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Key Points 

• Machine learning enables an objective and quantitative description of reticulin fibrosis 
within the bone marrow of patients with myeloproliferative neoplasms (MPN) 

• Automated analysis and Continuous Indexing of Fibrosis (CIF) captures heterogeneity 
within MPN samples and has utility in refined classification and disease monitoring 

• Quantitative fibrosis assessment combined with topological data analysis may help to 
predict patients at increased risk of progression to post-ET myelofibrosis, and assist in the 
discrimination of ET and pre-fibrotic PMF (pre-PMF) 
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Abstract 

The detection and grading of fibrosis in myeloproliferative neoplasms (MPN) is an important 

component of disease classification, prognostication and disease monitoring. However, current 

fibrosis grading systems are only semi-quantitative and fail to capture sample heterogeneity. To 

improve the detection, quantitation and representation of reticulin fibrosis, we developed a machine 

learning (ML) approach using bone marrow trephine (BMT) samples (n = 107) from patients 

diagnosed with MPN or a reactive / nonneoplastic marrow. The resulting Continuous Indexing of 

Fibrosis (CIF) enhances the detection and monitoring of fibrosis within BMTs, and aids the 

discrimination of MPN subtypes. When combined with megakaryocyte feature analysis, CIF 

discriminates between the frequently challenging differential diagnosis of essential 

thrombocythemia (ET) and pre-fibrotic myelofibrosis (pre-PMF) with high predictive accuracy [area 

under the curve = 0.94]. CIF also shows significant promise in the identification of MPN patients at 

risk of disease progression; analysis of samples from 35 patients diagnosed with ET and enrolled 

in the Primary Thrombocythemia-1 (PT-1) trial identified features predictive of post-ET 

myelofibrosis (area under the curve = 0.77). In addition to these clinical applications, automated 

analysis of fibrosis has clear potential to further refine disease classification boundaries and inform 

future studies of the micro-environmental factors driving disease initiation and progression in MPN 

and other stem cell disorders. The image analysis methods used to generate CIF can be readily 

integrated with those of other key morphological features in MPNs, including megakaryocyte 

morphology, that lie beyond the scope of conventional histological assessment. 
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Introduction 

Reticulin fibers, comprising type III collagen, are an important component of the normal bone 

marrow extracellular matrix (ECM) essential for the maintenance of hematopoiesis. In normal 

marrow, silver impregnation techniques highlight the reticulin substrate as a delicate network of 

thin, uniform fibers coursing through the intertrabecular spaces, with variable condensation around 

small blood vessels. In several pathological conditions, including acute lymphoblastic leukemia and 

myelodysplastic syndrome, this organized reticulin meshwork is perturbed, with increasing fiber 

quantity, thickness and intersections accompanied by the deposition of additional collagen 

subtypes with disease progression1-3. However, the diagnostic and prognostic importance of 

reticulin meshwork is best characterized in the Philadelphia-negative myeloproliferative neoplasms 

(MPNs), a group of disorders in which acquired mutations in hematopoietic stem cells affect the 

MPL-JAK-STAT signaling pathway and drive excessive proliferation of � 1 blood lineage4-7. 

Although the precise mechanisms driving marrow fibrosis remain poorly understood, it is 

increasingly recognized that the initiation and progression of fibrosis in MPNs reflects a 

pathological cytokine / chemokine-driven inflammatory response to clonal myeloproliferation, 

driven by neoplastic hematopoietic stem cells (HSC)8-10.  

 

The importance of fibrosis estimation in MPNs is embedded in the current World Health 

Organization (WHO) classification scheme of the common MPNs: essential thrombocythemia (ET), 

polycythemia vera (PV), primary myelofibrosis (PMF) and pre-fibrotic primary myelofibrosis (pre-

PMF)11. Fibrosis severity also has clinical implications in MPNs, with minor fibrosis in PV 

associated with inferior survival and more advanced fibrosis associated with a complex 

karyotype12-14. In PMF, increasing fibrosis is associated with worsening hematological, clinical and 

molecular parameters and overall prognosis15-17. The latest version of the WHO fibrosis scoring 

system comprises four categories (MF 0-3). Grade MF-0 is defined as scattered linear reticulin, 

with no intersections (typical of normal marrow); MF-1 as a loose network of reticulin, with many 

intersections; MF-2 as a diffuse and dense increase in reticulin, with extensive intersections and 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 6, 2022. ; https://doi.org/10.1101/2022.06.06.22276014doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.06.22276014


 

4 
 

occasional focal bundles of collagen and / or focal osteosclerosis; and, MF-3 as a diffuse and 

dense increase in reticulin, with extensive intersections and coarse bundles of collagen, often 

associated with significant osteosclerosis. Although these grade descriptions are qualitative and 

subjective, several studies have demonstrated reasonable-to-good concordance of grade 

assignment between specialist hematopathologists18-21. Nonetheless, the WHO grading scheme 

fails to accommodate fibrotic heterogeneity within BMT specimens and cannot capture the 

spectrum of fibrosis within existing grade categories. 

