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Abstract 26 

Wastewater-based epidemiology (WBE) has been used extensively throughout the COVID-27 

19 pandemic to detect and monitor the spread and prevalence of SARS-CoV-2 and its 28 

variants. It has proven an excellent, complementary tool to clinical sequencing, supporting 29 

the insights gained and helping to make informed public health decisions. Consequently, 30 

many groups globally have developed bioinformatics pipelines to analyse sequencing data 31 

from wastewater. Accurate calling of mutations is critical in this process and in the 32 

assignment of circulating variants, yet, to date, the performance of variant-calling algorithms 33 

in wastewater samples has not been investigated. To address this, we compared the 34 

performance of six variant callers (VarScan, iVar, GATK, FreeBayes, LoFreq and BCFtools), 35 

used widely in bioinformatics pipelines, on 19 synthetic samples with known ratios of three 36 

different SARS-CoV-2 variants (Alpha, Beta and Delta), as well as 13 wastewater samples 37 

collected in London between the 15–18 December 2021. We used the fundamental 38 

parameters of recall (sensitivity) and precision (specificity) to confirm the presence of 39 

mutational profiles defining specific variants across the six variant callers. 40 

Our results show that BCFtools, FreeBayes and VarScan found the expected variants with 41 

higher precision and recall than GATK or iVar, although the latter identified more expected 42 

defining mutations than other callers. LoFreq gave the least reliable results due to the high 43 

number of false-positive mutations detected, resulting in lower precision. Similar results were 44 

obtained for both the synthetic and wastewater samples. 45 
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Introduction 46 

On March 11th, 2020, the World Health Organisation (WHO) declared a global pandemic 47 

following the rapid spread of a novel coronavirus, severe acute respiratory syndrome 48 

coronavirus 2 (SARS-CoV-2) [1], which causes coronavirus disease 19 (COVID-19). Since 49 

then, wastewater-based epidemiology (WBE) has proven a promising tool to detect and 50 

monitor SARS-CoV-2, act as a proxy for infections within certain regions/communities and 51 

provide an early-warning of disease outbreaks [2]. It has been widely used across the globe to 52 

complement conventional clinical surveillance, which is limited in population coverage, 53 

capacity or engagement (e.g., self-testing/reporting) [3]. In this regard, it is evident that WBE 54 

can be used to monitor disease prevalence in a community, allowing targeted public health 55 

measures to be implemented at relative pace and geographical specificity, in combination 56 

with other data. Moreover, WBE is non-invasive and less biased than clinical data, making it 57 

a valuable molecular surveillance tool [4, 5].  58 

Since the initial outbreak of SARS-CoV-2, several variants of concern (VOCs), variants 59 

under investigation or monitoring (VUIs/VUMs) and variants of interest (VOIs) have 60 

circulated globally. According to the WHO, as of May 2022, there have been five VOCs 61 

(Alpha, Beta, Gamma, Delta and Omicron), eight VOIs (Epsilon, Zeta, Eta, Theta, Iota, 62 

Kappa, Lambda, Mu) and two VUIs (B.1.640 and XD) [6]. While VOCs have transmitted 63 

worldwide, VUIs are country-specific, with over 200 sub-lineages of the main circulating 64 

variants reported by individual countries [7]. In England, the Horizon Scanning Programme, 65 

part of the UK Health Security Agency (UKHSA), has been monitoring circulating variants, 66 

including VOC, VUI/VUM and VOIs, identified by deep sequencing of a large cohort of 67 

Covid-19 positive patients by COG-UK (Covid-19 Genomics UK) [8, 9]. Since the 68 

declaration of the pandemic, this totals over 2 million patients in the UK alone [10]. 69 

However, the sequencing datasets generated lacked asymptomatic cases and cases not 70 

sequenced.  71 

The Environmental Monitoring for Health Protection programme (EMHP), part of the 72 

UKHSA, has used reports produced by the Horizon Scanning Programme to monitor the 73 

same variants in wastewater collected in England. However, the analysis of SARS-CoV-2 74 

sequences from wastewater samples is more complicated than clinical samples obtained using 75 

nasopharyngeal swabs. Discrepancies between clinical and wastewater samples have been 76 

observed; in particular, the mixed strain nature of wastewater samples, the more degraded 77 

nature of viral genomes and, consequently, the inability to obtain consensus genome 78 
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sequence for each of the samples analysed. These differences can be accounted for by the 79 

nature and characteristics of the samples (wastewater vs clinical) and characteristics 80 

impacting the ability to extract and analyse the samples, such as virus titre, which is 81 

considerably lower in wastewater samples that, in turn, may affect variant calling such as 82 

sample preparation, with additional steps such as centrifugation and filtration methods 83 

required to purify the samples from chemicals and other sources of contamination and 84 

platform dependent sequencing errors [11-14]. 85 

Several bioinformatics pipelines have been developed to specifically detect SARS-CoV-2 86 

sequences and variants in wastewater samples, including nfcore/viralrecon [15] and V-PIPE 87 

SARS-CoV-2 [16]. However, most studies have relied heavily on the ARTIC pipeline 88 

initially designed with clinical samples in mind, or, as in the case of the EMHP programme in 89 

England, an adaptation of this pipeline. Common sequencing pipelines, including ARTIC, 90 

involve the removal of low-quality sequencing reads, followed by read mapping and variant 91 

calling to define mutations found in the sample (Single Nucleotide Polymorphisms – SNPs – 92 

and INsertions/DELetions) [17]. This is performed by highly specialised tools known as 93 

variant callers. The ARTIC pipeline for sequence analysis of clinical samples utilises iVar, 94 

which relies on the samtools mpileup command as its variant calling function [17]. While this 95 

has been well documented in clinical studies, very little is known about its performance for 96 

wastewater samples. To address this knowledge gap, the EMHP programme in England 97 

adapted this protocol, using VarScan as an alternative to iVar, delivering significantly 98 

improved results when applied to wastewater samples [18, 19]. Before screening for sequence 99 

changes, VarScan uses the BAM alignment file as the input to score each of the reads 100 

produced during sequencing. If reads are found to align to multiple locations and/or are of 101 

low quality, they are automatically discarded. For the remaining reads, SNPs and Indels are 102 

compiled for each of the locations across the viral genome and validated depending on factors 103 

such as the overall coverage, the number of reads across the site of the mutation and base 104 

quality, among others.   105 

Several genomic studies have compared and highlighted the impact that variant caller choice 106 

has on the analysis pipeline, including iVar [17], GATK [20], LoFreq [21], FreeBayes [22] 107 

and BCFtools [23]. FreeBayes is a haplotype-based variant caller where variants are called 108 

based on the sequences of reads aligned to a particular target rather than the specific 109 

alignment. One of the main advantages of this method is that it bypasses the problem of 110 

identical sequences that might align to multiple locations. On the other hand, GATK uses 111 
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HaplotypeCaller as a tool to call germline SNPs and Indels via local re-assembly of 112 

haplotypes [22]. More specifically, it assembles and realigns reads to their most likely 113 

haplotypes. Comparison with the reference of choice is used to calculate the likelihood of 114 

each possible genotype and call possible variants. LoFreq is a high-quality and highly 115 

sensitive tool to detect variants in heterogeneous samples, such as tumour samples [21]. It 116 

was developed under the assumption that it is hard to distinguish true variants from 117 

sequencing errors. In this regard, LoFreq is a very robust and sensitive variant caller that uses 118 

base-called quality values to call variants accurately.  It differs from other callers as it can 119 

find SNPs and Indels at a frequency below the average sequencing error. As such, it is not 120 

ideal for low-coverage genomes. BCFtools is a collection of several commands, among 121 

which call is used for SNP/indel calling [23]. It generates the mpileup from the BAM 122 

alignment reads and then computes the variant calling. This step is the same as VarScan, 123 

which generates mpileup using SAMtools. iVar uses the output of the SAMtools mpileup 124 

command to call variants as VarScan and BCFtools; however, it is not adapted for use in 125 

mixed strain samples, such as those derived from wastewater where mixed populations are 126 

found in the same sample [17]. [24, 25].  Indeed, it is globally acknowledged that the 127 

detection of defining SNPs and Indels allows the assignment of VOCs, VUIs, VUMs and 128 

VOIs to wastewater samples, thus their accurate identification is paramount for variant 129 

detection in the context of WBE.  130 

In this manuscript, we evaluated the performance of six different variant callers and their 131 

ability to detect SNPs and indels in samples containing a mixture of synthetic SARS-CoV-2 132 

control variants, as well as wastewater samples collected across Greater London during the 133 

pandemic. 134 

 135 

  136 
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Methods 137 

Sample library preparation and sequencing 138 

The synthetic SARS-CoV-2 control variant dataset contained samples that consisted of a mix 139 

of three variant genomes: Alpha (Control 15), Beta (Control 16) and Delta (Control 23) 140 

synthesised by TWIST Biosciences, USA (Table 1). For each sample in the synthetic dataset, 141 

three of these genomes were mixed in different ratios up to a total concentration of 200 142 

genome copies per �L, ranging from 0 to 100% of each synthetic genome, in quadruplicates. 143 

