role place 

connectivity may play in future infectious disease prevention and control. 

Specifically, we present the following hypotheses: 

H1: Concentrated disadvantage is associated with higher COVID-19 fatality. 

H2: The association between concentrated disadvantage and COVID-19 fatality is stronger in 

counties of high place connectivity compared to counties of low place connectivity. 

H3: The moderation effect of place connectivity may vary along with the period of the pandemic. 

Methods 

Data sources and study area 

    We obtained the county-level data for confirmed COVID-19 cases and deaths from the start of 

the outbreak on January 21, 2020, to December 1, 2022, in the contiguous US from the New York 

Times (https://github.com/nytimes/covid-19-data). This data was initially collected from the 
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Center for Disease Control and Prevention (CDC), multilevel health departments, and other related 

sources. It has been used in numerous studies (Janke et al., 2021; Khazanchi et al., 2020). For data 

on county-level socioeconomic variables, we used the American Community Survey (ACS) 5-year 

estimates (2015-2019). Data from ACS 1-year or 3-year were not used because these data are 

limited to areas with populations over 20,000, and the current study intended to ensure data 

availability for smaller counties with populations less than 20,000 (Khanijahani & Tomassoni, 

2022). Twitter is one of the most popular social media platforms in the US and a very prevalent 

source of geospatial social media data in academia. We used place connectivity extracted from 

Twitter in 2018 and 2019 (Li et al., 2021).  

    The study area is the contiguous US, with 3,091 counties. Omitted counties are due for two 

reasons. First, Twitter-based connectivity data covered 3,113 counties in the contiguous US. 

Second, since the subsequent empirical analysis used fatality for four time periods, we removed 

those counties with 0 cumulative COVID-19 cases in each time period, respectively. The spatial 

unit of this study is the county level. 

Measures 

COVID-19 fatality  

    COVID-19 fatality is the outcome variable, which is the cumulative COVID-19 deaths divided 

by the cumulative COVID-19 cases up to a time period. According to a report from CDC 

(https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm#:~:text=The%20SARS%2DCoV%

2D2%20B,associated%20ED%20visits%20and%20hospitalizations), there are three periods of 

high-COVID-19 transmission: December 1, 2020–February 28, 2021 (winter period); July 15, 

2021–October 31, 2021 (Delta predominance); and December 19, 2021–January 15, 2022 

(Omicron predominance). Correspondingly, the remaining were three normal-COVID-19 

transmission periods. Because Omicron is less lethal and not quite the same as previous virus 

variants, we then selected data up to October 31, 2021, to test our hypotheses.  

    More specifically, this study includes models for four time periods, based on fatality data up to 

December 1, 2020 (period 1), up to February 28, 2021 (period 2), up to July 15, 2021 (period 3), 

and up to October 31, 2021 (period 4), respectively. We did not use single-period data (e.g. 
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12/1/2020-2/28/2021) to calculate fatality because the death population for a single period did not 

always belong to the cases in that single period. 

Concentrated disadvantage 

    Data on concentrated disadvantage in each county were retrieved from the 5-year estimate 

American Community Survey (2015-2019). We first defined the concentrated disadvantage 

variable following previous studies (Sampson, Raudenbush, & Earls, 1997; Lee et al., 2003; 

Khanijahani & Tomassoni, 2022). We then performed the principal component analysis of five 

variables and identified these variables loading onto a single factor that accounted for 58.24 % of 

the observed variation with high reliability (Cronbach’s Alpha α = 0.762). Concentrated 

disadvantages include five items, the civilian unemployment rate; the percentage of female-headed 

families; the percentage of the population over the age of 25 that are high school dropouts; the 

percentage of households with an annual income < $15,000; the percentage of households 

receiving public assistance. These items are combined into an index by taking the average of their 

z-scores. Higher values refer to a more concentrated disadvantage index. 

Place connectivity 

    Connectivity in this study is assessed by place connectivity index (PCI) extracted through 

geotagged Tweets (Li et al., 2021). PCI refers to the normalized number of shared Twitter users 

between the two places in a year (Equation 1). Unlike real-time population movement between 

places, PCI provides a relatively stable measure of the strength of connectivity between two places 

through spatial interaction. In this study, we aggregated the PCI values of a county with all other 

connected counties as the place connectivity of the county (Equation 2), which is the moderator 

variable of this study. Place connectivity was calculated for 2019 and 2018, separately.  