 

In response, we sought to develop an automated machine learning (ML) methodology to 

objectively quantify reticulin fibrosis using routinely prepared reticulin-stained BMT samples. This 

new quantitative approach was designed to overcome the limitations of the current WHO grading 

system that fails to capture subtle, focal fibrotic foci and the spectrum of fibrosis within grade 

categories. Manually annotated regions of fibrosis corresponding to each WHO grade were used to 

create a set of image tiles from which an initial model of fibrosis severity was trained. This model 

was iteratively refined on a set of locally sourced normal / reactive (n = 12) and MPN samples (n = 

95) spanning the range of fibrosis encountered in clinical practice and incorporating each MPN 

subtype. Specialist hematopathologist review assisted the creation of a ranked-list of fibrosis 

severity in which each image tile receives a predicted fibrosis score between 0 and 1 (Continuous 

Index of Fibrosis [CIF]). The predicted scores of new, unseen tiles were then converted to a 

quantitative fibrosis map overlaid onto whole sample images. Analysis of MPN sample cohorts 

allowed us to capture the spectrum and heterogeneity of fibrosis within established MPN and 

normal / reactive BMT samples. We hypothesized that such an approach would enhance the 

accuracy of fibrosis assessment in MPN samples, with implications for improved disease 

classification (particularly distinction of ET and pre-PMF) and refined descriptions of disease 

monitoring / response to therapy. To assess the potential for improving disease prognostication, 

we also applied our methodology to a set of well characterized ET patients (n = 37) enrolled to a 

large multi-centre clinical trial (PT-1) with long term clinical follow and evidence of either stable 

disease or progression to post-ET myelofibrosis. 
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Materials and Methods 

An overview of the methodologies employed in this study is given as Figure 1.  

Clinical samples 

BMT samples were obtained from the archive of OUH NHS Foundation Trust. All specimens were 

of sufficient technical quality for use in conventional histological reporting. Samples were fixed in 

10% neutral buffered formalin for 24 hours prior to decalcification in 10% EDTA for 48 hours. 

Whole slide scanned images (Hamamatsu NanoZoomer 2.0HT / 40X / NDPI files or 3DHISTECH 

250 Flash III Dx / 40X / MRXS files) were prepared from 2-3 μm reticulin-stained (Gomori and 

Sweet) sections cut from formalin-fixed paraffin-embedded (FFPE) blocks. The data set comprised 

107 samples (36 ET, 19 PV, 23 MF, 17 pre-PMF, and 12 reactive / nonneoplastic) with “reactive” 

samples sourced from patients in whom there was no evidence of bone marrow malignancy, 

persistent thrombocytosis or underlying myeloid disorder. ET, PV and MF (primary [PMF] or 

secondary [SMF]) samples were obtained from patients in whom this was either an established or 

new diagnosis, satisfying the diagnostic criteria of the current WHO classification (2016), and were 

designated following review by a myeloid multidisciplinary meeting (MDM). BMTs were identified 

from the laboratory reporting system or MDM records. A summary of the key patient characteristics 

is provided in supplemental Table 1. Additional MPN samples (n = 35) were obtained from the 

Primary Thrombocythemia-1 (PT-1) trial cohort; a multicentre international trial in ET in which 

newly diagnosed and previously treated patients with ET, aged 18 years or over, were recruited 

into one of three studies (previously published) depending on their risk of vascular complications22-

24. The driver mutation status for all MPN samples is summarized in supplemental Figure 1. This 

work was conducted as part of the INForMeD study (INvestigating the genetic and cellular basis of 
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sporadic and Familial Myeloid Disorders; IRAS ID: 199833; REC reference: 16/LO/1376; PI: Prof 

AJ Mead) with all patients having provided written informed consent. 

 

Automated identification of fibrosis and severity assessment 

Reticulin staining employs a silver impregnation technique that highlights reticulin fibers as black 

linear extracellular material, although minor variations in routine laboratory practice (including 

counterstaining and toning) impart a range of color to bone and cellular elements. Therefore, 

digitized reticulin images were converted into grayscale to prevent any color variation adversely 

influencing our model's performance. Grayscale transformation is employed in texture analysis25,26, 

and is well suited to silver-stained images in which the monochrome properties of the black 

reticulin fibers are largely unaffected by variations in background color. Two sets of BMT samples 

capturing the spectrum of marrow fibrosis in MPN (MF-0 to MF-3) were used for the training (39 

samples) and validation (18 samples) steps of our model generation. For the initial training and 

validation stages, uniformly sized tiles (512 x 512 pixels [0.22 �m per pixel]) were extracted from 

manually annotated samples prepared by a specialist hematopathologist (DR) and deemed 

suitable for fibrosis estimation. Sample areas that contained significant amounts of bone, crush 

artifacts or hemorrhage were excluded. As bone is a significant component of BMT samples, a 

deep learning model based on UNet27 was used to assist in the segmentation and exclusion of 