The mutation profile of each of the synthetic genomes is provided in Supplementary Table 1. 144 

Wastewater samples were collected between the 15–18 December 2021 in eight locations 145 

across the city of London, UK. Most of these samples were found to be positive for both the 146 

Delta and Omicron lineages using the bioinformatics pipeline developed by EMHP (data not 147 

shown). Wastewater samples were clarified, concentrated and RNA extracted according to 148 

the Quantification of SARS-CoV-2 in Wastewater General Protocol V1.0 149 

(https://www.cefas.co.uk/media/offhscr0/generic-protocol-v1.pdf). Sequencing libraries (tiled 150 

amplicons) were generated using the EasySeq™ SARS-CoV-2 WGS Library Prep Kit 151 

(Nimagen, The Netherlands) and the Nimagen V3 (wastewater samples) and V4 (synthetic 152 

samples) primer schemes, following the Wastewater Sequencing using the EasySeq™ RC-153 

PCR SARS-CoV-2 (Nimagen) V2.0 protocol [26]. The libraries were sequenced on an 154 

Illumina NovaSeq 6000 (2x 150 bp) at the University of Liverpool sequencing centre 155 

(synthetic samples) or an Illumina NextSeq 500 (2x 150 bp) at the University of Nottingham 156 

sequencing centre (wastewater samples). 157 

 158 

Read pre-processing, mapping, primer trimming and variant calling  159 

The ARTIC pipeline (ncov2019-artic-nf; Illumina workflow) [27] was used to process the 160 

raw Illumina reads. Briefly, amplicon reads were pre-processed using Trim Galore v0.6.5 161 

[28], mapped to the reference SARS-CoV-2 genome (ENA GenBank Accession 162 

MN908947.3, NCBI NC_045512.2) using BWA v0.7.17 [29], followed by primer trimming 163 

using iVar v1.3 and bed files containing the genome positions of the primers used to generate 164 

the amplicons (Nimagen V3 and V4 primer schemes for wastewater and synthetic samples, 165 

respectively). The resulting BAM files were sorted and subsequently indexed using 166 

SAMtools v1.13 [23] before analysis with six different variant callers; iVar v1.3.1, LoFreq 167 

v2.1.3.1, BCFtools v1.13, GATK Haplotypecaller v3.8, VarScan v2.4.4 and FreeBayes 168 
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v0.9.21. To avoid introducing biases across the variant callers, only parameters common to 169 

those available from VarScan were chosen. VarScan is the caller with the least number of 170 

parameters as it allows to only choose from min-coverage (Minimum read depth at a position 171 

to make a call), min-reads2 (Minimum supporting reads at a position to call variants), min-172 

avg-qual (Minimum base quality at a position to count a read), min-var-freq (Minimum 173 

variant allele frequency threshold) and p-value (p-value threshold for calling variants). It 174 

should be also noted that it is practically impossible to test all the parameters from all the 175 

callers and leaving these in default is a preferred choice when performing comparison studies 176 

[30-32]. 177 

The ARTIC pipeline outputs a list of mutations (SNPs and indels) detected for each variant 178 

using iVar, but this was re-run separately after matching the common parameters across the 179 

various callers being investigated. All parameters are described in Supplementary file 1. The 180 

sorted, indexed and primer-trimmed BAM files were used directly to run variant calling with 181 

FreeBayes, iVar, BCFtools and VarScan, while LoFreq and GATK Haplotypecaller required 182 

first pre-processing of these BAM files. Since LoFreq required indel quality information in 183 

the BAM file to process indel calls, we used the LoFreq command indelqual to insert quality 184 

score for each indel, based on the dindel algorithm [33]. GATK Haplotypecaller, requires 185 

reads to be grouped (using AddOrReplaceReadGroups from Picard) and duplicates 186 

(MarkDuplicatesSpark from GATK) were marked before variant calling. All the variant 187 

callers generated outputs in the variant call format (vcf) files except iVar, which reported 188 

outputs as tsv (tab-separated values) files. A python script (ivar_variants_to_vcf.py) was used 189 

to convert the tsv file to vcf format [15]. A python script (ivar_variants_to_vcf.py) was used 190 

to convert the tsv file to vcf format [34]. 191 

 192 

VCF file processing, analysis, and statistical methods 193 

QuasiModo is a tool that evaluates the results of strain resolved analyses on mixed strain 194 

samples including variant calling and genome assembly [35]. It does this by taking vcf files 195 

generated from the different variant callers and two genomic reference files, the first being 196 

the reference against which samples were mapped in the BAM file-generating process, and 197 

the second reference being a ground-truth genome known to be found in the mixed strain 198 

samples. We therefore evaluated the performance of the different variant callers by 199 

comparing lists of mutations identified by each of the variant callers to a second reference 200 

genome (for ground truthing). The reference SARS-CoV-2 genome sequence was 201 
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downloaded from NCBI Genbank (Accession No. MN908947.3) and the SARS-CoV-2 202 

variant genomes were obtained from GISAID: Alpha (EPI_ISL_601443), Beta 203 

(EPI_ISL_678597), Delta (EPI_ISL_1544014), Omicron-England (EPI_ISL_7718520), 204 

Omicron-Hong Kong (EPI_ISL_6841980), Omicron-Australia (EPI_ISL_7190366) and 205 

Gamma (EPI_ISL_792683). Briefly, sequences from each sample were aligned to the 206 

reference genomes using MUMmer4 [27] to identify SNPs and indels that are present in the 207 

ground-truth genome and each variant call was then categorised as either a true positive (TP), 208 

a false positive (FP), or a false negative (FN).  A true positive is defined as one that was 209 

found by the variant caller being tested in both the sample and the reference.  A true negative 210 

is a lack of a mutation detected by the variant caller where there is no mutation present in the 211 

reference file. A false positive is a mutation reported by the variant caller but not present in 212 

the original reference, while a false negative is a mutation not detected by the variant caller, 213 

but that is found in the reference [35-38]. 214 

These values are used to calculate the recall and precision, also known as sensitivity and 215 

specificity, respectively:   216 

Recall (R, fraction of truly existing variants) = TP/(TP+FN) 217 

Precision (P, fraction of predicted true variants) = TP/(TP+FP) 218 

In addition, once recall and precision are calculated, a ratio of the two can be derived, known 219 

as the F1 score [35]: 220 

F1 = 2 * (P*R)/(P+R) 221 

 222 

For the synthetic control samples, 455 vcf files (generated for 19 synthetic samples 223 

(quadruplicates) from six variant callers, with one failed replicate for GATK) were analysed 224 

using the MN908947.3 reference file as the mapping genome and each of the SARS-CoV-2 225 

variant reference genomes (Alpha, Beta, Delta, and Gamma). Similarly, for wastewater 226 

samples, we generated 77 vcf files from 13 unique samples among six variant callers, with 227 

one failed sample for GATK), using the MN908947.3 reference and each of the SARS-CoV-228 

2 variant genomes (Alpha, Beta and Delta, Omicron (Hong Kong), Omicron (Australia) and 229 

Omicron (England) and Gamma; Table 1). The Gamma (P1) variant reference file (Table 1) 230 

served as a negative control in our bioinformatics analysis, as it was not included in the 231 

synthetic mixtures nor found in the wastewater samples. We adapted the method described by 232 

Deng et al. [35] to generate a table with calculated values for each of the vcf files, from 233 
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which recall, and precision were plotted using R v4.1.3 and ggplot2 [39]. Output from all the 234 

vcf files was used by vcfstats from the vcflib package [40] to generate variant statistics for 235 

each of the vcf files. vcfstats generates a two-column output for each vcf file, with counts for 236 

SNPs, MNPs (multiple nucleotide polymorphisms), Indels and various other parameters. The 237 

number of SNPs, Indels and MNPs for each vcf file were plotted using RStudio, ggplot2 238 

package [39]. Frequencies of the defining mutations for each of the variant genomes were 239 

extracted from the vcf files using BCFtools [23] and plotted using Rstudio, ggplot2 [39]. 240 

To test whether the distribution of precision, recall and F1 scores for each variant caller was 241 

significantly different from another, we applied the Kruskal-Wallis one-way analysis of 242 

variance test using the python scipy package v1.9.1 (SciPy). Following this, a post-hoc Dunn 243 

test using scikit-posthocs package v0.7.0 (scikit-posthocs · PyPI) was performed to evaluate 244 

the pairwise differences between callers. These tests were performed separately on the 245 

synthetic samples, the wastewater samples and both sets of samples together, for each score. 246 