𝑃𝐶𝐼𝑖𝑗 =
𝑆𝑖𝑗

√𝑆𝑖𝑆𝑗
  𝑖, 𝑗 ∊ [1, 𝑛]                                                                                              (Equation. 1)  

𝑃𝑙𝑎𝑐𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖 = ∑ 𝑃𝐶𝐼𝑖𝑛 𝑛
1 𝑖 ∊ [1, 𝑛]                                                                (Equation. 2) 

    In the equations, 𝑆𝑖 is the number of unique Twitter users in county 𝑖 within time T; 𝑆𝑗 is the 

number of unique Twitter users in county 𝑗  within time T; 𝑆𝑖𝑗  is the number of shared users 

between county 𝑖 and 𝑗 within time T; and  𝑛 is the number of counties in the study area.  
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Covariates 

We also controlled for other main variables that may affect COVID-19 fatality. For 

socioeconomic aspects, population density, and uninsured population were included to account for 

their potential impacts (Gupta et al., 2020; Yellow Horse, Yang, & Huyser, 2022). For 

demographics, the percentage of the population aged 65 and older was included to control for high-

risk groups with high COVID-19 fatality (Yellow Horse, Yang, & Huyser, 2022). The percentage 

of black or African Americans was included to control for the impact of racial factors on COVID-

19 (Khanijahani & Tomassoni, 2022). In addition, the percentage of public transportation 

commuting was included to account for the impact of public transportation on COVID-19 

transmission (Zeng et al., 2021); the percentage of ICU beds was also included to adjust for 

possible variation in COVID-19 deaths due to differences in availability of healthcare services 

(Sen-Crowe et al., 2021b). For geographic factors, the geographical census region (Northeast, 

Midwest, South, and West) was to adjust for the potential impacts of environment-related factors 

(e.g., temperature and humidity) on the spread and severity of COVID-19 (Khanijahani & 

Tomassoni, 2022). Core-based statistical area (CBSA) regions were included to adjust for the 

potential impact of urban and rural factors on COVID-19 fatality (Ahmed et al., 2020; Iyanda, 

Boakye, & Oppong, 2020). Just as some studies have used geographically weighted models to 

examine COVID-19 transmission and mortality to control for the role of spatially autocorrelated 

factors (Yellow Horse, Yang, & Huyser, 2022), this study incorporates spatially lagged fatality to 

ensure that the model can reduce the effect of spatially autocorrelated factors. Detailly, Moran’ I 

values of county-level COVID-19 fatality in the US were statistically significantly greater than 0 

for different time periods, indicating that COVID-19 fatality was spatially correlated, we then 

included spatially lagged fatality (i.e., COVID-19 fatality in surrounding adjacent counties) to 

account for spatial autocorrelation of fatality. Table 1 summarized all the key variables in this 

study. 
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Table 1. Definitions of key variables 

Variables  Definitions 

Outcome    

COVID-19 fatality  The cumulative COVID-19 deaths divided by the cumulative COVID-19 

cases up to a time period 

County-level predictors   

Demographic characteristics   

Concentrated disadvantage For counties with high percentages of residents of low socioeconomic status 

(welfare receipt, poverty, unemployment, uneducated, female-headed 

households)   

Place connectivity The total PCI value of the county 

Spatially lagged fatality The average fatality in the surrounding counties 

Population density (per square 

miles) 

The rate of total population to land area in the county 

% of population aged 65 + Proportion of population aged 65 + to total population 

% of no health insurance coverage Proportion of population with no health insurance coverage to total 

population 

% of black or African Americans Proportion of population of black or African descent to total population 

% of workers 16 years and over 

who commute by public 

transportation 

Proportion of population of workers 16 years and over who commute by 

public transportation 

ICU bed per 100,000 people The rate of ICU beds to total population in the county multiplied by 100,000 

Core-based statistical area (CBSA)  

No-CBSA 0 

Micropolitan statistical area 1 

Metropolitan statistical area 2 

Region  

Northeast 0 

Midwest 1 

South 2 

West 3 

 

Statistical Analysis 

The count data for COVID-19 deaths were highly right-skewed and overdispersed. As Poisson 

regression could not capture overdispersion, the negative binomial model is more appropriate. 

Considering the differential impact of COVID-19 fatality rates by state-level policies such as social 

distance, face masks, and home orders, we further selected a mixed-effects negative binomial 

regression model to account for state-level random effects on COVID-19 fatality at the county 

level (Khanijahani, & Tomassoni, 2022). In each model, to calculate the fatality, the number of 

COVID-19 deaths was the dependent variable, and the number of COVID-19 cases was the offset 

term. To avoid numerical singularities in estimating the models, we log-transformed certain 

variables (population density, place connectivity, and spatially lagged fatality) to ensure accurate 

analytical results. Before the regression analysis, we used Pearson correlation and VIF analysis to 
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examine possible co-collinearity. The results show that no significant co-collinearity exists 

between variables (VIF values less than 4). We performed statistical analyses in Stata SE version 

15. 