bony trabeculae (for implementation and hyperparameter settings see supplemental Table 2). For 

subsequent rounds of training and validation employing a human-in-the-loop approach, a sliding 

window of 512 x 512 pixels with a stride of 256 pixels (supplemental Figure 2), was used to extract 

tiles that satisfied each of three criteria: fat regions account for <50% of tile area; bone or bone 

fragments account for <1% of tile area; and, blood vessels account for <10% of tile area. We 

reasoned that this rule set for tile extraction and analysis was an acceptable compromise, 

maximizing the analyzable area of each sample while adhering to the convention of restricting 

fibrosis grading to areas of hematopoiesis (excluding peritrabecular and perivascular tissues).  
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Significant barriers to developing an automated approach to fibrosis grading include the absence of 

objective criteria for assessing fibrosis severity, and a means for combining the distinct features of 

reticulin quantity, fiber thickness and intersections currently employed in the WHO fibrosis grading 

system. We also recognized the importance of developing an automated method that 

accommodates a continuous spectrum of fibrosis severity within and between MF grades, and that 

a simple classification model and regression approach to assign fibrosis scores is inadequate. 

Therefore, we employed a Learning to Rank (LTR) strategy called RankNet to train a model that 

estimates sample fibrosis in the form of an ordered ranking of feature severity28. RankNet is an 

established LTR algorithm ideally suited to tasks in which the ordering of items based upon a set of 

features is more important than an exact score or classification. This RankNet approach was then 

combined with a Convolutional Neural Network (CNN) to build a Ranking-CNN model29. A CNN 

was used as they demonstrate good performance in medical image analysis tasks27,30 (for 

implementation and hyperparameter settings see supplemental Table 3). To determine the ground 

truth of analyzed images, a pairwise ranking strategy suitable for rapid and intuitive human review 

was adopted, with three specialist hematopathologists selecting the most severe of two candidate 

image regions using conventional WHO fibrosis criteria. For image pairs resulting in discordant 

ranking between pathologists, a majority rule was followed. (Please refer to supplemental Figure 3 

for an overview of the initial tile pair acquisition and model training). Since the output scores of the 

ranking-CNN model are continuous and with no limit, and our objective was to estimate the 

severity of fibrosis, we used the range of the predicted scores based on the training set to 

normalize the output scores between 0 and 1. This range of the normalized score was used as the 

reference of the severity of the fibrosis, with scores (Continuous Index of Fibrosis [CIF] scores) 

approaching 1 representing the most severe fibrosis. 

We adopted a human-in-the-loop approach for manual image ranking (supplemental Figure 4) as 

this minimized the number of pairwise image comparison tasks required for each iteration of model 

training and validation. Briefly, in each round the trained model was used to predict the ranking for 

unseen tiles. A subset of pairs were reviewed and a rank label was determined by three 

hematologists (see supplemental Methods: Training of the ranking-CNN model). We created 8307 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 6, 2022. ; https://doi.org/10.1101/2022.06.06.22276014doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.06.22276014


 

8 
 

pairs for the training set and 3063 pairs for the validation set across three rounds of manual 

ranking (supplemental Table 4). Please refer to supplemental Figure 5 for examples of image pairs 

equating to each fibrosis grade. 

 

Generating image maps of fibrosis severity and feature extraction 

Generating fibrosis severity maps based on our CIF model output score is an efficient and intuitive 

method of visualizing fibrosis throughout a sample. To acquire these CIF maps, a sliding window of 

512 x 512 pixels was used within the annotated region, with a stride of 256 pixels. The model 

outputs a score for each window, with regions of overlap receiving an average score of the 

overlapping windows. 

 

To allow comparison between MPN subtypes and normal / reactive marrow, three sets of features 

relating to the analyzed tiles extracted from each sample were used: average CIF score, tile 

distribution, and Shannon entropy (or Shannon diversity index) of tile distribution. The average 

score is correlated to the overall sample fibrosis, with Shannon entropy and tile distribution related 

to the population diversity of the extracted tile scores. Shannon entropy (henceforth referred to as 

heterogeneity) captures the ‘unevenness’ of tile scores; increasing values correspond to a uniform 

distribution of tile scores across the entire range of possible scores. The tile distribution reflects the 

extent to which particular tile CIF scores are enriched in each sample. As the output CIF scores 

from our model were continuous between 0 and 1, scores were divided into four groups or ‘bins’ 

that broadly corresponded to the four WHO fibrosis grades of MF-0, MF-1, MF-2 and MF-3. Using 

images extracted from the previously manually annotated regions (training set), the data was first 

balanced by having equal numbers of tiles drawn from areas manually assigned to each of the four 

MF grades. Our model was then applied to this balanced dataset, with the predicted scores 

normalized and ranked from the lowest to highest score. The range of the normalized scores for 

each of the four bins was then determined by dividing the total number of tiles into four equally 

sized sets corresponding to each bin. The difference in fibrosis between MPN subtypes was 
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calculated via the Mann-Whitney-Wilcoxon test where p-value (P) < 0.05 is considered statistically 

significant. 