Each set of quadruplicate synthetic samples were aggregated by median score before 247 

applying the relevant tests. 248 

  249 
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Results 250 

Sensitivity and specificity of six variant callers across mixed synthetic genome samples 251 

We ran VarScan, GATK, iVar, FreeBayes, LoFreq and BCFtools across 19 mixed ratio 252 

synthetic samples, in quadruplicates. Basic sequencing statistics for all the samples 253 

calculating recall, precision and F1 score values are summarised in Supplementary Figure 254 

7A.  255 

We calculated recall and precision for each variant within the samples and plotted these 256 

separately for each variant caller (Figure 1A-D, Supplementary Figure 1A-D), by also 257 

highlighting the percentage of each variant in the mixed sample as described in Table 2. 258 

Given that all four replicates yielded very similar results (reliable technical replicates), we 259 

run the median of these for all the synthetic samples plots. As shown in Supplementary 260 

Figure 2, we picked three samples which only contained 100% of one specific variant in the 261 

mix, namely Alpha, Beta or Delta, (shown in Table 2 marked by *) to show the validity of the 262 

replicates. They all had indeed a similar distribution of the 4 replicates. 263 

Our results show that all the variant callers correctly identified each SARS-CoV-2 variant in 264 

the synthetic mixes. At the time of writing, the tools we used to evaluate the presence of 265 

variants in a mixed sample via evaluation of their mutational profile could not be applied for 266 

mixed samples containing more than two variants or strains; therefore, we investigated the 267 

correct identification of the percentage by analysing the variants independently rather than 268 

confirming that all variants were found simultaneously in the same sample. Our results 269 

suggest that in general, the greater the proportion of a variant (close to 100%), the greater the 270 

chance it was called correctly (Figure 1). Indeed, VarScan, BCFtools and FreeBayes correctly 271 

called the increased ratio of Alpha compared to the remaining variants in the mix, while iVar 272 

and LoFreq had a trend line where the increased concentration of the variants could not be 273 

observed as clearly as in the other callers, showing instead a lower precision and for the latter 274 

also a low recall (Supplementary Figure 1A-C, 7A). As expected, our negative control P1 275 

(Gamma) (Figure 1D) did not yield any significant results, with all samples having a very low 276 

precision and recall for every caller assessed. Specifically, we observed that samples with a 277 

ratio close to zero, thus with low concentration of a variant, tended to cluster together with 278 

low recall and low precision. Those with higher ratio for a variant, and therefore with more 279 

mutations to be detected across several variants, are distributed across the plot to reflect the 280 

increased recall, and for some callers, higher precision. Based on this initial observation, 281 
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BCFtools, VarScan and Freebayes had the highest precision, followed by iVar and GATK. In 282 

addition, iVar had the highest recall for each of the variants being assessed independently, via 283 

count of their TPs, FPs and FNs compared to the other callers. This was supported by a 284 

Dunn's test to compare the synthetic samples’ precision, recall and F1 scores of each variant 285 

caller. It confirmed that the differences in precision and F1 scores for LoFreq were 286 

significantly different to the other callers (p < 0.01) and  iVar performed best for recall and 287 

the Dunn's test again confirmed this as statistically significant (p < 0.01, Supplementary 288 

Figure 7A). 289 

 290 

Sensitivity and specificity of six variant callers across wastewater samples from London  291 

We used wastewater samples collected between the 15–18 December 2021 from Greater 292 

London to assess whether the variant callers could identify the mutations with similar 293 

precision and recall as observed with the synthetic samples. Table 3 shows the list of the 294 

samples, dates and predicted variants known to be found in those samples and Supplementary 295 

Figure 7B shows basic sequencing statistics. Samples were predicted to contain a mix of the 296 

Omicron and/or Delta, AY.4.2 variants definitions (EMHP analysis based on PHE variant 297 

definition, data not shown). Given the genome similarity between the Delta and AY.4.2 298 

variants, we only carried out our analysis on the Delta variant mutations. Figure 2A-B shows 299 

that the variant callers recognised mutations that could be identified as Delta variant for some 300 

of the samples, which indeed show a higher precision and recall compared to others, while in 301 

Supplementary Figure 2A-B-D we show that Alpha, Beta or Gamma variants are not 302 

detected, as expected, since these were not expected to be found in the samples, compared to 303 

Delta which shows to be found in some of the samples (Supplementary Figure 2C). Indeed, 304 

when testing for Delta variant presence, we noticed a slight increase in the precision and 305 

recall for some of those samples, which suggests that those did contain SNPs and/or Indels 306 

that could be identified as being part of the Delta variant, namely S50 and S296, although the 307 

latter was not called by GATK. Consistent with the data in Table 3, some of the samples were 308 

found to not contain a Delta variant, such as sample S43, which indeed showed a low 309 

precision and recall for all the callers, while other samples with slightly higher values 310 

reflected that did contain a mix of both Omicron and Delta (samples S58, S292, S63). As 311 

shown for the synthetic samples, LoFreq was the only variant caller that called with the 312 

lowest precision for all the samples analysed, followed by iVar, while recall values for 313 

LoFreq were sparser, yet higher than the other callers.  314 
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Similarly, we tested the wastewater samples for the presence of the Omicron lineage (Figure 315 

3A-C). We used three different references representative of this variant, namely, England, 316 

Hong Kong, and Australia. As shown in Figure 3A-C and Supplementary Figure 4A-C, all 317 

three variants under analysis were found in our wastewater samples and at a higher level than 318 

the one at which the Delta variant was detected for specific samples expected to have either 319 

or both two variants. The degree to which each variant caller recognises the mutations varied, 320 

with LoFreq again returning the lowest recall and precision values compared to the other 321 

callers. This was consistent with the results obtained with the synthetic data. Based on the 322 

predicted detection indicated in Table 3, the two samples identified to contain a Delta based 323 

mutational profile as described above (S50 and S296), have now a low precision and recall 324 

when tested against any of the Omicron lineages, suggesting that in those samples we can 325 

predict to find a Delta variant rather than an Omicron. This was confirmed consistently for all 326 

the callers, although we also observed again that LoFreq did have low values as shown in the 327 

other plots and that GATK did not call S296. As for the synthetic samples, a Dunn's test of 328 

the pairwise scores confirmed that in terms of precision, GATK, VarScan and Freebayes 329 

were not significantly different from one other. However, the Dunn's test on recall showed 330 

iVar to be stochastically dominant. For the combined F1 score, the same test showed that 331 

only LoFreq was significantly different from each of the other tools (p < 0.01, Supplementary 332 

Figure 7B). 333 

 334 

Comparison of known variant defining mutations found in synthetic and wastewater 335 

samples across the six variant callers 336 

We calculated the total number of known SNPs, Indels and MNPs (multi nucleotide 337 

polymorphisms) as described by Twist (synthetic samples) or PHE (wastewater samples) for 338 

each variant and compared these with those found in our synthetic (Figure 4A-F, 339 

Supplementary Figure 5A-F and Supplementary file 2) or wastewater samples (Figure 5A-F, 340 

Supplementary Figure 5A-F and Supplementary file 2) by each of the callers. SNPs/Indels 341 

bar plots were also shown in absence of LoFreq to show the divergence among all the callers 342 

on a different scale, as shown in Supplementary Figure 6A-D. In Figure 4A-F and 5A-F we 343 

used UpSet plots to show TPs for a subset of both synthetic and wastewater samples, 344 

respectively. For the synthetic samples we chose the three samples with 100% of a variant 345 

and one with a mix of the three (sample 12, Table 2). Among the wastewater samples, we 346 

chose six samples, representative of both Omicron lineages and Delta variants (Table 3, 347 
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samples highlighted in bold). As shown in Figure 4A-F, and in concordance with the data 348 

presented above, LoFreq did call a much higher number of mutations compared to all the 349 

other variant callers in all the synthetic samples analysed, leading to a high number of FNs. 350 

When looking in more detail at how many of those were the defining mutations for each of 351 

the reference genomes (Table 1), we found that all callers identified the majority of the 352 

expected mutations for the variants being investigated, except LoFreq which only found 353 

11/28 mutations for Alpha, 14/25 for Beta, and 20/37 for Delta (Figure 4A-B-C, 354 

Supplementary file 2). In addition, a set of 3 mutations was not detected by any of the variant 355 

callers for Alpha and Beta variants and 4 mutations for the Delta variant. The detailed 356 

number of defining expected mutations for all the callers are described in Supplementary file 357 

2. 358 

For the synthetic mixed strain sample (Table 2, sample 12) we tested the presence of the 359 

defining mutations for Alpha, Beta and Delta (Figure 4D-E-F, respectively and 360 