Results  

Descriptive statistics and spatial characteristics 

Table 2 presents the descriptive statistics of the variables. By October 31, 2021 (period 4), the 

county-level average fatality is 0.018. The score range for concentrated disadvantage was from -

1.442 to 4.916, with a mean value of -0.073. The average place connectivity in 2019 was 5,634.516, 

varying from 1,167.885 to 24,065.32. The statistics of other variables were shown in Table 2. 

The geospatial distribution of fatality in the contiguous US shows that the high fatality area was 

widely distributed and tends to be concentrated in the South (Figure 1). Economically developed 

regions like California did not show an excessive fatality. From the four time periods, the areas of 

high mortality changed over time. Initially, hotspots were in the Northeast and Southwest, and then 

gradually spread to the interior and surrounding regions. This may be related to coronavirus 

transmission, as the outbreak first occurred in the metropolitan areas of the east and west coasts. 

There was a trend of high correlation between fatality and spatially lagged fatality in each county, 

which corroborates the infectious character of the virus. 

Figure 2 showed the geospatial distribution of Twitter-based place connectivity and 

concentrated disadvantage. It can be observed that high connected counties were like those major 

transportation nodes. The Northeast and Southwest were areas of higher place connectivity, which 

contained some notable metropolitan areas, such as San Francisco, Los Angeles, and New York 

City. The spatial distribution of place connectivity was similar in 2019 and 2018. The map of 

concentrated disadvantage showed that high disadvantaged counties were mainly located in the 

South, while coastal areas and some northern areas showed lower levels of disadvantage (Figure 

2). 
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Table 2. The descriptive statistics of the variables 

 Mean SD Min Max 

Fatality in time period 1 0.02 0.018 0 0.196 

Fatality in time period 2 0.019 0.011 0 0.111 

Fatality in time period 3 0.02 0.01 0 0.111 

Fatality in time period 4 0.018 0.008 0 0.075 

Concentrated disadvantage -0.073 0.592 -1.442 4.916 

Place connectivity 2019 5,634.516 2,884.957 1,167.885 24,065.32 

Place connectivity 2018 6,048.58 3,164.618 1,154.232 26,156.29 

Spatial lagged fatality in time period 1 0.02 0.011 0.001 0.094 

Spatial lagged fatality in time period 2 0.019 0.007 0.004 0.053 

Spatial lagged fatality in time period 3 0.02 0.006 0.004 0.052 

Spatial lagged fatality in time period 4 0.018 0.005 0.004 0.045 

population density 219.266 811.391 0.207 18,654.76 

% of population aged 65 + 18.835 4.591 3.2 56.71 

% of no health insurance 9.558 4.972 0.67 40.91 

% of black or African population 9.164 14.579 0 87.23 

% of workers 16 years and over who 

commute by public transportation  

0.891 2.321 0 43.3 

ICU beds per 100,000 population  12.686 23.591 0 749.584 

     

 Frequency Percentage   

CBSA (Non-CBSA) 701 22.68   

Micro 854 27.63   

Metro 1,536 49.69   

Region (Northeast) 210 6.79   

Midwest 1049 33.94   

South 1,421 45.97   

West 411 13.3   
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Figure 1. County-level COVID-19 fatality across the contiguous US 

Note: The figures on the left side from A to G show the distribution of fatality for period 1, period 2, period 3, and 

period 4, respectively. The corresponding right figures from B to H show the distribution of spatially lagged fatality 

for the corresponding time periods. 
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Figure 2. Twitter-based place connectivity across the contiguous US 

Note: A and B refer to place connectivity for 2019 and 2018, separately. C refers to the map of concentrated 

disadvantage. 

The results of mixed-effects negative binomial regression models 

    The results used the incidence rate ratio (IRR) to represent the association between the variables. 