 

Topological data analysis of ET and pre-PMF samples 

To interrogate the relationship between fibrotic foci within ET and pre-PMF samples, we employed 

topological data analysis (TDA), a relatively new field in computational mathematics that studies 

the shape and connectivity of data31,32. TDA has previously found application in quantifying the 

spatial patterns of various cell distributions within cancer tissue33. Persistent homology, a 

prominent and robust TDA algorithm34, enabled us to explore the connectivity pattern of fibrotic foci 

across a continuous range of spatial scales within our samples. The input for this analysis was the 

CIF tile scores and the output was a multiscale summary of the spatial connectivity of the CIF 

scores called a barcode, a topological fingerprint generated using Python Ripser version 0.6.235 

(Figure 5). The barcode tracks the persistence and connectivity of fibrotic foci as they appear and 

evolve in the image at different threshold values of the CIF score. Quantitative properties of the 

barcode could then be used for subsequent analysis and classification. To distinguish between ET 

and pre-PMF samples, a random forest classifier was then applied in Python, using the package 

scikit-learn36, with a classifier comprising 100 decision trees. The importance of individual features 

was assessed using Gini importance37,38. For further details and a description of the topological 

statistics used for this analysis, please refer to supplemental Methods: Topology data analysis. 
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Results 

Estimation of BMT fibrosis severity using a ranked list approach 

We employed a human-in-the-loop methodology to efficiently build a ranked list of fibrosis severity 

comprising 11448 image tiles extracted from reticulin-stained BMT sections. Following an initial 

round of pairwise ranking using tiles extracted from manually annotated whole slide-images, two 

subsequent rounds of manual ranking were fed back into the ML model for further training. The 

average manual ranking concordance by three hematopathologists after the first round of training 

and validation was high (88.40%; supplemental Table 5). Unsurprisingly, concordance was highest 

between extremes of MF grade (e.g. MF-0 vs MF-3), with significant discordance largely restricted 

to pair samples extracted from areas manually segmented as being within the same WHO fibrosis 

grade (e.g. MF-2 vs MF-2). After three rounds of training and validation, our fibrosis ranking model 

achieved 93.99% accuracy (see supplemental Tables 6 and 7 for the ranking performance within 

different image pairs and interobserver agreement). 

 

As expected, the predicted tile ranking output of our model ranked highly fibrotic sample areas as 

those containing numerous thick reticulin fibers and bundles with frequent intersections (Figure 2B; 

supplemental Figure 6). Our model appeared to consistently rank tiles specifically on the reticulin 

fiber properties, with detailed visual inspection revealing no evidence of any significant impact 

resulting from non-specific or artifactual staining properties. 

 

Visualization of fibrosis using CIF image mapping  

To better understand the output of the ranking model, we sought to convert the derived CIF tile 

scores into an intuitive representation suitable for assessment by hematopathologists. The 

normalized CIF scores were converted to a color scale that could be superimposed upon a BMT 

image to generate a false-colored image (Figure 2A; Figure 3). This representation allows an 
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intuitive interpretation of the model output and contextualizes the results against familiar 

morphological tissue landmarks. 

 

Heterogeneity of reticulin fibrosis in BMT samples is associated with MPN 

subtype  

To accurately and objectively compare fibrosis quantitation between MPN subtypes and reactive 

samples, we determined average whole sample statistics that captured fibrosis severity and 

heterogeneity (Figure 2C-D; Figure 3). As expected, MF samples demonstrated significantly more 

fibrosis (average CIF score) than other MPN subtypes or the reactive / normal marrows. Equally 

expected was the finding of no significant difference between the average fibrosis scores in ET and 

reactive / normal samples; areas of minimal fibrosis amounting to MF-1 being well described in 

healthy marrow. In keeping with previous descriptions of patchy and variable fibrosis in PV, the 

average fibrosis score for PV was moderately higher than that of ET (PV 0.30 vs ET 0.19, P = 5E-

4). Average fibrosis scores for PV and pre-PMF were identical (PV 0.30 vs pre-PMF 0.30, P = 

0.94). Of particular interest, pre-PMF samples contained a significantly higher average CIF score 

than ET (pre-PMF 0.30 vs ET 0.19, P = 8E-5), despite meeting the diagnostic requirement of 

containing � WHO grade MF-1 by conventional histological assessment. Given the importance of 

BMT histological assessment in distinguishing patients with ET and pre-PMF, this result suggested 

that our automated fibrosis analysis may have clinical utility in resolving this frequently challenging 

differential diagnosis.  