Supplementary file 2) which were mixed in a 50:25:25 ratio, respectively. As summarised in 361 

Supplementary file 2, GATK called the lowest number of expected mutations for all the three 362 

variants, followed by VarScan and LoFreq. On the other hand, we found that iVar, FreeBayes 363 

and BCFtools were the callers with the highest number of expected mutations for all three 364 

variants profiled. Five mutations for the Alpha variants, 3 for the Beta and 8 for the Delta 365 

variant were not detected by any of the callers.  366 

Similarly, we called variants for the wastewater samples (in bold Table 3, Figure 5A-F, 367 

Supplementary Figure 5B-D-F and Supplementary file 2) and observed the same pattern. 368 

More specifically, we investigated how many of the Delta, Omicron BA.1 and BA.2 defining 369 

mutations were detected by each of the variant callers across the samples and compared the 370 

numbers. As shown in Figure 5A-F, we found that, of all the mutations detected in the 371 

wastewater samples, 13/20 mutations for BA.2 were not detected by any of the variant callers 372 

(Supplementary file 2), yielding to a very low number of defining mutations found by each 373 

caller (up to 6 total mutations). For BA.1, who has a total of 17 defining mutations, LoFreq 374 

called the least number of expected mutations for sample S58 (7/17) and S263 (6/17). 375 

Overall, all the callers found between 6 to 16 defining mutations across the samples, with 376 

iVar having the highest number of expected mutations compared to the other callers: it 377 

detected all the 16/17 mutations for BA.1 in all samples, except 10/17 for S263 and 0/17 for 378 

S296. When looking at the Delta variant defining mutations, as observed for the other 379 

variants, there is a degree of difference within the same sample, e.g., iVar and LoFreq called 380 
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8/17 and 9/17 defining mutations, respectively for sample S63, but all the others only 3/17. 381 

Overall, iVar seemed to have performed well for the Delta variant where it called the highest 382 

number of expected mutations (Supplementary file 2).  383 

Similarly, bar plots showing the number of total SNPs, Indels and MNPs across the samples 384 

for the six variant callers were also calculated. This is shown in Supplementary Figure 5A-F, 385 

for both synthetic and the real wastewater samples, and in absence of LoFreq in 386 

Supplementary Figure 6A-D. Interestingly, not all the variant callers were able to recognise 387 

MNPs. As shown in Supplementary Figure 5E-F only FreeBayes and iVar found this type of 388 

mutations across both synthetic and real wastewater samples.  389 

 390 

Comparison of alternate allele frequencies across the six variant callers 391 

We extrapolated the alternate allele frequencies values from the vcf files for both the 392 

synthetic and wastewater samples across the six variant callers to look if these were called 393 

similarly. Degenerate codons were not plotted for any of the callers. In Figure 6A-C 394 

(synthetic) and Figure 6D-F (wastewater) we plot all the defining mutations for the variants 395 

of interest across all the 19 synthetic or the 13 wastewater samples. Frequencies are coloured 396 

by gradient.  397 

Among the synthetic samples, all the callers had the same frequency for those samples where 398 

there was a high proportion of a variant (75-100%), such as samples 1 and 7 for Alpha 399 

(Figure 6A), sample 2 for Beta (Figure 6B) and samples 3 and 17 for Delta (Figure 6C). For 400 

the remaining samples, frequencies were similar, although iVar called more mutations than 401 

others, but at very low frequency. Similarly, for the wastewater samples we plotted 402 

frequencies for defining mutation for Omicron BA.1 (Figure 6D), BA.2 (6E) and Delta (6F) 403 

variants. BA.1 mutation frequencies were called at the same level across all the callers. In 404 

particular, samples S58, S63 and S292 were the ones with the highest number of mutations 405 

detected by all callers, at the same high frequency. All three samples were found to be 406 

positive for Omicron from previous data analysis (data not shown). Some mutations, such as 407 

Q19E were not called by any of the callers. It is worth highlighting that at the time the 408 

original samples were analysed (December 2021) there was no clear distinction between 409 

BA.1 and BA.2. Frequencies for BA.2 (Figure 6E) were also similar across the callers, 410 

although only a subset of these were detected, suggesting that more likely the BA.1 subgroup 411 

was the one circulating at that time. As for the Delta variant, two samples, S50 and S296, 412 
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showed high frequency and were consistent among all the callers. Other samples were called 413 

similarly, with no evident differences.  414 

  415 
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Discussion 416 

In this paper we have analysed six variant callers commonly used in bioinformatics data 417 

analysis to empirically quantify their ability to identify mutations across mixtures of synthetic 418 

samples with known mutations as well as a set of wastewater samples with an unknown 419 

number of mutations. We first calculated recall and precision across the full genome for all 420 

the samples to define ground differences across the callers, to then focus in more detail on a 421 

set of defining mutations, by comparing how many of these were found and at which 422 

frequency by each of the callers. Our results suggest that the variant callers that showed the 423 

highest precision when looking at all samples together (synthetic and real wastewater 424 

samples) were GATK and VarScan followed by BCFtools and FreeBayes,  which instead 425 

showed sparser data points. LoFreq and iVar showed the lowest precision values 426 

(Supplementary Figure 7C). Recall values were the lowest for GATK (and very sparse 427 

values), while they were significant statistical differences among the rest of the callers (in 428 

particular iVar’s stochastic dominance). Overall, the F1 score confirmed that LoFreq was the 429 

least sensitive (Supplementary Figure 7C), presenting numbers of mutations that are 430 

magnitudes larger than the rest, and subsequently with a lower precision. On the other hand, 431 

when focusing on selected mutations, iVar identified the highest number of expected defining 432 

mutations across both synthetic and wastewater samples, compared to the other callers. 433 

Wastewater-based epidemiology (WBE) has been used for many years to monitor key 434 

pathogens such as polio [41-45]. However, it has undergone a renaissance during the SARS-435 

CoV-2 pandemic, with many tools and software specifically designed to detect the virus in 436 

wastewater and being developed in the wake of WBE monitoring [46-50]. As such, tools used 437 

to detect the virus in clinical samples were used as templates, but in many cases, these did not 438 

reflect the composition of the wastewater samples accurately, e.g., the mixed strain nature as 439 

well as degradation of the viral RNA in the environment, thus the lack of a complete genome, 440 

and more importantly the lack of a consensus sequence. These nuances impact and should 441 

inform downstream analysis at the bioinformatics level: sequences could only be a fraction of 442 

the genome, as the samples may be highly degraded, and the lack of a consensus will affect 443 

the ability to assign a variant to a sample [51, 52]. Subsequently variant analysis is limited to 444 

a shorter region in some cases and variant assignment has to happen based on specific 445 

mutations known to define a variant, as used for clinical cases [53]. For this reason, a variant 446 

caller that adapts to the type of data available is very important as it will be expected to call 447 

the mutations with higher sensitivity.  448 
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The six callers analysed in this paper have many aspects in common as well as significant 449 

differences. For example, of all the callers LoFreq is the only one that requires base quality 450 

information to call variants, making this method much more stringent and robust than the 451 

others, but similarly prone to call many more mutations than expected [21], as seen in our 452 

results. In addition, it has been reported that LoFreq can efficiently recognise sequencing 453 

errors from expected mutations in non-environmental samples, however, it seems that it did 454 

not behave as efficiently in our wastewater samples nor with the synthetic samples. This 455 

could also be a consequence that more specific combinations of parameters have to be chosen 456 

for efficient performance. Although for some samples the recall was correct, the precision 457 

was lower indicating the lower efficiency. Indeed, LoFreq is a fast and sensitive variant caller 458 

that calls many mutations that, however, are not true positive, hence low recall and precision 459 

as found in our results. We suggest that this tool is more suited for shorter viral sequences, 460 

and more likely in samples with higher coverage. Similarly, GATK was designed to detect 461 

genomes across a range of sample sources, but not environmental, and this is reflected in the 462 

highly comprehensive set of parameters available to efficiently analyse the datasets (over 111 463 

parameters) [20], but most of GATK parameters are not applicable to wastewater datasets. 464 

These aspects also highlight the difficulty in using these two tools for wastewater data, in 465 

contrast to FreeBayes, BCFtools or VarScan, which are functional and easy to apply in non-466 

clinical settings. Nevertheless, we found that compared to most of the callers analysed, 467 

GATK did find the majority of the expected mutations (TPs) as well as overall good scores 468 

for recall and precision, suggesting that applying different sets of parameters might improve 469 

its functionality for environmental samples as well. This applies to LoFreq as well.  470 