An IRR greater than 1 represents a positive association between county-level factors and COVID-

19 fatality. In contrast, an IRR less than 1 represents a negative association, and an IRR equal to 1 

represents no positive or negative association. Model 1 in Tables 3 to 6 showed the results of 

mixed-effect negative binomial regression analysis up to the four-time points. In each period, 

counties with higher disadvantages had higher fatality than those with lower disadvantages (IRR > 

1, p < 0.01). For example, in period 4, compared to counties with lower concentrated disadvantage, 

the fatality in counties with higher concentrated disadvantage was 1.157 times higher. (IRR = 1.157, 

95% CI: 1.125-1.189, p < 0.01). It indicates hypothesis 1 is confirmed. The effects of place 

connectivity were significant in period 2, 3, & 4 (IRR <1, p < 0.01), but not in period 1(IRR < 1, 

p > 0.05). Specifically, counties with higher place connectivity had lower fatality than counties 

with lower place connectivity.  
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    Further, the results showed that the interaction between concentrated disadvantage and place 

connectivity was significant in three time periods (IRR > 1, p < 0.01), except for period 1(IRR > 

1, p > 0.05), after the inclusion of an interaction term (Model 2, Tables 3 to 6). It supports 

hypothesis 2, implying that concentrated disadvantage is associated with a relative increase in the 

county-level COVID-19 fatality, especially for those counties with high place connectivity. 

Interestingly, the IRR of this interaction increased with the time periods, indicating an increasing 

robust interaction effect (Tables 3 to 6 and Figure 3), which confirms hypothesis 3. Figure 3 shows 

the graphical illustration of the interaction between concentrated disadvantage and place 

connectivity using results from Model 2, Tables 3 to 6. The relationship between concentrated 

disadvantage and fatality becomes stronger as the value of place connectivity increases. 

Most control variables also showed consistent results across time (Model 1, Tables 3 to 6). Each 

1 standard deviation increase in spatial lagged fatality rate was associated with a significant relative 

increase in the IRR of COVID-19 fatality (IRR > 1 and p < 0.01). A higher percentage of people 

aged 65 and older was associated with a higher COVID-19 fatality (IRR > 1 and p < 0.01). 

Similarly, a higher percentage of black or African Americans was associated with a higher 

COVID-19 fatality (IRR > 1 and p < 0.01). In addition, except for period 1, micro and metropolitan 

counties had lower COVID-19 fatality than rural counties (IRR < 1 and p < 0.01). The region factor 

was not consistently significant. Over time, the significant regional differences in COVID-19 

fatality gradually disappeared. The remaining control variables did not show significant results.  

We also ran the models using the 2018 place connectivity data, which showed consistent results 

to the model using 2019 place connectivity data (Tables 1 to 4 in Appendix). 
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Table 3. Mixed-effects negative binomial regression models of county-level COVID-19 fatality (period 1) 

Factors  Model 1 Model 2 

IRR (95% CI) IRR (95% CI) 

Concentrated disadvantage 1.185(1.119,1.255) ** 1.188(1.121, 1.258) ** 

Log (PC) 0.93(0.812,1.065) 0.908(0.791, 1.044)  

Concentrated disadvantage * Log (PC)  1.142(0.958, 1.361)  

Log (Spatially lagged fatality) 2.519(2.2,2.884) ** 2.526(2.207, 2.892) ** 

Log (population density) 1.089(1.03,1.152) ** 1.094(1.034, 1.157) ** 

% of population aged 65 + 1.039(1.033,1.046) ** 1.039(1.033, 1.045) ** 

% of no health insurance 1(0.993,1.007) 1.000(0.993, 1.007)  

% of black or African Americans 1.004(1.002,1.006) ** 1.004(1.002, 1.006) ** 

% of workers 16 years and over who 

commute by public transportation  

1.008(0.998,1.018) 1.008(0.998, 1.018)  

ICU beds per 100,000 population  1(0.999,1.001) 1(0.999, 1.001) 

CBSA (Non-CBSA)   

Micro 0.963(0.9,1.03) 0.961(0.898, 1.028) 

Metro 0.968(0.906,1.034) 0.965(0.903, 1.031) 

Region (Northeast)   

Midwest 0.616(0.511,0.742) ** 0.614(0.510, 0.740) ** 

South 0.644(0.539,0.769) ** 0.645(0.540, 0.770) ** 

West 0.62(0.507,0.758) ** 0.619(0.507, 0.757) ** 

                 Notes: IRR: incidence rate ratio; PC: place connectivity; CI: Confidence interval; *: p<.05; **: p<.001. 