 

In order to determine the distribution of the tile scores for each MPN subtype, we subdivided the 

tile CIF scores into four distinct groups, or bins, that broadly correspond to each of the four 

established WHO fibrosis grade categories from the initial segmentation set (Figure 2E). As 

expected, MF cases accounted for almost all of the tiles assigned to bin 3, although less fibrotic / 

non-fibrotic tiles were also frequently encountered in MF samples. Also expected was the 

observation that ET samples predominantly comprised tiles from bins 0 and 1 (82.36% and 
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16.10%, respectively), broadly similar to the reactive / normal samples, consistent with fibrosis in 

ET seldom exceeding focal areas of conventional WHO grade MF-1 (supplemental Table 8). The 

PV samples contained a fairly wide distribution of tiles from bins 0-2, with significantly more tile 

scores allocated to bin 1 than ET (PV 0.35 vs ET 0.16, P = 0.002) and bin 2 (PV 0.17 vs ET 0.02, 

P = 5E-4). Notably, samples of pre-PMF contained tile scores that were significantly different from 

those of ET; despite being predominantly composed of tiles assigned to bins 0 and 1 (46.52% and 

38.85%, respectively), tile scores assigned to bin 2 were significantly increased in the pre-PMF 

samples (pre-PMF 14.16% vs ET 1.51%, P = 2E-4), although areas of obvious WHO grade MF-2 

(as determined by routine histological review) were absent from these samples in line with current 

WHO diagnostic criteria (supplemental Table 8). Tile score distributions observed for the PV and 

pre-PMF samples were not significantly different. Of note, fibrosis heterogeneity did not appear to 

be simply correlated to average CIF scores, with no significant difference observed between the 

fibrosis heterogeneity of MF, PV and pre-PMF samples (MF 0.80 vs PV 0.69, P = 0.50; MF 0.80 vs 

pre-PMF 0.74, P = 0.96; PV 0.69 vs pre-PMF 0.74, P = 0.66). 

 

These results revealed that a significant proportion of analyzed tiles with CIF scores assigned to 

bin 2 were not, in fact, derived from sample areas readily discernible by hematopathologists as 

equating to moderate / severe fibrosis amounting to WHO grade MF-2. This reflects the presence 

of microfoci or ‘hotspots’ of advanced fibrosis amidst non-fibrotic or less fibrotic areas. When this 

occurs, such fibrotic hotspots are typically deemed insufficient to warrant advanced grading by 

hematopathologists, or are either too small or too subtle to identify. Indeed, review of the CIF maps 

confirmed the presence of such microfibrotic hotspots throughout many MPN samples, most 

notably pre-PMF and PV. 
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Cohort indexing of automated MPN fibrosis supports disease classification 

and assessment of disease progression 

To enhance the visualization of our automated analysis, we performed principal component 

analysis (PCA) to create an abstracted 2-dimensional space that incorporates the average tile CIF 

score, tile distribution, and heterogeneity of tile distribution for our sample cohort (Figure 4A). As 

expected, PCA demonstrated clear separation of MF from reactive / normal and ET samples, with 

cases of PV seen to overlap each region in PCA space. The distribution of the PV samples in PCA 

space did not appear to be strongly associated with the JAK2 V617F variant allele frequency 

(supplemental Figure 7). The relationship between driver mutation status and PCA distribution for 

the ET, MF and pre-MF samples is shown in supplemental Figure 8.  

 

Notably, when ET and pre-PMF samples were directly compared, both appeared to aggregate in 

distinct regions of the PCA plot with only minor overlap. Based on the PCA feature representations, 

we trained a random forest classifier to distinguish ET (n = 36) from pre-PMF (n = 17) samples; in 

three-fold cross validation (used to estimate the performance of a model by which data are split 

into 3 groups of approximately equal size) the classifier reached an area under the curve (AUC) of 

0.71 for discriminating between these MPN subtypes (Figure 7B). Of note, two pre-PMF samples 

were seen to overlap with the PCA space primarily occupied by samples of MF, despite meeting 

WHO morphological diagnostic criteria including an overall WHO fibrosis grade of ≤ MF-1. 

 

In addition to allowing a simplified assessment of the distribution of fibrosis within a cohort of 

reactive and MPN samples, PCA analysis allows changes in marrow fibrosis to be objectively 

detected and intuitively appreciated across sequential samples. This is of particular value in the 

interpretation of BMTs obtained from patients undergoing repeated biopsy to monitor disease 

response or progression (Figure 4B). 
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Topological data analysis (TDA) of fibrotic features in ET and pre-PMF 

samples 

Having identified significant differences in the average CIF tile score, tile distribution and 

heterogeneity between ET and pre-PMF, we sought to explore in more detail the fibrotic features 

associated with each subtype. We therefore extended our fibrotic feature analysis to include 

topological features as these have provided useful insight into other complex biomedical 

datasets31-33,39 (see Methods and supplemental Methods: Topological data analysis). The identified 

topological descriptors were combined with the original fibrotic features to train a random forest 

classifier (supplemental Figure 9; supplemental Table 9) with improved performance (AUC = 0.82 

[combined TDA + original fibrotic features] vs AUC = 0.70 [original fibrotic features]). These 

topological differences corresponded to the structure of the fibrotic foci, with pre-PMF samples 

appearing to have a greater number of fibrotic foci. These foci also appeared to be more 

pronounced in relation to surrounding tissue areas when compared to ET. Notably, fibrotic foci in 

pre-PMF samples were also more likely to be connected by paths with high CIF scores when 

compared to ET, implying a potential spatial relationship between areas of advancing fibrosis in 

pre-PMF (Figure 5). 