The selected variant callers have been extensively used in other fields for comparison 471 

purposes. For example, a recent paper comparing the efficiency of different mappers and 472 

callers in plant NGS data found that GATK was the best caller among those tested, 473 

suggesting that the type of data greatly affects not only the results but also the choice of tools 474 

used to analyse the datasets [30, 54, 55]. Although GATK was not the best of the callers in 475 

our study, we suggest these results are valid given the diversity of the datasets; namely, the 476 

plant genome being of better quality and not containing mixed strains compared to the 477 

wastewater, secondly, the fact that not always the expected mutations are known, thus many 478 

more mutations will account as TP or FP. This is independent of the pathogen studied, since 479 

most of the tools are widely applicable in different fields. Similarly, another study looking at 480 

exome sequencing also found that among the variant callers analysed, GATK 481 
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UnifiedGenotyper performed best [54]. We suggest that looking at shorter regions of a 482 

genome, such as exons, has its advantage since it allows us to work with a relatively smaller 483 

and highly covered region. In addition, compared to the above paper, we used GATK 484 

Haplotypecaller, which is known to have a different algorithm for calling variants than 485 

GATK UnifiedGenotyper. 486 

It should also be noted that many of the parameters within each of these variant callers were 487 

left in default in our analysis. In fact, the wide choice of parameters poses a risk on its own 488 

when comparing different tools as it introduces biases. In an ideal setting, the correct 489 

procedure will imply that all parameters are tested and those reflecting an outcome that is 490 

expected are then chosen. In this paper we did not assume a certain output as we did not use 491 

all the possible parameters and because we were not expecting similar results between the 492 

callers. Indeed, a small test using FreeBayes showed us that changing certain key parameters 493 

yielded many different outputs, all of them being acceptable results (data not shown). 494 

Because these parameters are not shared or found in other callers, the comparison could not 495 

be achieved, as it would have introduced an advantage or disadvantage for some callers. This 496 

is in agreement with current literature, where on many occasions' parameters are left in 497 

default [30-32]. A direct consequence of this is that many results across our data would have 498 

had a different outcome.  Indeed, LoFreq results might differ enormously if we had 499 

considered and adjusted all the parameters accordingly, irrespective of whether these were 500 

common to other variant callers.  501 

It should be noted that calculating recall and precision for samples containing a mix of 502 

variants (two or more), is a cumbersome task, as some mutations can be shared among the 503 

variants, which will affect the ground truth. At the time of writing Deng et al., [35] designed 504 

a tool, where only samples with a mix of two genomes can be used. However, as of now there 505 

is no tool available for samples with a mix of three or more genomes. Wastewater are mixed 506 

samples, sometimes containing more than two variants. However, this notion will only be 507 

confirmed overtime, through sequencing of clinical cases. Therefore, with the aim to reflect 508 

real wastewater data, we calculated recall and precision for each variant known to be 509 

prevalent as it would be at that time that specific variant would have been circulating. This 510 

will inevitably overestimate the number of FP in each run as it should be calculated only once 511 

per sample, but it is however expected: any position not found to be a TP for one variant, will 512 

show as a FP. But, by testing each of the variants separately, this will give us the correct TP 513 
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which are the values we have been using in our manuscript to compare the callers (defining 514 

mutations). 515 

Conclusion  516 

In conclusion, we suggest that callers such as Varscan, BCFtools and Freebayes are overall 517 

preferable (Supplementary Figure 7C), particularly when mutations are not known as they are 518 

called with higher specificity and sensitivity.  519 

However, if specific mutations are under investigation and expected in the output, such as the 520 

ones we used as variant-defining, iVar performed best.  521 

We also suggest that, upon choice of one variant caller for a specific study other than 522 

comparison purposes, all parameters should be explored and tested to better improve the 523 

calling capability. 524 

In the future, tools that can analyse mixed samples without the need to run the strains 525 

separately are also preferred as they will give even more accurate values of recall and 526 

precision. 527 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.06.06.22275866doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.06.22275866


Author contribution 528 

Contributor Role Role Definition 

Conceptualisation Ideas: formulation or evolution of overarching research goals and 

aims: Irene Bassano, Mathew Brown 

Methodology Development or design of methodology; creation of models: Irene 

Bassano, Vinoy Ramachandran, Mohammad Khalifa, Chris Lilley 

Software Programming, software development; designing computer programs; 

implementation of the computer code and supporting algorithms; 

testing of existing code components: Vinoy Ramachandran, 

Mohammad Khalifa, Irene Bassano, Chris Lilley 

Validation Verification, whether as a part of the activity or separate, of the 

overall replication/reproducibility of results/experiments and other 

research outputs: Irene Bassano, Vinoy Ramachandran, Chris Lilley, 

Ronny van Aerle, Hubert Denise, William Rowe, Mohammad 

Khalifa 

Formal Analysis Application of statistical, mathematical, computational, or other 

formal techniques to analyse or synthesise study data: Chris Lilley, 

Irene Bassano, Vinoy Ramachandran 

Investigation Conducting a research and investigation process, specifically 

performing the experiments, or data/evidence collection: Irene 

Bassano, Vinoy Ramachandran, Hubert Denise, William Rowe, 

Lilley Chris, George Airey, Cairns Edward, Wierzbicki Claudia, 

Pickwell Natalie D, Wilson Myles, Carlile Matthew, Holmes Nadine, 

Payne Alexander 

Resources Provision of study materials, reagents, materials, patients, laboratory 

samples, animals, instrumentation, computing resources, or other 

analysis tools: Steve Paterson, Matthew Loose, Terry Burke, 

Matthew Wade, Jasmine Grimsley 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.06.06.22275866doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.06.22275866


Data Curation Management activities to annotate (produce metadata), scrub data 

and maintain research data (including software code, where it is 

necessary for interpreting the data itself) for initial use and later 

reuse: Irene Bassano, Vinoy Ramachandran 

Writing – 

Original Draft 

Preparation 

Creation and/or presentation of the published work, specifically 

writing the initial draft (including substantive translation): Irene 

Bassano, Vinoy Ramachandran 

Writing – Review 

and Editing 

Preparation, creation and/or presentation of the published work by 

those from the original research group, specifically critical review, 

commentary or revision – including pre- or post-publication stages: 

All authors 

Visualisation Preparation, creation and/or presentation of the published work, 

specifically visualisation/data presentation: Vinoy Ramachandran, 

Mohammad Khalifa, Chris Lilley 

Supervision Oversight and leadership responsibility for the research activity 

planning and execution, including mentorship external to the core 

team: Irene Bassano, Matthew Wade, Jasmine Grimsley 

Project 

Administration 

Management and coordination responsibility for the research activity 

planning and execution: Irene Bassano, Jasmine Grimsley 

 529 

Conflicts of interest 530 

The authors declare no conflict of interest. 531 

Funding 532 

Acquisition of the financial support for the project leading to this publication: This work was 533 

supported by the UK Health Security Agency, the Natural Environment Research Council 534 

(NERC) Environmental Omics Facility (NEOF), and NERC grant NE/V010441/1 to Terry 535 

Burke.   536 

Acknowledgements 537 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.06.06.22275866doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.06.22275866


We are grateful to Dr Zhi-Luo Deng from the Department of Computational Biology of 538 

Infection Research, Helmholtz Centre for Infection Research for helpful discussions and 539 

comments, help in installing, running and updating scripts to calculate recall and precision 540 

(Quasimodo), Rachel Tucker and Tom Holden from NERC Environmental Omics Facility, 541 

Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield for 542 

technical assistance. 543 

Data availability 544 

Sequencing data is available upon request . 545 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.06.06.22275866doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.06.22275866


Bibliography 546 

1. Cucinotta, D. and M. Vanelli, WHO Declares COVID-19 a Pandemic. Acta Biomed, 547 
2020. 91(1): p. 157-160. 548 

2. Aguiar-Oliveira, M.L., et al., Wastewater-Based Epidemiology (WBE) and Viral 549 
Detection in Polluted Surface Water: A Valuable Tool for COVID-19 Surveillance-A 550 
Brief Review. Int J Environ Res Public Health, 2020. 17(24). 551 

3. Peccia, J., et al., Measurement of SARS-CoV-2 RNA in wastewater tracks community 552 
infection dynamics. Nat Biotechnol, 2020. 38(10): p. 1164-1167. 553 

4. Sutton, M., et al., Detection of SARS-CoV-2 B.1.351 (Beta) Variant through 554 
Wastewater Surveillance before Case Detection in a Community, Oregon, USA. 555 
Emerg Infect Dis, 2022. 28(6). 556 

5. Mallapaty, S., How sewage could reveal true scale of coronavirus outbreak. Nature, 557 
2020. 580(7802): p. 176-177. 558 

6. WHO. Tracking SARS-CoV-2 variants. 2022  [cited 2022 May 2022]; Available from: 559 
https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/. 560 