Table 4. Mixed-effects negative binomial regression models of county-level COVID-19 fatality (period 2) 

Factors  Model 1 Model 2 

IRR (95% CI) IRR (95% CI) 

Concentrated disadvantage 1.156(1.117,1.197) ** 1.166(1.126,1.206) ** 

Log (PC) 0.878(0.812,0.951) ** 0.852(0.786,0.923) ** 

Concentrated disadvantage * Log (PC)  1.267(1.141,1.406) ** 

Log (Spatially lagged fatality) 2.799(2.467,3.176) ** 2.795(2.464,3.169) ** 

Log (population density) 1.026(0.992,1.06) 1.031(0.997,1.066) 

% of population aged 65 + 1.035(1.032,1.039) ** 1.035(1.031,1.038) ** 

% of no health insurance 1.008(1.004,1.013) ** 1.008(1.004,1.012) ** 

% of black or African Americans 1.002(1,1.003) ** 1.002(1,1.003) * 

% of workers 16 years and over who 

commute by public transportation  

1.005(0.999,1.011) 1.005(0.999,1.011) 

ICU beds per 100,000 population  1(1,1.001) 1(1,1.001) 

CBSA (Non-CBSA)   

Micro 0.961(0.924,1) * 0.958(0.921,0.996) * 

Metro 0.95(0.914,0.987) ** 0.946(0.91,0.983) ** 

Region (Northeast)   

Midwest 0.889(0.788,1.003) 0.884(0.784,0.997) * 

South 0.822(0.731,0.923) ** 0.824(0.734,0.925) ** 

West 0.792(0.696,0.901) ** 0.79(0.694,0.899) ** 

                 Notes: IRR: incidence rate ratio; PC: place connectivity; CI: Confidence interval; *: p<.05; **: p<.001. 
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Table 5. Mixed-effects negative binomial regression models of county-level COVID-19 fatality (period 3) 

Factors  Model 1 Model 2 

IRR (95% CI) IRR (95% CI) 

Concentrated disadvantage 1.172(1.137,1.208) ** 1.182(1.147,1.219) ** 

Log (PC) 0.885(0.826,0.948) ** 0.854(0.796,0.916) ** 

Concentrated disadvantage * Log (PC)  1.303(1.189,1.428) ** 

Log (Spatially lagged fatality) 2.766(2.449,3.124) ** 2.758(2.444,3.113) ** 

Log (population density) 1.016(0.987,1.046) 1.022(0.992,1.052) 

% of population aged 65 + 1.035(1.032,1.039) ** 1.034(1.031,1.038) ** 

% of no health insurance 1.008(1.004,1.012) ** 1.008(1.004,1.011) ** 

% of black or African Americans 1.002(1.001,1.003) ** 1.002(1.001,1.003) ** 

% of workers 16 years and over who 

commute by public transportation  

1.004(0.999,1.009) 1.004(0.999,1.009) 

ICU beds per 100,000 population  1(1,1.001) 1(1,1.001) 

CBSA (Non-CBSA)   

Micro 0.958(0.926,0.992) ** 0.954(0.922,0.988) ** 

Metro 0.957(0.925,0.99) ** 0.952(0.921,0.985) ** 

Region (Northeast)   

Midwest 0.974(0.867,1.094) 0.968(0.862,1.087) 

South 0.924(0.826,1.034) 0.928(0.83,1.037) 

West 0.861(0.76,0.974) * 0.859(0.759,0.971) * 

                 Notes: IRR: incidence rate ratio; PC: place connectivity; CI: Confidence interval; *: p<.05; **: p<.001. 

 

Table 6. Mixed-effects negative binomial regression models of county-level COVID-19 fatality (period 4) 

Factors  Model 1 Model 2 

IRR (95% CI) IRR (95% CI) 

Concentrated disadvantage 1.157(1.125,1.189) ** 1.167(1.135,1.199) ** 

Log (PC) 0.923(0.867,0.983) * 0.888(0.834,0.946) ** 

Concentrated disadvantage * Log (PC)  1.321(1.216,1.436) ** 

Log (Spatially lagged fatality) 2.909(2.578,3.283) ** 2.892(2.566,3.26) ** 

Log (population density) 1.009(0.983,1.036) 1.015(0.989,1.042) 

% of population aged 65 + 1.033(1.03,1.036) ** 1.032(1.029,1.035) ** 

% of no health insurance 1.008(1.004,1.011) ** 1.008(1.004,1.011) ** 

% of black or African Americans 1.002(1.001,1.003) ** 1.002(1.001,1.003) ** 

% of workers 16 years and over who 

commute by public transportation  

1.003(0.999,1.008) 1.003(0.999,1.008) 

ICU beds per 100,000 population  1(1,1.001) 1(1,1.001) 

CBSA (Non-CBSA)   

Micro 0.973(0.943,1.004) 0.969(0.94,1) * 

Metro 0.968(0.939,0.998) * 0.963(0.935,0.993) * 

Region (Northeast)   