 

Automated fibrosis analysis identifies patients at risk of fibrotic progression  

Given the evidence of good disease separation of ET and pre-PMF samples in our local cohort 

using PCA, we hypothesized that our approach may allow improved early detection of MPN 

patients at risk of progression to secondary myelofibrosis. To evaluate this, we interrogated the PT-

1 clinical trial cohort for patients diagnosed with ET in whom there was diagnostic evidence of 

transformation to secondary MF in the course of extended clinical follow-up. We identified 18 

patients diagnosed with ET at trial enrollment in whom there was documented evidence of 

subsequent transformation to post-ET myelofibrosis (median days to transformation = 2356), and 

for whom we had access to analyzable pre-transformed reticulin-stained sections. As an internal 
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control group we identified 17 PT-1 trial participants in whom there was no diagnostic evidence of 

transformation over a comparable or longer period of clinical follow-up (median follow-up = 4339 

days). When indexed to the PCA plot derived from our locally sourced sample cohort (incorporating 

TDA), the PT-1 ET samples from non-transforming patients aggregated in the expected PCA 

space (Figure 6A). By contrast, around half (9 / 17) of the subsequently transformed PT-1 ET 

samples were seen to aggregate in the PCA space corresponding to cases of pre-PMF from our 

local cohort. A random forest classifier trained to discriminate between patients who did or did not 

subsequently transform to post-ET myelofibrosis achieved an AUC of 0.77 (Figure 6A; 

supplemental Table 10). 

 

Integration of fibrotic and megakaryocytic features in MPN morphological 

assessment 

Notwithstanding the diagnostic and prognostic potential of automated reticulin analysis, reticulin 

fibrosis is only one of several BMT features to be considered in the routine histological evaluation 

of MPNs. Indeed, in previous work employing ML to analyze megakaryocyte morphology and 

topology in BMTs we highlighted the potential of improved megakaryocyte analysis in the diagnosis 

and classification of MPNs40. Given the importance of both reticulin fibrosis and megakaryocyte 

analysis in MPN assessment, we sought to integrate both features using PCA in an attempt to 

improve the morphological resolution of MPN subtypes. When combined with our previous 

megakaryocyte feature PCA, fibrotic feature analysis demonstrated improved discrimination of ET 

and pre-PMF samples (AUC = 0.94 [megakaryocyte and fibrotic features] vs AUC = 0.92 

[megakaryocyte features alone]) (Figure 7B; supplemental Table 9). By contrast, inclusion of 

fibrotic feature analysis did not enhance the discrimination of reactive and MPN (all subtypes) 

using megakaryocyte features (AUC = 0.94 [megakaryocyte and fibrotic features] vs AUC = 0.96 

[megakaryocyte features alone]) (Figure 7B; supplemental Table 11), or the discrimination of 

reactive / normal and ET (AUC = 0.86 [megakaryocyte and fibrotic features] vs AUC = 0.89 

[megakaryocyte features alone]) (Figure 7B; supplemental Table 12). This likely reflects the 
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presence of variable amounts of minor fibrosis frequently encountered in healthy marrows, with 

significant feature overlap of non-fibrotic or mildly fibrotic MPN samples (Figure 4A; Figure 7A). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 6, 2022. ; https://doi.org/10.1101/2022.06.06.22276014doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.06.22276014


 

17 
 

Discussion 

In this study we demonstrate that the complex and variable pattern of reticulin fiber deposition 

identified on routinely prepared reticulin-stained BMT slides can be captured on digital images and 

used to develop improved disease classification, grading and monitoring tools through image 

analysis technologies. We describe a set of computational methods designed to systematically 

capture the key morphological characteristics of fibrosis in MPNs and associate these features with 

particular MPN subtypes. This incorporates a platform that combines intuitive manual image 

handling tools with support from a ML model, thereby assisting hematopathologists in the efficient 

ranking of marrow fibrosis severity using conventional WHO criteria. 

 

Objectively monitoring and quantitating fibrosis in BMTs is ideally suited for studies evaluating the 

effect of current therapies on disease progression in MPN, and for integration into future clinical 

trial designs evaluating novel therapeutic targets / drug candidates41,42. Without such approaches, 

incorporating marrow fibrosis assessment into robust clinical endpoints for the investigation of 

disease modifying agents in myelofibrosis will remain challenging. 