7. NCBI, SARS-CoV-2  Variants Overview. 2022. 561 
8. UKHSA. Emerging infections: horizon scanning. 2010  [cited 2022; Available from: 562 

https://www.gov.uk/government/collections/emerging-infections. 563 
9. UKHSA, Investigation of SARS-CoV-2 variants: technical briefings. 2022. 564 
10. UKHSA, UK completes over 2 million SARS-CoV-2 whole genome sequences. 2022. 565 
11. Xiao, A., et al., Metrics to relate COVID-19 wastewater data to clinical testing 566 

dynamics. medRxiv, 2021. 567 
12. Wolfe, M.K., et al., High-Frequency, High-Throughput Quantification of SARS-CoV-568 

2 RNA in Wastewater Settled Solids at Eight Publicly Owned Treatment Works in 569 
Northern California Shows Strong Association with COVID-19 Incidence. mSystems, 570 
2021. 6(5): p. e0082921. 571 

13. Weidhaas, J., et al., Correlation of SARS-CoV-2 RNA in wastewater with COVID-19 572 
disease burden in sewersheds. Sci Total Environ, 2021. 775: p. 145790. 573 

14. Peinado, B., et al., Improved methods for the detection and quantification of SARS-574 
CoV-2 RNA in wastewater. Sci Rep, 2022. 12(1): p. 7201. 575 

15. Ewels, P.A., et al., The nf-core framework for community-curated bioinformatics 576 
pipelines. Nat Biotechnol, 2020. 38(3): p. 276-278. 577 

16. Posada-Cespedes, S., et al., V-pipe: a computational pipeline for assessing viral 578 
genetic diversity from high-throughput data. Bioinformatics, 2021. 579 

17. Grubaugh, N.D., et al., An amplicon-based sequencing framework for accurately 580 
measuring intrahost virus diversity using PrimalSeq and iVar. Genome Biol, 2019. 581 
20(1): p. 8. 582 

18. Koboldt, D.C., et al., VarScan: variant detection in massively parallel sequencing of 583 
individual and pooled samples. Bioinformatics, 2009. 25(17): p. 2283-5. 584 

19. Mathew R. Brown, M.J.W., Shannon McIntyre-Nolan, Irene Bassano,, D.B. Hubert 585 
Denise, John Bentley, Joshua T. Bunce, Jasmine Grimsley, Alwyn , and T.H. Hart, 586 
Aaron Jeffries, Steve Paterson, Mark Pollock, Jonathan Porter, David Smith4 Ronny 587 
van Aerle, Glenn Watts, Andrew Engeli, Gideon Henderson, Wastewater Monitoring 588 
of SARS-CoV-2 Variants in England: Demonstration Case Study for Bristol (Dec 589 
2020 - March 2021) Summary for SAGE 08/04/21. 2021. 590 

20. McKenna, A., et al., The Genome Analysis Toolkit: a MapReduce framework for 591 
analyzing next-generation DNA sequencing data. Genome Res, 2010. 20(9): p. 1297-592 
303. 593 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.06.06.22275866doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.06.22275866


21. Wilm, A., et al., LoFreq: a sequence-quality aware, ultra-sensitive variant caller for 594 
uncovering cell-population heterogeneity from high-throughput sequencing datasets. 595 
Nucleic Acids Res, 2012. 40(22): p. 11189-201. 596 

22. Garrison, E. and G. Marth, Haplotype-based variant detection from short-read 597 
sequencing. 2012. 598 

23. Danecek, P., et al., Twelve years of SAMtools and BCFtools. 2021. 599 
24. Olm, M.R., et al., inStrain profiles population microdiversity from metagenomic data 600 

and sensitively detects shared microbial strains. Nat Biotechnol, 2021. 39(6): p. 727-601 
736. 602 

25. Costea, P.I., et al., metaSNV: A tool for metagenomic strain level analysis. PLoS One, 603 
2017. 12(7): p. e0182392. 604 

26. Jeffries, A., et al. Wastewater Sequencing using the EasySeq™ RC-PCR SARS CoV-2 605 
(Nimagen) V2.0 V.2. 2022; Available from: 606 
https://www.protocols.io/view/wastewater-sequencing-using-the-easyseq-rc-pcr-sar-607 
81wgb7bx3vpk/v2. 608 

27. Loman, N., W. Rowe, and A. Rambaut, nCoV-2019 novel coronavirus bioinformatics 609 
protocol. 2020. 610 

28. Krueger, F. Trim Galore. 2021; Available from: 611 
https://zenodo.org/record/5127899#.YoQSyXXMI2w. 612 

29. Li, H. and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler 613 
transform. Bioinformatics, 2009. 25(14): p. 1754-60. 614 

30. Schilbert, H.M., A. Rempel, and B. Pucker, Comparison of Read Mapping and 615 
Variant Calling Tools for the Analysis of Plant NGS Data. Plants (Basel), 2020. 9(4). 616 

31. Xu, C., A review of somatic single nucleotide variant calling algorithms for next-617 
generation sequencing data. Comput Struct Biotechnol J, 2018. 16: p. 15-24. 618 

32. Sandmann, S., et al., Evaluating Variant Calling Tools for Non-Matched Next-619 
Generation Sequencing Data. Sci Rep, 2017. 7: p. 43169. 620 

33. Albers, C.A., et al., Dindel: accurate indel calls from short-read data. Genome Res, 621 
2011. 21(6): p. 961-73. 622 

34. Wilson; Erika; Katrin Sameith; Maxime U. Garcia; jcurado; Kevin Menden, 623 
H.P.S.V.S.M.J.E.-C.M.L.H.n.-c.b.A.U.G.G.P.E.M.S.K.S. nf-core/viralrecon: nf-624 
core/viralrecon v2.5 - Manganese Monkey. 2022; Available from: 625 
https://zenodo.org/record/6827984#.Yxm4OKHMI2w. 626 

35. Deng, Z.L., et al., Evaluating assembly and variant calling software for strain-627 
resolved analysis of large DNA viruses. Brief Bioinform, 2021. 22(3). 628 

36. Schmidt, J., et al., Genotyping of familial Mediterranean fever gene (MEFV)-Single 629 
nucleotide polymorphism-Comparison of Nanopore with conventional Sanger 630 
sequencing. PLoS One, 2022. 17(3): p. e0265622. 631 

37. Parikh, R., et al., Understanding and using sensitivity, specificity and predictive 632 
values. Indian J Ophthalmol, 2008. 56(1): p. 45-50. 633 

38. Olson, N.D., et al., Best practices for evaluating single nucleotide variant calling 634 
methods for microbial genomics. Front Genet, 2015. 6: p. 235. 635 

39. Wickham, H., ggplot2: Elegant Graphics for Data Analysis. 2016. 636 
40. Garrison E., K.Z.N., Dawson E.T., Pedersen B.S., Prins P., Vcflib and tools for 637 

processing the VCF variant call format. 2021. 638 
41. Pogka, V., et al., Laboratory Surveillance of Polio and Other Enteroviruses in High-639 

Risk Populations and Environmental Samples. Appl Environ Microbiol, 2017. 83(5). 640 
42. Pavlov, D.N., et al., Prevalence of vaccine-derived polioviruses in sewage and river 641 

water in South Africa. Water Res, 2005. 39(14): p. 3309-19. 642 
43. Paul, J.R., J.D. Trask, and S. Gard, Poliomyelitic virus in urban sewage 1940. 643 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.06.06.22275866doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.06.22275866


44. Nakamura, T., et al., Environmental surveillance of poliovirus in sewage water 644 
around the introduction period for inactivated polio vaccine in Japan. Appl Environ 645 
Microbiol, 2015. 81(5): p. 1859-64. 646 

45. Metcalf, T.G., J.L. Melnick, and M.K. Estes, Environmental virology: from detection 647 
of virus in sewage and water by isolation to identification by molecular biology--a 648 
trip of over 50 years. Annu Rev Microbiol, 1995. 49: p. 461-87. 649 

46. Tran, H.N., et al., SARS-CoV-2 coronavirus in water and wastewater: A critical 650 
review about presence and concern. Environ Res, 2021. 193: p. 110265. 651 

47. La Rosa, G., et al., Coronavirus in water environments: Occurrence, persistence and 652 
concentration methods - A scoping review. Water Res, 2020. 179: p. 115899. 653 

48. Kitajima, M., et al., SARS-CoV-2 in wastewater: State of the knowledge and research 654 
needs. Sci Total Environ, 2020. 739: p. 139076. 655 

49. Foladori, P., et al., SARS-CoV-2 from faeces to wastewater treatment: What do we 656 
know? A review. Sci Total Environ, 2020. 743: p. 140444. 657 

50. Ahmed, W., et al., First confirmed detection of SARS-CoV-2 in untreated wastewater 658 
in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the 659 
community. Sci Total Environ, 2020. 728: p. 138764. 660 