Midwest 0.978(0.876,1.092) 0.973(0.872,1.086)  

South 0.951(0.856,1.058) 0.955(0.859,1.062) 

West 0.901(0.802,1.012) 0.899(0.801,1.009) 

                 Notes: IRR: incidence rate ratio; PC: place connectivity; CI: Confidence interval; *: p<.05; **: p<.001. 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 6, 2022. ; https://doi.org/10.1101/2022.06.06.22276053doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.06.22276053
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

Low CD High CD

Fa
ta

lit
y 

Low PCI

High PCI

0

0.02

0.04

0.06

0.08

0.1

0.12

Low CD High CD

Fa
ta

lit
y 

Low PCI

High PCI

0

0.02

0.04

0.06

0.08

0.1

0.12

Low CD High CD

Fa
ta

lit
y 

Low PCI

High PCI

0

0.02

0.04

0.06

0.08

0.1

Low CD High CD

Fa
ta

lit
y 

Low PCI

High PCI

A B

C D

Low CD High CD

Fa
ta

li
ty

Low PC

High PC

Low PC

High PCFa
ta

li
ty

Fa
ta

li
ty

Fa
ta

li
ty

Low PC

High PC

Low PC

High PC

Low CD High CD

Low CD High CDLow CD High CD
 

Figure 3. The impacts of concentrated disadvantage on COVID-19 fatality by different place connectivity 

Note: figures A to D refer to the models for time periods 1 to 4, respectively (the interaction for period 1 is not 

significant). CD refers to concentrated disadvantage, and PC refers to place connectivity. 

 

Discussion  

    Leveraging concentrated disadvantage and Twitter-based place connectivity, we examined the 

relationship between concentrated disadvantage and COVID-19 fatality in the US, and how this 

association is moderated by place connectivity. In addition to examining the harmful effect of 

concentrated disadvantage, this study partially explored the mechanism of this effect. The 

significant interaction between place connectivity and concentrated disadvantage suggests that 

socioeconomically disadvantaged groups in an area with high levels of place connectivity may be 

more likely to experience higher mobility, and thus face higher incidence and fatality risk. The 

results provide new insights into the association between concentrated disadvantage and COVID-

19 fatality and may provide some guidance for future infectious disease control policies in 

socioeconomically disadvantaged areas. 

    We further found that the moderation effect of place connectivity increased over time, which 

may be related to increased mobility and the loosening of travel restrictions. At the early stages of 

the pandemic, COVID-19 fatality was more severe, travel restrictions were higher, and people 

were also in a precautionary awareness to reduce their outside activities, so the effect of 

concentrated disadvantage on fatality may be less influenced by place connectivity. In contrast, 
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with widespread vaccination, people entered the New Normal, less restrictive in their travel, thus 

the moderation effect of place connectivity on the link between concentrated disadvantage and 

COVID-19 fatality became increasingly significant.  

The significant association between place connectivity and decreased COVID-19 fatality rate is 

observed in time periods 2 to 4. We found a moderate correlation between population density, ICU 

percentage, and place connectivity. The high fatality was mostly found in districts with low 

population density due to poorer health care systems (Hamidi, Sabouri, & Ewing, 2020). Rural 

areas hold less access to health facilities, but urban areas, which are more likely to encounter large 

numbers of cases, instead have better health facility preparation and prevention to avoid more 

deaths (Ahmed et al., 2020). It implies that highly connected areas are generally areas with higher 

population density and urbanization, and may have better medical conditions and facilities, leading 

to a lower fatality. This finding is consistent with associations between urbanization (Ahmed et al., 

2020; Iyanda, Boakye, & Oppong, 2020) and population density (Hamidi, Sabouri, & Ewing, 2020; 

Souris & Gonzalez, 2020), and lower COVID-19 fatality. However, the effect of place connectivity 

on COVID-19 was not significant in period 1, probably due to strict travel restrictions and low 

travel needs in the early stage, resulting in connectivity not working.  

    These findings have potential practical implications for the response to the COVID-19 pandemic. 