 

The work presented here has significant potential in the challenging morphological assessment of 

patients in whom a differential diagnosis of ET and pre-PMF is considered. Using TDA we 

demonstrate that characteristic microfoci of advanced fibrosis are a recurrent feature of pre-PMF 

samples that are seldom encountered in ET. Detection and quantitation of these fibrotic microfoci 

is well beyond the scope of conventional histological assessment, and is not captured in current 

fibrosis grading classifications11,18. The clinical significance of this finding is supported by our 

retrospective analysis of samples obtained as part of the large PT-1 clinical trial of patients 

diagnosed with ET and receiving long term follow-up. TDA identified fibrotic features, similar to 

those observed in pre-PMF patients, in over half of those ET patients (for whom slides were 

available) who subsequently progressed to post-ET myelofibrosis while enrolled on the trial. Of 

note, patients eligible for PT-1 trial entry from 1997 to 2012 met the Polycythemia Study Group 
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Diagnostic criteria for ET, before widespread recognition of pre-PMF as a diagnostic category and 

formal adoption by the WHO in 201622-24. This raises the possibility that at least a proportion of the 

ET patients subsequently transforming to secondary myelofibrosis might have had disease more in 

keeping with the current WHO entity of pre-PMF. Prospective studies determining the power of 

automated fibrosis assessment to predict myelofibrotic transformation in ET and pre-PMF 

classified using the latest WHO criteria are clearly indicated. 

 

Our identification and description of fibrotic microfoci and related topological features within pre-

PMF, and their association with fibrotic disease progression in ET, raises important questions 

about the factors driving early microfocal stromal fibrosis within the marrow. While the precise 

cellular mechanisms driving fibrosis in MPN remain to be elucidated, recent evidence from murine 

and human studies suggests that mal-differentiation of mesenchymal stem cells (MSC), driven by 

neoplastic HSCs and their inflammatory microenvironment, are a major determinant of distinct pre-

fibrotic and fibrotic phases of disease10,43. The extent to which this process of stromal 

reprogramming is responsible for the microfoci of fibrosis identified in our current work clearly 

warrants further investigation. Moreover, the extent to which such early (potentially reversible) 

fibrotic foci may be important for widespread pathological changes in the surrounding marrow 

tissue, terminating in generalized marrow fibrosis, is also unclear. Intriguingly, analysis of the 

topological features embedded within our fibrosis data revealed not only increased numbers of 

fibrotic microfoci in pre-PMF samples when compared to ET, but also suggests that in pre-PMF 

these fibrotic hotspots are spatially related, possibly reflecting local conditioning of the surrounding 

stromal tissue that predispose to further foci of early fibrosis development. While speculative given 

the limited number of samples analyzed and the absence of prospective clinical data, this model of 

microfocal fibrotic progression in MPNs is entirely consistent with the growing body of evidence 

pointing to early HSC-driven abnormalities of the stem cell niche driving highly localized changes in 

the tissue microenvironment8,9,44. 
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Statistical descriptions of bone marrow morphological features using enhanced image analysis 

techniques have only recently been described, and application to fibrosis complements our recent 

work describing megakaryocyte morphology and topology in MPNs40,45,46. Of note, while the 

specific ML strategies employed for detecting and quantitating fibrosis in the form of a continuous 

score (CIF score) are distinct from those previously employed in our megakaryocyte analysis, they 

draw upon shared technical and infrastructural processes and deliver outputs that are readily 

integrated into shared analytical workflows. Indeed, we demonstrate how combining the 

morphological and topological features of fibrosis and megakaryocytes employed in conventional 

MPN diagnosis can be used to explore and refine our current understanding of disease 

boundaries. Importantly, we recognize that additional cellular and stromal morphological features 

are important in the current histological diagnosis and classification of MPNs, particularly cellular 

changes in non-megakaryocytic lineages and abnormalities of collagen deposition and bone. 

However, such features are in-turn well suited to novel ML approaches. 

 

Fibrosis has long been recognised as an important pathological feature in diverse diseases 

affecting several organ systems such as liver, kidney and lung47. While improved measurements of 

histological fibrosis using image analysis / ML approaches have been particularly well described in 

liver disease48,49, our strategy of refining the topological features of fibrosis in the context of large 

curated patient cohorts and combining them with additional histological features is novel and has 