51. Sangkham, S., A review on detection of SARS-CoV-2 RNA in wastewater in light of 661 
the current knowledge of treatment process for removal of viral fragments. J Environ 662 
Manage, 2021. 299: p. 113563. 663 

52. Corpuz, M.V.A., et al., Viruses in wastewater: occurrence, abundance and detection 664 
methods. Sci Total Environ, 2020. 745: p. 140910. 665 

53. Katharina Jahn, D.D., Ivan Topolsky, Anina Kull, Pravin Ganesanandamoorthy, 666 
Xavier Fernandez-Cassi, Carola Bänziger, Alexander J. Devaux, Elyse Stachler, Lea 667 
Caduff, Federica Cariti, Alex Tuñas Corzón, Lara Fuhrmann, Chaoran Chen, Kim 668 
Philipp Jablonski, Sarah Nadeau, Mirjam Feldkamp, Christian Beisel, Catharine 669 
Aquino, Tanja Stadler, Christoph Ort, Tamar Kohn, Timothy R. Julian, Niko 670 
Beerenwinkel, Detection of SARS-CoV-2 variants in Switzerland by genomic analysis 671 
of wastewater samples 2021. 672 

54. Cornish, A. and C. Guda, A Comparison of Variant Calling Pipelines Using Genome 673 
in a Bottle as a Reference. Biomed Res Int, 2015. 2015: p. 456479. 674 

55. Bian, X., et al., Comparing the performance of selected variant callers using synthetic 675 
data and genome segmentation. BMC Bioinformatics, 2018. 19(1): p. 429. 676 

 677 

  678 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.06.06.22275866doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.06.22275866


Tables 679 

Table 1 List of synthetic genomes by Twist Bioscience used for the comparison test. Defining 680 

mutation patters were taken from https://github.com/phe-genomics/variant_definitions.  681 

 682 

 683 

Table 2 Mixed synthetic samples used to compare the six variant callers. The samples with * 684 

were also used for comparison of technical replication.  685 

  686 

No Sample mix names  
Synthetic 

(variant) genomes 
in the sample 

Synthetic genome ratio (%) in 
the mix 

1* 100_Alpha|0_Beta|0_Delta Alpha 100 / 0 / 0  

2* 0_Alpha|100_Beta|0_Delta Beta 0 / 100 / 0 

3* 0_Alpha|0_Beta|100_Delta Delta 0 /0 / 100 

4 25_Alpha|75_Beta|0_Delta Alpha / Beta 25 / 75 / 0 

5 50_Alpha|50_Beta|0_Delta Alpha / Beta 50 / 50 / 0 

6 75_Alpha|25_Beta|0_Delta Alpha / Beta 75 / 25 / 0 

7 95_Alpha|5_Beta|0_Delta Alpha / Beta 95 / 5 / 0 

8 10_Alpha|70_Beta|20_Delta Alpha / Beta / Delta 10 / 70 / 20 

9 20_Alpha|70_Beta|10_Delta Alpha / Beta / Delta 20 / 70 / 10 

10 25_Alpha|25_Beta|50_Delta Alpha / Beta / Delta 25 / 25 / 50 

11 25_Alpha|50_Beta|25_Delta Alpha / Beta / Delta 25 / 50 / 25 

12 50_Alpha|25_Beta|25_Delta Alpha / Beta / Delta 50 / 25 / 25 

13 50_Alpha|0_Beta|50_Delta Alpha / Delta 50 / 0 / 50 

Twist 
Part No GISAID ID GISAID Name 

PANGO  
lineage WHO Label 

Defining  
mutation   

Total mutations 
in Twist 
genome 

SNPs Indels MNVs 

103909 EPI_ISL_601443 
England/MILK9E05B3

/2020 B.1.1.7 Alpha 15 28 22 4 2 

104043 EPI_ISL_678597 
South 

Africa/KRISPEC-
K005299/2020 

B.1.351 Beta 15 25 23 2 0 

104533 EPI_ISL_1544014 
India/MH-

NCCS P116200018273
5/2021 

B.1.617.2 Delta 13 37 30 7 0 

104044 EPI_ISL_792683 Japan/IC-0564/2021 P.1 Gamma 23 24 21 3 0 

105204 EPI_ISL_6841980 
Hong Kong/HKU-
211129-001/2021 

B.1.1.529 
BA.1 Omicron 17 59 45 14 0 

105345 EPI_ISL_7190366 Australia/QLD2568/20
2 

B.1.1.529 
BA.2 

Omicron 20 57 48 9 0 

105346 EPI_ISL_7718520 
England/MILK-
2DF642C/2021 

B.1.1.529 
BA.2 

Omicron 20 58 48 9 0 
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14 25_Alpha|0_Beta|75_Delta Alpha / Delta 25 / 0 / 75 

15 75_Alpha|0_Beta|25_Delta Alpha / Delta 75 / 0 / 25 

16 0_Alpha|25_Beta|75_Delta Beta / Delta 0 / 25 / 75 

17 0_Alpha|5_Beta|95_Delta Beta / Delta 0 / 5 / 95 

18 0_Alpha|50_Beta|50_Delta Beta / Delta 0 / 50 / 50 

19 0_Alpha|75_Beta|25_Delta Beta / Delta 0 / 75 / 25 

 687 

Table 3 List of wastewater samples collected across London between the 15th and 18th 688 

December 2021. Samples in bold were also used to generate UpSet plots for Figure 5A-F. 689 

 690 
  691 
 692 

 693 

 694 

 695 

 696 

 697 

 698 

 699 

 700 

Figures and Tables legends 701 

Figure 1A-D Point plots of precision vs recall for synthetic samples, grouped and faceted by 702 
variant caller, coloured by percentage present in the mix (dark blue, 0%, bright red, 100%). A 703 
linear regression for each plot is also present. A. is comparing the synthetic samples to the 704 
alpha variant reference, B. Beta variant reference, C. for Delta variant reference and D. for 705 
Gamma variant reference. As there was no mixed ratio for the Gamma variant which we have 706 
used as a negative control, no gradient was applied. Except for LoFreq and iVar, all the 707 
callers show a high precision and recall, and this is proportional to the percentage of the 708 
variant in the mix: indeed, samples with a high percentage of a variant (e.g., close to 100%, in 709 
red) tend to have a higher precision and recall, compared to those samples that have a lower 710 
percentage of the variant being plotted (e.g., closer to 0%, in blue)  . 711 

 712 

Figure 2A-B Point plots of precision vs recall for wastewater samples for the Delta 713 
variant, faceted by variant caller.  A. Comparison of real wastewater samples to the Delta 714 
variant reference and B. with labelled samples to better identify which samples had low recall 715 
and low precisions (thus, not containing any Delta variant). As shown in Figure 4C, some 716 

No Wastewater Samples  Sample Code Sample Collection date Variants detected by EMHP 

1 London 1 S59 15/12/2021 Delta / Omicron 

2 London 2 S42 16/12/2021 Delta / Omicron 

3 London 3 S63 16/12/2021 Delta / Omicron 

4 London 4 S50 16/12/2021 Delta / Omicron 

5 London 5 S58 16/12/2021 Delta / Omicron 

6 London 6 S43 16/12/2021 Omicron 

7 London 7 S296 18/12/2021 Delta 

8 London 8 S263 18/12/2021 Delta / Omicron 

9 London 9 S302 18/12/2021 Delta / Omicron 

10 London 10 S292 18/12/2021 Delta / Omicron 

11 London 11 S278 18/12/2021 Omicron 

12 London 12 S305 18/12/2021 Omicron / AY.4.2 

13 London 13 S270 18/12/2021 Omicron / AY.4.2 
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samples such as S296 and S50 are those containing a Delta variant in the mix, compared to 717 
S43 seen to be negative for all the variant callers. As shown previously for the synthetic 718 
data, LoFreq has the lowest recall and precision. 719 

 720 

Figure 3A-C Point plots of precision vs recall for real wastewater samples for the three 721 
Omicron variants, faceted by variant caller.  A. Omicron England variant reference; B. 722 
Omicron Hong Kong variant reference; C. Omicron Australia variant reference. Since the 723 
wastewater samples are known to contain the Omicron variant, samples do show a higher 724 
precision and recall compared to the negative controls used to generate Figure 4A-B-725 
D. Samples S63, S58, S42 and S292 had the highest precision and 726 
recall for BCFtools, Freebayes, GATK, iVar and VarScan, while LoFreq did not call with the 727 
same efficiency. S50 and S296 had the lowest precision and recall for all the callers. Notably, 728 
GATK did not call S296. 729 