Socioeconomically disadvantaged areas with high place connectivity are likely to have higher 

population mobility. Reducing the degree of place connectivity, such as road, air transport, and 

other restrictions may reduce the population mobility of residents in disadvantaged areas, thus 

curbing infection and deaths among this population. However, these policies cannot eliminate 

people’s demands for daily commute (Sy et al., 2021). Policymakers need to balance the epidemic 

prevention and socioeconomic costs of travel restrictions. In future practice, we could pay extra 

attention to highly concentrated disadvantaged and highly connected areas and take additional 

measures for these areas to reduce disproportionate COVID-19 transmission and deaths, which 

could prevent the spread of the epidemic on a wider scale. Timely monitoring the epidemic of 

concentrated disadvantaged areas with high place connectivity and identifying potential epidemic 

hotpots and disadvantaged areas may assist evidence-based decision-making in resource allocation 

and tailored strategies to effectively respond to COVID-19 pandemic and other emerging 

infectious diseases in the future. 
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    There are a few limitations to this study. First, place connectivity is measured from Twitter data, 

while is less used by some groups, such as the elderly and children. Also, data in some counties 

where Twitter is less used may be underrepresented. Second, utilizing county-level data to 

understand the effects of concentrated disadvantage on COVID-19 fatality may ignore the role of 

neighborhood-level factors. There may exist several neighborhoods with high socioeconomic 

status even in concentrated disadvantaged counties. Last, this study used spatial-scale variables 

rather than individual-level COVID-19 data, hence the results can only indicate the associations 

between geospatial environment and COVID-19 outcomes and cannot be interpreted as individual-

level associations or causalities. Future multilevel analyses could be applied, including data on 

individual characteristics and neighborhood factors, which could yield more robust findings.  

Conclusion 

Concentrated disadvantage contributes to the geospatial disparities in county-level COVID-19 

fatality in the US: counties with higher levels of socioeconomic disadvantage reported higher 

levels of COVID-19 fatality. Place connectivity moderates the detrimental effects of concentrated 

disadvantage on fatality, and this moderation effect increases along with time periods. Our finding 

not only further explains the link between concentrated disadvantage and COVID-19 fatality, but 

also further highlights the role of place connectivity in combating COVID-19 and future infectious 

diseases. In response to COVID-19 and future infectious disease outbreaks, relevant policies may 

be specifically tailored for areas where socioeconomic disadvantage and high place connectivity 

coexist. 
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Appendix 

 

Table 1. Mixed-effects negative binomial regression models of county-level COVID-19 fatality (period 1) 

Factors  Model 1 Model 2 

IRR (95% CI) IRR (95% CI) 

Concentrated disadvantage 1.187(1.121,1.258) ** 1.188(1.121,1.258) ** 

Log (PC) 0.965(0.844,1.103)  0.96(0.836,1.101) 

Concentrated disadvantage * Log (PC)  1.032(0.865,1.232) 

Log (Spatially lagged fatality) 2.521(2.201,2.886) ** 2.523(2.203,2.889) ** 

Log (population density) 1.083(1.024,1.145) ** 1.084(1.024,1.147) ** 

% of population aged 65 + 1.04(1.033,1.046) ** 1.04(1.033,1.046) ** 

% of no health insurance 1(0.993,1.007) 1(0.993,1.007) 

% of black or African Americans 1.004(1.002,1.006) ** 1.004(1.002,1.006) ** 

% of workers 16 years and over who 

commute by public transportation  

1.008(0.998,1.018) 1.008(0.998,1.018) 

ICU beds per 100,000 population  1(0.999,1.001) 1(0.999,1.001) 

CBSA (Non-CBSA)   

Micro 0.963(0.9,1.03) 0.963(0.9,1.03) 

Metro 0.967(0.905,1.034) 0.967(0.905,1.033) 

Region (Northeast)   

Midwest 0.616(0.511,0.742) ** 0.616(0.511,0.742) ** 

South 0.644(0.539,0.769) ** 0.644(0.539,0.769) ** 

West 0.616(0.503,0.754) ** 0.616(0.504,0.754) ** 

                Notes: IRR: incidence rate ratio; PC: place connectivity; CI: Confidence interval; *: p<.05; **: p<.001. 

 

Table 2. Mixed-effects negative binomial regression models of county-level COVID-19 fatality (period 2) 

Factors  Model 1 Model 2 

IRR (95% CI) IRR (95% CI) 

Concentrated disadvantage 1.158(1.119,1.199) ** 1.163(1.123,1.203) ** 

Log (PC) 0.917(0.847,0.992) * 0.898(0.83,0.973) ** 

Concentrated disadvantage * Log (PC)  1.171(1.054,1.301) ** 

Log (Spatially lagged fatality) 2.807(2.473,3.186) ** 2.806(2.473,3.184) ** 

Log (population density) 1.019(0.986,1.054) 1.023(0.989,1.058) 