significant potential for rapid translation into other organ systems. 
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Figure 1. Overview of the computational steps for detection, quantitation and visualization 
of reticulin fibrosis in BMTs. (A) Image tiles are extracted from manually annotated (segmented) 
areas of fibrosis and labeled with the corresponding grade. Extracted tiles are then used to train a 
ranking-CNN (convolutional neural network) model to output scores using a pairwise sample 
approach, with higher scores corresponding to more severe fibrosis. Based on the initial trained 
model, we adopted a human-in-the-loop approach for manual image ranking. (B) With the finalized 
model, a CIF map of each sample is acquired by predicting the scores of all extracted tiles and 
visualizing this as a colormap superimposed upon the original reticulin-stained image. (C) From the 
predicted CIF scores and measurements of tile distribution, the fibrosis features are represented in 
2-dimensional disease space to allow comparison of MPN subtypes and indexing of individual 
patient BMTs against a sample library. Fibrosis features can then be combined with those of other 
BMT constituents (e.g. megakaryocytes) to refine the disease space. 
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Figure 2. Distribution of tile CIF scores across MPN and reactive samples. (A) Example of a 
false-colored fibrosis heatmap, with CIF scores overlaid onto the original reticulin-stained BMT 
image [summary of tile distribution in bottom left]. (B) Individual tiles receive a CIF score from 0 to 
1 depending on the severity of reticulin fibrosis, with high scores assigned to tiles displaying 
increased fiber quantity, thickness and intersections. Boxplots of the (C) average CIF score and 
(D) heterogeneity of tile distribution for MPN and reactive samples. (E) Boxplot for the distribution 
of CIF scores (grouped into bins of increasing fibrosis) for MPN and reactive / normal samples. 
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Figure 3. Variability of reticulin fibrosis within BMT samples. (A) Radar plots capture the 
average CIF tile score, tile distribution across the four bins (or ranges), and heterogeneity of tile 
distribution. Examples of homogenous and heterogenous patterns of fibrosis are shown. (B) 
Examples of radar plots for reactive samples and each MPN subgroup. 
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Figure 4. Disease cohort indexing discriminates between MPN samples and supports 
disease monitoring. (A) PCA plot of the abstract representations of sample fibrosis reveals the 
clustering of reactive cases and MPN disease subtypes. (B) Indexing the multivariable 
representation of fibrosis from individual patient samples to the PCA plot of the sample cohort 
enables monitoring of fibrotic progression. MF patients A and B underwent allogeneic bone marrow 
transplantation with subsequent marrow sampling to monitor disease response. Patient A 
demonstrated only modest improvement of marrow fibrosis post-transplant, with evidence of 
fibrotic relapse at 23 months (consistent with the results of clinical and laboratory disease 
monitoring). By contrast, Patient B demonstrated a profound reduction / normalization of marrow 
fibrosis within 12 months of transplantation, consistent with the clinical and laboratory findings. 
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Figure 5. Topological data analysis (TDA) of fibrosis in ET and pre-PMF samples. Illustration 
of TDA of fibrotic foci in an ET and pre-PMF sample. Super-level set filtration on the images (left) 
allows computation of a topological fingerprint in the form of a barcode. The x-axis of the barcode 
corresponds to filtration values, i.e. fibrosis score thresholds, in the super-level set filtration. At high 
filtration values only the most fibrotic score pixels are included, with all points included at the 
lowest filtration values. The barcode in blue captures clusters or connected components of the 
hotspots (light blue bars) across the filtration; for high filtration values this corresponds to fibrosis 
hotspots which then merge with neighboring hotspots when all pixels between them are present in 
the filtration. Two examples of such hotspots in the filtration of a sample of pre-PMF are shown as 
a pentagon and a star, with the filtration value at which they merge highlighted by a triangle. In the 
barcode, we highlight the CIF values at which the hotspots are “born” in the corresponding bars 
with a pentagon and a star. When the pentagon and the star hotspots merge, the bar 
corresponding to the star hotspot ends (indicated by the triangle) and the now joint star-pentagon 
component continues to be monitored in the bar that corresponds to the pentagon hotspot. Infinite 
features, i.e. features that continue beyond the end of the filtration such as the clusters that consist 
of all fibrosis pixels in the sample once all pixels are included in the filtration, are represented as 
arrows extending beyond the x-axis. The barcode in red tracks one-dimensional holes (red bars) 
and their scale, also called persistence, in the images. The most persistent hole in the pre-PMF 
image is highlighted as a circle. We show the fibrosis score at which a hole appears (left end point) 
of the corresponding bar in the barcode with a circle. 
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Figure 6. Combined fibrosis feature of ET, pre-PMF and PT-1 samples. (A) PCA plot of ET vs 
pre-PMF using fibrosis features (original + TDA) with overlay of pre-transformed and non-
transformed cases of ET from the PT-1 cohort along with the ROC curves for ET vs pre-PMF and 
pre-transformed vs non-transformed PT-1 samples. (B) Examples of the CIF maps and 
corresponding radar plots of the analyzed samples. 
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Figure 7. Combining fibrosis and megakaryocyte feature analysis improves the 
discrimination of MPN subtypes. (A) PCA plots of the fibrosis features, megakaryocyte features 
and combined features (fibrosis + megakaryocyte) reveals clustering of reactive samples and MPN 
subtypes. (B) Corresponding ROC curves (ET vs pre-PMF, reactive vs ET and reactive vs MPN) 
demonstrate the utility of combining fibrosis and megakaryocyte feature analysis in the assessment 
of MPNs, particularly for the discrimination of ET and pre-PMF samples (which includes TDA 
analysis of fibrotic features). For the purpose of comparison between fibrosis and megakaryocyte 
analyses for the ROC curve calculations, only samples for which both reticulin and H&E stains are 
available have been used (Reactive = 12, ET = 32, PV = 17, MF = 22, pre-PMF = 17). 
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