 730 

Figure 4A-F Upset plots showing the common set of mutation found in (A) Alpha reference 731 
genome and sample containing 100% alpha synthetic genome (B) Beta reference genome and 732 
sample containing 100% beta synthetic genome (C) Delta reference genome and sample 733 
containing 100% delta synthetic genome.  (D-F) Upset plots showing common mutation 734 
between sample mix (50% Alpha, 25% Beta and 25% Delta synthetic genome) and (D) Alpha 735 
reference genome (E) Beta reference genome and (F) Delta reference genome for 6 different 736 
variant callers. A= Alpha; B= Beta; C= Delta; D= mixed sample 12 Alpha; E= mixed 737 
sample 12 Beta; F= mixed sample 12 Delta. For each A-F plot we added the variant being 738 
tested at the top of the variant callers. Each mutation called by variant callers below Alpha, 739 
Beta and Delta can then be compared to look at how many of the variant-defining mutations 740 
are found by the variant caller. The Figures show that not all the defining mutations are found 741 
by each of the caller and the additional mutations each variant caller has found. Among all 742 
the callers, LoFreq is the caller with the highest number of mutations detected and much 743 
fewer corresponding to the variant-defining list as shown by the variant on top of the callers.   744 

 745 

Figure 5A-F Upset plots of wastewater samples showing the common set of 746 
defining mutations found between Delta, Omicron BA.1 and Omicron BA.2 and wastewater 747 
samples (A) S42 (B) S58 (C) S63 (D) S292 (E) 296 and (F) S263 for 6 different 748 
variant callers. A=S42, B=S58, C=S63, D=S292, E=S296 – GATK failed, F=S263. As 749 
described for Figure 4A-F, each mutation called by variant callers listed below Omicron 750 
BA.1, Omicron BA.2 and Delta can then be compared to look at how many of the variant-751 
defining mutations are found by the variant caller. The Figure show that not all the defining 752 
mutations are found by each of the caller and the additional mutations each variant caller has 753 
found. As seen in the synthetic samples, LoFreq is the caller with the highest number of 754 
mutations detected and much fewer corresponding to the variant-defining list as shown by the 755 
variant on top of the callers. All callers also show the presence of unique mutations not found 756 
by the other callers and not present in the list of the defining ones as seen under Omicron 757 
BA.1, Omicron BA.2 and Delta.  758 

 759 
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Figure 6A-F Alternate allele frequencies of the defining mutations for Alpha (A), Beta (B) 760 
and Delta (C) variants were plotted for the 19 selected synthetic datasets for six different 761 
variant callers. Similarly, the alternate allele frequencies of the defining mutations of 762 
Omicron BA.1 (D), Omicron BA.2 (E) and Delta (F) were plotted for 13 wastewater samples 763 
for six different variant callers. The data points were coloured based on the 4-color rainbow 764 
gradient from red (0%) to purple (100%). Degenerate codons were not plotted.   765 

 766 

Supplementary Figure 1A-D Point plots of precision vs recall for synthetic samples, 767 
grouped and coloured by variant caller and a linear regression for each. A, Alpha variant 768 
reference, B. Beta variant reference, C. Delta variant reference and D. Gamma variant 769 
reference. The figure shows the low precision recorded by LoFreq compared to the rest of the 770 
variant callers while is higher for VarScan, FreeBayes, BCFtools and GATK. Interestingly, 771 
trend lines overlap for Freebayes and BCFtools.   772 

  773 

Supplementary Figure 2 Plot of F1 score vs callers for three synthetic samples (1) 100% 774 
alpha (2) 100% Beta and (3) 100% Delta as listed in Table 2 (samples with *). Each plot 775 
represents caller in relation to either the precision or the recall, expressed as the F1 score. The 776 
figure shows that all the replicates (filled circle) have similar recall and precision, suggesting 777 
that no major differences are observed. As shown in Figure 1 and 2, LoFreq shows the lowest 778 
F1 score compared to the rest of the callers, followed by iVar. FreeBayes and VarScan, 779 

showed similar results, while GATK had the highest F1 score, followed by BCFtools.  780 

 781 

Supplementary Figure 3A-D Point plots of precision vs recall for wastewater samples, 782 
coloured by variant caller. A, Alpha variant reference, B. Beta variant reference, C. Delta 783 
variant reference and D. Gamma variant reference. The figure shows that variants not found 784 
in the mix such as Alpha, Beta and Gamma have low precision and recall. Some of the 785 
samples are known to be positive for the Delta variant therefore the latter will have a 786 
higher precision and/or recall.   787 

 788 

Supplementary Figure 4A-C Point plots of precision vs recall for wastewater samples for 789 
the Omicron variant, grouped and coloured by variant caller and a linear regression for each. 790 
A, Omicron England variant reference, B. Omicron Hong Kong variant reference, C. 791 
Omicron Australia variant reference. Since the wastewater samples are known to contain the 792 
Omicron variant, samples do show a higher precision and recall compared to the negative 793 
controls used to generate Figure 4 A-B-D.  794 

 795 

Supplementary Figure 5A-F SNPs, Indels, MNVs bar plots for synthetic and 796 
real wastewater samples.   797 

A. Number of SNPs calculated for each of the 19 synthetic samples (mean of replicates). The 798 
figure clearly identifies LoFreq as the caller with the highest number of SNPs detected, while 799 
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the rest of the callers do show a similar pattern. Detailed differences excluding LoFreq can be 800 
appreciated in Supplementary Figure 2A-B.   801 

B. Number of SNPs calculated for each of the 13 wastewater samples with variable results 802 
among the callers. In comparison to other callers, LoFreq still calls more SNPs than expected 803 
in some of the samples, namely S296, S292, S42, S50.  804 

C. Number of Indels calculated for each of the 19 synthetic samples (mean of replicates). As 805 
seen for the SNPs bar plots, LoFreq calls the highest number of Indels detected, while the rest 806 
of the callers do show a similar pattern. Detailed differences excluding LoFreq can be 807 
appreciated in Supplementary Figure 2C-D.   808 

D. Number of Indels calculated for each of the 13 wastewater samples with variable results 809 
among the callers. In comparison to other callers, LoFreq still calls more Indels than expected 810 
in some of the samples, namely S296, S292, S305, S42, S50, S58 and S63. Notably, we were 811 
not able to verify the presence of Indels for GATK for sample S296.  812 

E. Number of MNPs calculated for each of the 19 synthetic samples (mean of replicates). 813 
Only Freebayes and iVAR had detectable values to be plotted, while the rest of the callers did 814 
not call this type of base variation.   815 

F. Number of MNPs calculated for each of the 13 wastewater samples. As seen for the 816 
synthetic samples, only Freebayes and iVAR detected the presence of MNPs.   817 

 818 

Supplementary Figure 6A-F SNPs, Indels, MNVs bar plots for synthetic and 819 
real wastewater samples without plotting LoFreq values. A. Number of SNPs calculated for 820 
each of the 19 synthetic samples (mean of replicates). B. Number of SNPs calculated for each 821 
of the 13 wastewater samples. C. Number of Indels calculated for each of the 19 synthetic 822 
samples (mean of replicates). D. Number of Indels calculated for each of the 13 wastewater 823 
samples. E. Number of MNPs calculated for each of the 19 synthetic samples (mean 824 
of replicates). F. Number of MNPs calculated for each of the 13 wastewater samples.  825 

 826 

Supplementary Figure 7A-C Statistical analysis of recall, precision and F1 score across the 827 
six variant callers for synthetic and wastewater samples. The figure shows boxplots showing 828 
variant caller scores for wastewater samples. For each figure, Top: Precision. Middle: Recall. 829 
Bottom: F1 Score. A. Boxplots showing variant caller scores for synthetic samples. Right: 830 
Post-hoc Dunn’s test p-values, highlighted where p < 0.05 indicating significant difference 831 
between the distribution of scores of that caller with another. LoFreq is stochastically 832 
dominated by the others when evaluating precision and F1 scores. iVar is stochastically 833 
dominant for recall. B. Left: Boxplots showing variant caller scores for wastewater samples. 834 
Right: Post-hoc Dunn’s test p-values, highlighted where p < 0.05 indicating significant 835 
difference between the distribution of scores of that caller with another. LoFreq is 836 
stochastically dominated by the others when evaluating precision and F1 scores. iVar is 837 
stochastically dominant for recall but is dominated by all callers except LoFreq for precision. 838 
C. Left: Boxplots showing variant caller scores for synthetic and wastewater samples 839 
combined. Right: Post-hoc Dunn’s test p-values, highlighted where p < 0.05 indicating 840 
significant difference between the distribution of scores of that caller with another. LoFreq is 841 
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stochastically dominated by the others when evaluating precision and F1 scores. iVar is 842 
stochastically dominant for recall but is dominated by all callers except LoFreq for precision. 843 

 844 
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