% of population aged 65 + 1.036(1.032,1.039) ** 1.035(1.031,1.039) ** 

% of no health insurance 1.008(1.004,1.013) ** 1.008(1.004,1.013) ** 

% of black or African Americans 1.002(1,1.003) ** 1.002(1,1.003) * 

% of workers 16 years and over who 

commute by public transportation  

1.005(0.999,1.011) 1.005(0.999,1.011) 

ICU beds per 100,000 population  1(1,1.001) 1(1,1.001) 

CBSA (Non-CBSA)   

Micro 0.962(0.925,1) 0.96(0.923,0.999) * 

Metro 0.95(0.914,0.988) * 0.948(0.912,0.986) ** 

Region (Northeast)   

Midwest 0.89(0.789,1.004)  0.887(0.787,1) * 

South 0.821(0.731,0.922) ** 0.824(0.734,0.925) ** 

West 0.787(0.692,0.896) ** 0.787(0.691,0.895) ** 

                 Notes: IRR: incidence rate ratio; PC: place connectivity; CI: Confidence interval; *: p<.05; **: p<.001. 
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Table 3. Mixed-effects negative binomial regression models of county-level COVID-19 fatality (period 3) 

Factors  Model 1 Model 2 

IRR (95% CI) IRR (95% CI) 

Concentrated disadvantage 1.173(1.138,1.209) ** 1.179(1.143,1.215) ** 

Log (PC) 0.902(0.842,0.966) ** 0.877(0.818,0.94) ** 

Concentrated disadvantage * Log (PC)  1.238(1.129,1.358) ** 

Log (Spatially lagged fatality) 2.768(2.45,3.126) ** 2.762(2.447,3.118) ** 

Log (population density) 1.014(0.984,1.044) 1.019(0.989,1.049) 

% of population aged 65 + 1.035(1.032,1.039) ** 1.035(1.031,1.038) ** 

% of no health insurance 1.008(1.004,1.012) ** 1.008(1.004,1.012) ** 

% of black or African Americans 1.002(1.001,1.003) ** 1.002(1.001,1.003) ** 

% of workers 16 years and over who 

commute by public transportation  

1.004(0.999,1.009) 1.004(0.999,1.009) 

ICU beds per 100,000 population  1(1,1.001) 1(1,1.001) 

CBSA (Non-CBSA)   

Micro 0.959(0.927,0.993) ** 0.957(0.925,0.99) * 

Metro 0.958(0.926,0.991) ** 0.955(0.923,0.988) ** 

Region (Northeast)   

Midwest 0.975(0.868,1.096) 0.971(0.865,1.09)  

South 0.924(0.826,1.034) 0.928(0.83,1.037) 

West 0.859(0.759,0.973) * 0.858(0.759,0.971) * 

                 Notes: IRR: incidence rate ratio; PC: place connectivity; CI: Confidence interval; *: p<.05; **: p<.001. 

 

Table 4. Mixed-effects negative binomial regression models of county-level COVID-19 fatality (period 4) 

Factors  Model 1 Model 2 

IRR (95% CI) IRR (95% CI) 

Concentrated disadvantage 1.158(1.126,1.19) * 1.164(1.132,1.196) ** 

Log (PC) 0.942(0.885,1.002) 0.913(0.858,0.972) ** 

Concentrated disadvantage * Log (PC)  1.248(1.148,1.357) ** 

Log (Spatially lagged fatality) 2.908(2.577,3.282) ** 2.889(2.562,3.258) ** 

Log (population density) 1.006(0.98,1.033) 1.011(0.985,1.039) 

% of population aged 65 + 1.033(1.03,1.036) ** 1.032(1.029,1.035) ** 

% of no health insurance 1.008(1.005,1.012) ** 1.008(1.004,1.011) ** 

% of black or African Americans 1.002(1.001,1.003) ** 1.002(1.001,1.003) ** 

% of workers 16 years and over who 

commute by public transportation  

1.003(0.999,1.008) 1.003(0.998,1.008) 

ICU beds per 100,000 population  1(1,1.001) 1(1,1.001) 

CBSA (Non-CBSA)   

Micro 0.974(0.944,1.004) 0.971(0.942,1.002)  

Metro 0.969(0.94,0.999) * 0.966(0.937,0.995) * 

Region (Northeast)   

Midwest 0.979(0.877,1.093) 0.975(0.873,1.088) 

South 0.951(0.855,1.057) 0.956(0.86,1.062) 

West 0.899(0.8,1.009) 0.898(0.8,1.008) 

                 Notes: IRR: incidence rate ratio; PC: place connectivity; CI: Confidence interval; *: p<.05; **: p<.001. 
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